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Abstract

Echocardiography (echo) is a critical tool in diagnosing various cardiovascular diseases. Despite 

its diagnostic and prognostic value, interpretation and analysis of echo images are still widely 

performed manually by echocardiographers. A plethora of algorithms has been proposed to 

analyze medical ultrasound data using signal processing and machine learning techniques. These 

algorithms provided opportunities for developing automated echo analysis and interpretation 

systems. The automated approach can significantly assist in decreasing the variability and burden 

associated with manual image measurements. In this paper, we review the state-of-the-art 

automatic methods for analyzing echocardiography data. Particularly, we comprehensively and 

systematically review existing methods of four major tasks: echo quality assessment, view 

classification, boundary segmentation, and disease diagnosis. Our review covers three echo 

imaging modes, which are B-mode, M-mode, and Doppler. We also discuss the challenges and 

limitations of current methods and outline the most pressing directions for future research. In 

summary, this review presents the current status of automatic echo analysis and discusses the 

challenges that need to be addressed to obtain robust systems suitable for efficient use in clinical 

settings or point-of-care testing.
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1 Introduction

Cardiovascular disease (CVD) is the leading cause of mortality in the United States and 

globally [1]. CVD is diagnosed using several imaging techniques: echocardiography (echo), 

cardiac magnetic resonance imaging (CMR), multiple gated acquisition scan (MUGA), and 

computed tomography (CT). Of these techniques, echo is the most commonly used as it is 

noninvasive, portable, inexpensive, and widely available [2]. Transthoracic echocardiogram 

(TTE), a very safe and common type of echocardiogram, involves using a transducer to 

transmit ultrasound waves to the heart and converting the reflected waves (echoes) into 

images. The recorded echo data can be either a single shot (static image) at a specific cardiac 
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period or a video sequence over cardiac cycles. A single cardiac cycle starts with ventricular 

contraction (systole) and ends by ventricular relaxation (diastole). Different echo modes can 

be obtained using TTE [2], namely M-mode, B-mode, and Doppler, each with purpose-

specific characteristics. These modes are typically used in an integrated fashion to provide 

better visualization and diagnosis of various cardiac conditions. Descriptions of echo modes 

can be found in Appendix A.

Existing approaches for analyzing echo data can be broadly divided into manual and 

automated. In the manual approach, echocardiographers manually select good-quality end-

systole and end-diastole frames followed by delineating the desired region and measuring 

cardiac indices. Examples of common cardiac indices include ejection fraction (B-mode), 

peak velocity (spectral Doppler), and posterior wall thickness (M-mode). Complete list of 

cardiac indices can be found in [2]. This manual approach has three limitations. First, it is 

error-prone and suffers from high intra- and inter-reader variability [3], [4]. Manual 

estimation of cardiac indices is more challenging and prone to larger variability in case of 

fetuses/infants [5] and animals [6] due to their small cardiac size and unclear boundaries. 

Second, the manual delineation is a tedious task requiring a significant amount of time. This 

time commitment paired with insufficient access to technicians increases the workload, 

which might lead to fatigue and distraction, and therefore, inaccurate or delayed diagnoses 

[7]. Third, cardiological expertise is a heavily burdened resource and often unavailable in 

low-resource settings.

Automated echo analysis systems can provide a timely, less subjective, and inexpensive 

alternative to the manual approach. Such systems can control intra- and inter-reader 

variability, greatly reduce the workload, and address the shortage of cardiological expertise 

in low-resource settings. This paper provides a comprehensive and systematic review of 

existing automated methods for four major echo tasks, namely quality assessment, mode/

view classification, segmentation, and CVD diagnosis. The review covers three clinically 

used echo imaging modes, which are B-mode, Doppler, and M-mode. Previous reviews 

focus on other modalities (e.g., MRI), single mode (B-mode), specific task (e.g., 

segmentation), or algorithm (e.g., deep learning).

For example, Litjens et al. [8] presents existing deep learning algorithms for analyzing CT 

and echo modalities. The paper focuses mainly on convolutional neural network (CNN for 

classification) and fully convolutional neural network (FCN for segmentation) applied to B-

mode images. Similarly, Meiburger et al. [9] reviews existing FCN segmentation methods 

applied to B-mode ultrasound images of the heart, abdomen, liver, gynecology, and prostate. 

Other reviews of automated segmentation methods applied to MRI and CT can be found in 

[10], [11], [12]. A more focused review of segmentation methods applied to B-mode fetal 

echocardiography is presented in [13]. For CVD diagnosis, Alsharqi et al. [14] presents 

machine learning methods applied to B-mode echo for disease classification. Similarly, 

Sudarshan et al. [15] presents a review of machine-learning method applied to 2D 

echocardiography (classification) and provide a summary of the most commonly used 

features for identifying a specific cardiac disease (infarcted Myocardium tissue 

characterization).
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Contrary to previous reviews, this paper presents the first comprehensive and systematic 

review of automated methods for major echo tasks. It makes the following contributions:

• It presents the current status and challenges of existing automated echo analysis 

methods (Section 2).

• It provides a summary of the metrics used to assess the performance of various 

echo tasks (Section 3).

• It systematically and comprehensively reviews existing automated methods 

covering four major tasks: echo quality assessment (Section 4.2), view/mode 

classification (Section 4.3), segmentation (Section 4.4), and CVD diagnosis 

(Section 4.5).

• The review covers all echo modes, namely B-mode, M-mode, and Doppler. It 

also provides a summary of the most commonly used clinical and nonclinical 

features for identifying different CVD from different echo modes.

• It presents descriptions of existing publicly available echo datasets (Section 5).

• It highlight the most pressing directions for future research (Section 6).

Section 7 concludes the paper.

2 Background

2.1 Echo Analysis: Artifacts and Challenges

The quality of echo data depends highly on the scanning technique and configurations. 

Because most of echo artifacts occur as a result of improper configurations and acquisition, 

echo images of a specific cardiac tissue acquired by different operators/vendors or under 

different configurations can have different visual appearances. These variations can confuse 

cardiologists and make the image interpretation task challenging. Examples of the main 

artifacts in B-mode and M-mode echo are: side lobe artifact, mirroring artifact, refraction 

artifact, and shadowing artifact [16]. The main artifacts of Doppler echo are: aliasing, 

mirroring, spectral broadening, and blooming [16]. A robust automated echo image analysis 

system should consider these variations and artifacts by including a variety of dataset 

collected from different machine configurations and operator setting for the algorithm 

development and model training.

Another major challenge of echo analysis is the presence of speckle noise. Speckle noise, 

which has a granular appearance, is a multiplicative noise that occurs when several waves of 

the same frequency and different phases and amplitude interfere with each other. This type 

of noise can greatly degrade the quality of the image, and therefore, the quality of the 

automated algorithms. Several despeckling techniques have been proposed to reduce the 

effect of speckle noise while preserving structure and contextual features as well as other 

useful information. We refer the reader to [17], [18], [19], [20] for reviews of traditional 

despeckling techniques and [21], [22] for deep learning-based despeckling techniques.
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2.2 Current Status of Automated Echo Analysis

Existing automated echo analysis systems perform one of the following tasks:

• Quality assessment provides a quality score for an echo frame in real-time or 

classifies the acquired echo frame as low-quality (unmeasurable) or good-quality. 

Automating this task facilities the analysis of subsequent tasks because it 

automatically removes unmeasurable echo cases. For example, automated quality 

assessment can be used to exclude low-quality B-mode images with unclear 

boundaries or unmeasurable Doppler images with overlapped peaks (e.g., E and 

A peaks of mitral valve flow are overlapped).

• Mode/View classification is the categorization of acquired echo data into 

different modes (B-mode, M-mode, Doppler) or cardiac views. Each mode of 

echo can be recorded from different views. For example, a comprehensive B-

mode acquisition involves imaging the heart from different windows or views by 

positioning the transducer in different locations [2]. The most common B-mode 

views include [2]: Parasternal Long Axis and Short Axis views (PLAX and 

PSAX), Apical Two-chamber view (A2C), Apical Three-chamber view (A3C), 

Apical Four-chamber view (A4C), Apical Five-chamber view (A5C), Subcostal 

Long and Short Axis Views (SCLX and SCSX), and Suprasternal Notch View 

(SSN). Similarly, Doppler can be acquired, using continuous wave (CW) or 

pulsed wave (PW), from different locations to measure the function of different 

valves (e.g., aorta valve [AV], mitral valve [MV]). This task can greatly enhance 

subsequent tasks because it allows view-specific segmentation and diagnosis.

• Boundary segmentation task involves delineating the boundary or segmenting the 

area of a desired region. This region can be a cardiac chamber in B-mode 

images, wall in M-mode images, or a spectral envelope in Doppler images. The 

segmented region is then used to extract features or cardiac indices followed by 

CVD classification. Automating this task provides fast, accurate, and objective 

segmentation over the whole cardiac cycle with a minimum time cost.

• CVD classification is the detection or predication of specific cardiac disease 

based on image features or calculated cardiac indices. Fully automated machine-

assisted or machine-based screening and diagnostic systems have a significant 

potential in providing high-quality and cost-efficient health care to the patients in 

low-resource settings.

The first step for all above-mentioned tasks is the detection or localization of the region of 

interest (ROI). Accurate ROI detection is an important step that increases the performance 

and decreases the computational complexity of the method because it removes irrelevant 

regions that confuses the algorithm. ROI detection in case of B-mode images involves 

cropping the anatomical area from the background (e.g., waveforms and texts) while the ROI 

detection in Doppler images involves cropping the Doppler signal region. As shown in the 

tables (Table 2 – Table 5), the majority of existing works manually localize ROI in echo 

images prior to further analysis. Other works use semi-automated or fully automated 

methods to detect ROI in echo images. However, these fully automated methods are view-
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specific and built with specific assumptions (e.g., distinct chamber shape or fixed locations 

of Doppler signal), and hence, might fail if these assumptions are violated.

3 Evaluation Metrics

This section summarizes different metrics used to evaluate the performance of different echo 

tasks. We broadly divide these metrics into classification evaluation metrics and 

segmentation evaluation metrics.

3.1 Classification Evaluation Metrics

Classification metrics are derived from the confusion matrix, which shows the number of 

correct and incorrect classifications as compared to the ground truth labels [23]. Examples of 

derived metrics include accuracy, error rate (ER), true positive rate (TPR), and true negative 

rate (TNR).

Accuracy represents the number of instances (e.g., images or pixels) that are correctly 

classified divided by the total number of instances in the dataset ( TP + TN
TP + TN + FP + FN ), where 

TP, TN, FP, and FN represent true positive, true negative, false positive, and false negative, 

respectively. ER measures the percentage of incorrect classifications. Dividing the number 

of instances that are incorrectly classified by the total number of instances gives ER; i.e., 

subtracting the accuracy percentage from 100. TPR (a.k.a., recall or sensitivity) measures 

the percentage of actual positive examples that are correctly classified. TNR (a.k.a., 

specificity) measures the percentage of actual negatives that are correctly classified. ROC 

(Receiver Operating Characteristic) curve [23] is another evaluation metric that is commonly 

used in medical applications. ROC plots the false positive rate (FPR) on X-axis and TPR on 

Y-axis at different threshold settings of the classifier. A curve that climbs toward the top-left 

corner indicates an ideal classification performance. The area under the ROC curve, known 

as AUC, is used to measure the quality of the classification models. The value of AUC 

ranges from 0 (worst) to 1 (best).

3.2 Segmentation Evaluation Metrics

Roughly, segmentation evaluation metrics can be classified as similarity-based metrics, 

distance-based metrics, and statistical-based metrics.

Similarity-based metrics measure the similarity between the automatically segmented region 

and the manually segmented region. This region can be left ventricle (LV) cavity in B-mode 

images or spectral envelope in Doppler images. Examples of the most common similarity-

based metrics include Jaccard similarity index (JSI) and Dice similarity index (DSI). JSI 

evaluates the segmentation performance using TP, FP, and FN rates as follows [24]: 

JSI = TP
TP + FP + FN , where TP represents the pixels that are correctly classified as the target 

cardiac region, FP represents the background pixels that are falsely classified as the target 

region, and FN represents cardiac pixels that are falsely classified as background. DSI is 

another similarity-based metric that measures the similarity or intersection between the 

automatically labeled pixels and manually labeled pixels. Mathematically, this metric is 
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formulated as follows [24]: DSI = 2 × TP
2TP + FP + FN . The main difference between JSI and 

DSI is that DSI counts TP twice while JSI counts TP once. The value of both JSI and DSI 

ranges from 0 to 1, where 0 indicates complete dis-similarity and 1 indicates complete 

similarity. Intersection over Union (IoU) is another metric that calculates the intersection 

between two regions by dividing the area of overlap between them by the area of union.

A single evaluation category can perhaps not be enough to evaluate the performance of a 

segmentation algorithm. In addition, similarity-based metrics only report the degree of 

overlapping and do not report or consider the location or distance between the segmentation 

and ground truth. Distance-based metrics, on the other hand, consider how far apart the 

segmentation and ground truth are from each other. Average Contour Distance (ACD) and 

Average Surface Distance (ASD) are two distance-based metrics that are commonly used to 

evaluate regions segmentation. Both ACD and ASD are measured in millimeter (mm) [24].

Statistical-based metrics are used to measure the correlation between the automatic and 

manual segmentation. Specifically, statistical-based metrics evaluate the accuracy of 

segmentation by measuring the correlation between the cardiac indices calculated based on 

the automatic segmentation and the manual indices. Correlation coefficients (CC) and 

Bland-Altman agreement (B&A) are two important statistical metrics that are commonly 

used to evaluate the performance of cardiac segmentation. CC measures the correlation or 

the agreement between two sets of data. The mathematical formula of CC, which can be 

found in [25], returns a value that ranges from −1 to 1, where 1 indicates a strong positive 

correlation, −1 indicates a strong negative correlation, and 0 indicates no correlation. B&A 

measures the agreement between two set of measurements or data using the mean difference 

and limits of agreement. The mathematical formulation of B&A and comparison with CC 

metric can be found in [26].

4 Automated Echo Analysis

As computing technology and machine intelligence algorithms evolve, automated analysis of 

echocardiograms have the potential to improve clinical workflows and enhance diagnostic 

accuracy. This section provides a comprehensive review for existing automated methods of 

four tasks: echo quality assessment, mode/view classification, boundary segmentation, and 

CVD classification. The automated methods of these tasks can be divided, based on the 

underlying algorithm, into low level image processing-based methods, deformable model-

based methods, statistical model-based methods, conventional machine learning-based 

methods, and deep learning-based methods. Table 1 summarizes the advantages and 

disadvantages of these five algorithm categories.

4.1 Literature Review Design

To ensure the reproducibility of this review, we present our search and selection strategies. A 

flowchart of our literature review is depicted in Figure 1.

4.1.1 Search Strategy—We did a systematic review of automated echocardiography 

using PubMed, IEEE Xplore, Google Scholar, Google Datasets, ACM Digital Library, 
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CiteSeer, PLOS ONE, and Scopus search engines. We searched for scientific conferences, 

journal articles, technical reports, and dataset papers published up to February 2020, and 

retrieved relevant literature by using a combination of keyword terms. Examples of these 

terms include cardiac imaging; automated echo analysis and interpretation; echo review/

survey; echo mode/view classification; echo disease classification; echo quality assessment; 

image-based analysis echo; machine learning-based analysis echo; deep learning-based 

analysis echo; chamber/envelope/wall segmentation echo; and echocardiographic datasets. 

Terms related to echocardiographic hardware and other cardiac imaging modalities (e.g., CT 

and MRI) are excluded because they are outside the scope of this review. We retrieved, using 

this search strategy, a total of 193 studies.

4.1.2 Selection Strategy—We included a study if all of the following criteria are 

fulfilled: (1) the full text is written in English; (2) the study includes a clear description of 

the technical method and used dataset; (3) the study is published as a full conference paper, 

journal article, open access article, or technical report; and (4) the study is published the year 

of 2004 or after because a rising amount of interest and publications in automated 

echocardiography analysis using image processing and machine learning sprouted around 

that time. We screened the retrieved papers independently and excluded the ones that failed 

to adhere to these criteria. We included, using this strategy, a total of 94 papers in this 

systematic review. The selected papers are loaded into EndNote X8 and categorized into 

different groups.

4.2 Quality Assessment

Unlike other cardiac imaging modalities, the diagnostic accuracy of echocardiography is 

highly dependent on the image quality at the acquisition stage. Therefore, the quality of the 

acquired echo depends highly on the technician’s expertise. Automated echo quality 

assessment task provides a quality score of a given image or categorizes this image as low- 

or good-quality. These methods can aid during echo acquisition by providing real-time 

feedback and automatically rejecting low-quality cases. We divide existing automated 

quality assessment methods into two categories: model-based methods and deep learning-

based methods. Table 2 summaries current automated methods for echo quality assessment.

4.2.1 Model-based Methods—One of the first automated methods for assessing echo 

quality is presented in [27]. The proposed method models the four chambers (left ventricle 

[LV], right ventricle [RV], left atrium [LA], right atrium [RA]) of A4C view by a non-

uniform rational B-splines (nUrBs) using 12 control points. Then, the nUrBs models for all 

chambers are joined by similarity transforms to create a complete view model. Finally, the 

model goodness-of-fit is used to calculate a quality score. The proposed method is tuned 

using 35 B-mode (A4C) echo videos recorded from 4 healthy volunteers. The recorded 

videos include both good quality and completely erroneous quality. Each of the recorded 

video is scored as having good, fair, or poor quality by 2 cardiologists. The proposed method 

improved the quality of the recorded A4C images from poor to fair or good by 89% (i.e., 8 

of 9 cases were improved).
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Another B-mode echo quality assessment method is presented in [28]. The presented method 

assesses the quality by comparing the structure of a representative atlas (model) with the 

structure of the input image. The structure of PLAX atlas is generated from 89 manually 

segmented images while the structure of the input image is generated using thresholding and 

the Generalized Hough Transform (GHT). The proposed method is evaluated using echo 

data (133 PLAX images) of 35 normal and hypertrophic patients. Each image is scored by 

an expert sonographer as poor, moderate, and good visibility. The automatically generated 

scores achieved good correlation with manual ratings (correlation coefficient = 0.84).

Although model-based methods for echo quality assessment can achieve good performance, 

these methods are view-specific because they require to generate a specific model or 

template for each view. In addition, the accurate generation of the template relies heavily on 

human experts or the image’s contrast. For example, methods of Snare et al. [27] and Pavani 

et al. [28] are designed for a specific B-mode view (A4C [27] or PLAX [28]), require 

manual annotation [28], and both rely heavily on the presence of the sharp edges in the 

image; i.e., they would fail when applied to low contrast images.

4.2.2 Deep Learning-Based Methods—Abadi et al. [29] proposed a regression CNN 

architecture for assessing the quality of B-mode videos (A4C view). The proposed 

architecture is composed of two convolutional layers, each followed by Rectified Linear 

Units (ReLU), two pooling layers, and two fully connected layers. The loss function (L2 

norm) outputs the Euclidean distance of the network score to the manual quality score. The 

proposed regression CNN architecture is trained using stochastic gradient descent (SGD), a 

batch size of 16, a momentum of 0.95, weight decay of 0.02, and initial learning rate of 

0.0002. The architecture is trained using 2,344 end-systolic A4C frames. Evaluating the 

performance on 560 test set achieved a mean absolute error (MAE) of 0.87 ± 0.72.

Abadi et al. [30] extends their previous work [29] to include other cardiac views, namely 

A2C, A3C, A4C, PSAX at the aortic valve, and PSAX at the papillary muscle, as well as 

echo cine loops instead of static frames. The proposed multi-stream network architecture 

consists of five regression models with the same weights across the first few layers. The last 

layers of the proposed architecture are view-specific layers. Similar to [30], the loss function 

(L2 norm) for each view computes the Euclidean distance of the network score to the manual 

quality score. The proposed architecture is trained using Adam optimizer and random 

initialization. This method, which is trained using 4,675 cine loops, achieved a mean quality 

score accuracy of 85% ± 12 when applied to testing cine loops (1144).

In summary, there has been a little effort [27], [28], [29], [30] to create automated methods 

for B-mode echo quality assessment. In the case of M-model, we are not aware of any 

automated method for assessing the quality of the acquired M-mode images. As for Doppler, 

we are only aware of a recent deep learning-based method presented by Zamzmi et al. in 

[31]. The proposed method, which was trained on labeled images (good- and bad-quality) 

representing a wide range of real-world clinical variation, achieved 88.9% overall accuracy. 

We refer the reader to [31] for a detailed description of the method and presentation of the 

results.
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Existing methods for assessing B-mode echo quality can be divided into model-based 

methods and deep learning-based methods. As shown in Table 2, deep learning-based 

methods [29], [30] achieved better performance as compared to model-based methods [27], 

[28]. The higher performance in deep learning-based methods could be attributed to a 

broader dataset exploited in the study [29], [30] as well as a more complex feature extraction 

and model learning. In addition, the deep learning-based method proposed in [30] is 

evaluated in a dataset collected from different US machines under different configurations in 

opposition to the methods presented in [27], [28]. Such setting for data collection ensures 

that the proposed method would be clinically relevant. Another advantage of deep learning-

based methods is that these methods do not require the user to build a model or template for 

each view.

In the future, we would expect to see increasingly more deep learning methods to extend 

existing B-mode quality assessment methods, and to include quality assessment for all echo 

modes and views collected using multiple vendors under different configurations. Also, we 

would expect to integrate quality assessment task into acquisition software to provide a 

quality score for recorded echo frames in real-time.

4.3 View Classification

Mode or view classification is the categorization of echo images into different cardiac modes 

(e.g., B-mode) or views (e.g., A4C). Automating this task offers two main benefits. First, it 

facilities the organization, storage, and retrieval of echo images. Second, it is important for 

automating subsequent tasks. For example, measuring the function of a specific valve 

requires knowing the view beforehand because different views show different valves. We 

broadly categorize existing methods for mode/view classification into: conventional machine 

learning-based methods and deep learning-based methods. Table 3 provides a summary and 

quantitative comparisons of these methods.

4.3.1 Conventional Machine Learning-Based Methods—These methods use 

handcrafted features extracted from a detected ROI region with conventional machine 

learning classifiers to perform view classification. For example, Wu et al. [32] proposed a 

global approach that uses GIST descriptor with support vector machines (SVM) for 

classifying 8 B-mode views: PSAX, PLAX, A2C, A4C, SC4C, SC2C, SCLX, and other. 

GIST descriptor computes the spectral energy of the image and outputs a single feature 

vector. It uses blocks (4 pixels × 4 pixels) that contains several oriented Gabor filters to 

model the structure of the image. The final feature vector that represents the entire image is 

generated by moving these blocks over the image to generate spectrograms followed by 

concatenating the generated spectrograms. The extracted feature vectors for all images are 

used to train a probabilistic SVM. The proposed method achieved 98.51% overall accuracy 

when evaluated on a testing set. Other methods that use descriptors similar to GIST with 

SVM can be found in [33] (Scale-invariant feature transform [SIFT] descriptor) and [34] 

(histogram of oriented gradients [HOG] descriptor).

An earlier machine learning-based method for view classification is presented in [35]. The 

first stage of this method involves training LV detectors for four B-mode views (A4C, A2C, 
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PLAX, PSAX) using a previous approach that incorporates Haar-wavelet type local features 

and boosting learning technique. Then, global templates (A4C/A2C template, PLAX 

template, and PSAX template) are constructed based on the detected LV regions and sent to 

multi-class classifiers. Each classifier is trained using the training images provided by its 

detector. The final classification is obtained by fusing the classes of all views. The proposed 

method achieved a classification accuracy over 96% when evaluated on a testing set. This 

method requires a consistent presence of LV in all views, which limits its usage to cases that 

hold this constraint.

Instead of building individual LV detectors for each view, Ebadollahi et al. [36] proposed a 

method that detects the location of chambers using a generic detection approach (GSAT 

detector). The method models the spatial relationships among cardiac chambers to detect 

different views. For each view, the chambers spatial relationships and the statistical 

variations of their properties are modeled using Markov Random Field (MRF) relational 

graph. The method depends on the assumption that if any two images contain the same 

chambers where each chamber is surrounded by similar chambers, then the probability that 

these two images belong to the same view is high. Each model or ”cardiac constellation” is 

assigned a vector of energies according to the different view-models. The energy vectors 

obtained from all the training images are used to build a multi-class SVM. Evaluating the 

proposed method using leave-one-video-out cross validation (LOOCV) achieved up to 

88.35% average precision. The dataset that is used for training and testing the method 

contains 15 normal echo videos, 6 abnormal echo videos, and 10 B-mode views: 2 PLAX 

views, 4 PSAX views, and 4 apical views. The normal cases are used for training and 

testing, and the abnormal cases are used only for testing. A main limitation of this method 

includes sensitivity to ROI detector, noise, and image transformation.

The methods presented in [32], [33], [34], [35], [36] use spatial features extracted from static 

images instead of videos. In [37], Kumar et al. incorporates temporal or motion information 

with spatial features to classify 8 B-mode views: A2C, A3C, A4C, A5C, PLAX, PSAX, 

PSAP, and PSAM. The method starts by manually locating the ROI region in all videos 

followed by aligning (affine transform) these videos using the extreme corner points of the 

fan sector. Then, optical flow is applied to each frame to obtain the motion magnitude. 

Because motions in echo video are only useful when it is associated with the anatomical 

structures, the motion magnitude images are filtered using an edge map on image intensity. 

After obtaining the edge-filtered motion maps, several landmark points are detected using 

SIFT descriptor. Once the salient features are detected and encoded for each frame, the 

salient features of all frames in the training dataset are used to construct a hierarchical 

dictionary. This dictionary is used to train a kernel-based SVM. To classify a new input 

video, the trained classifier provides a label for each frame in the given video and used 

majority voting to decide the final class label of the video. The proposed method, which is 

trained using 113 videos, achieved 51%−100% correct classification rates when evaluated on 

a testing set. The main strength of this method is that it does not require constructing spatial 

and temporal models for each cardiac view. Other conventional-based methods for view 

classification are presented in [38] (bag of visual words with SVM), [39] (gradient features 

and logistic trees), [40] (visual features and boosting), [41] (B-spline and thresholding), and 

[42] (histogram features and neural network).

Zamzmi et al. Page 10

IEEE Rev Biomed Eng. Author manuscript; available in PMC 2021 April 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Instead of using handcrafted features with traditional classifiers, convolutional neural 

network (CNN) can provide objective features extracted directly from the image at multiple 

level of abstractions while preserving the spatial relationship between the image pixels. 

These networks achieved state-of-the-art performance in different medical domains, 

including echocardiography.

4.3.2 Deep Learning-Based Methods—Recent works utilize CNN architectures for 

feature extraction and classification. Examples of CNN architectures that have been used for 

cardiac view classification include VGG [43], DenseNet [44], and ResNet [45].

For example, Zhang et al. [46] used VGG CNN [43] for distinguishing 6 B-mode views: 

A2C, A3C, A4C, PLAX, PSAX, and other. Prior to feature extraction and classification, 

each frame is converted into grayscale and re-sized (224 × 224). The re-sized image is then 

sent to VGG [43]. The output of the network is the view that has the highest probability of 

Softmax function. The entire network is trained using 40,000 pre-processed images with 

ADAM optimizer, 1 × 10−5 learning rate, mini-batch size of 64, and 20 epochs. Testing the 

trained network using cross-validation protocol achieved excellent accuracy (e.g., 99% 

accuracy for A4C views). Zhang et al. expanded their work in [47] to distinguish 23 

different echo views. The codes and model weights for both works are available online [46], 

[47]. Similarly, Madani et al. [48] used VGG-based [43] method to distinguish 15 different 

echo views: 12 views from B-mode (e.g., PLAX and A4C), M-mode, and two Doppler 

views (CWD and PWD). The final layer of VGG-16 performs classification using Softmax 

function with 15 nodes. The network is trained using RMSprop optimization over 45 epochs. 

The overall test accuracy of distinguishing 12 views of B-mode images is above 97%. The 

accuracies of distinguishing CWD, PWD, and M-mode views are 98%, 83%, and 99%, 

respectively.

Another recent architecture for cardiac view classification is presented in [49]. The proposed 

cardiac view classification (CVC) architecture is designed and trained to distinguish 7 B-

mode views, namely A2C, A4C, PLAX, PSAX, SC4C, SCVC, and ALAX, as well as 

unknown view. The pre-processing stage involves normalizing the image and down-

sampling it to 128 × 128. The input image is then sent to a series of deep learning blocks 

where each block consists of convolution layer, max-pooling layer, inception layer, and 

concatenation layer. This network is trained over a maximum of 100 epochs using Adam 

optimizer and a mini-batch size of 64. Cross-entropy and mean absolute error (MAE) loss 

functions are used for computing the error and updating the weights, which are initialized 

using Uniform method. Ten fold patient-based cross-validation technique is used for training 

and validation (265,649 frames) while an independent set of unseen data (229,951 frames) is 

used for testing. The proposed CVC network achieved 97.4% and 98.5% overall accuracies 

for frame-level and sequence-level view classification.

A lightweight cardiac view classifier is introduced recently by Vaseli et al. [50] to 

distinguish 12 B-mode views. Several deep learning lightweight models are built based on 

three CNN architectures, VGG-16 [43], DenseNet [44], and ResNet [45]. These lightweight 

models contain approximately 1% of regular deep models’ parameters and they are 6 times 

faster at run-time. The training parameters for all the deep and lightweight models can be 
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found in [50]. These models are trained and evaluated using 16,612 echo videos collected 

from 3,151 patients. Combining the three lightweight models achieved an accuracy of 88.1% 

in classifying 12 cardiac views.

Instead of only extracting deep features from static images, Gao et al. [51] fused the output 

of spatial and temporal networks to classify the cardiac view of echo videos. The spatial 

CNN takes a 227 × 227 frame as input and sends the input frame to 7 convolutional layers 

for deep features extraction. The temporal CNN takes as input the acceleration image, 

generated by applying optical flow twice, and sends this image to 7 convolutional layers for 

feature extraction. Then, the output of spatial and temporal CNNs are fused together. The 

final view classification is obtained by the linear combination of both CNNs scores using 

Softmax function, which provides the probability of 8 classes (A2C, A3C, A4C, A5C, PLA, 

PSAA, and PSAP). Both networks are trained using a random initialization, 0.01 learning 

rate, and 120 epochs. Evaluating the proposed method on 152 echo videos achieved 92.1% 

accuracy. The accuracy of view classification using only the spatial CNN is 89.5%.

Table 3 provides a summary of automated view classification methods. As shown in the 

table, deep learning-based methods for view classification achieved excellent performance 

comparable to the human inter-observer performance, and outperform conventional methods 

in various views (e.g., A3C, A5C, PSAM, [37] vs [51]). In addition, deep learning-based 

methods are evaluated using larger datasets collected by different machines as compared to 

the conventional machine learning-based methods. These results suggest the superiority of 

deep learning-based methods in the presence of relatively large datasets. This indicates 

better generalizability of these methods across machines and settings. Deep learning 

methods, however, suffer from interpretability and transparency issues (black box).

To summarize, the majority of current automated methods focus on detecting different views 

of B-mode. Only a few works [31], [48] includes other echo mode such as M-mode and 

Doppler. Because automated view classification is critical to obtain a fully automated and 

real-time system that can be used efficiently in clinical practice, there is a need for future 

research focus on developing automated and lightweight view classification for all echo 

modes (B-mode, M-mode, and Doppler).

4.4 Boundary Segmentation

The current practice for cardiac boundary segmentation requires technicians to perform 

manual delineation followed by using the traced boundaries for computing structural and 

functional indices. This practice is tedious, error-prone, and subject to high intra- and inter-

readers variation. In this section, we review automated methods for segmentation in B-mode, 

Doppler, and M-mode images, and provide a summary in Table 4.

4.4.1 B-mode, Chamber Segmentation—We categorized the methods of chamber 

segmentation into five categories (Table 1): low level image processing-based methods, 

deformable model-based methods, statistical model-based methods, conventional machine 

learning-based methods, and deep learning-based methods.
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Low Level Image Processing-based Methods:  Melo et al. [52] proposed a low level image 

processing-based method for segmenting LV chamber. The proposed method has two main 

modules: pre-processing module and segmentation module. The pre-processing module 

takes a raw image, performs filtering and morphological operations, and sends the processed 

image to the segmentation module. This module uses watershed algorithm for segmenting 

LV border (PLAX view). After detecting LV border, several structural indices, such as LV 

area, are computed. The proposed method is evaluated using videos of 12 healthy volunteers 

and measured using eight different metrics [52]. Amorim et al. [53] uses a method similar to 

[52] for segmenting LV border in PLAX image. The main difference between [52] and [53] 

is that Amorim et al. [53] applies the watershed algorithm to a composite image obtained by 

combining the images of three cardiac cycles; this allows to exploit the similarity of 

corresponding frames from different cycles. As visually reported in [53], using the 

composite image led to increased delineation accuracy.

Instead of segmenting a specific chamber, John and Jayanthi [54] presented a low level 

image processing-based method for segmenting all cardiac chambers. The method starts by 

converting a 2D echo video (2 to 3 seconds) to grayscale frames. It then applies Speckle 

Reducing Anisotropic Diffusion (SRAD) filter to remove speckle noise from the image. To 

approximate the chamber locations, k-means algorithm is applied to create clusters of pixels 

with similar intensities followed by thresholding using an empirically determined value. 

Visual results demonstrated good agreement between the contour obtained by the proposed 

method and the manual contour. This method fails to segment frames that have low contrast 

or dropouts on LV internal walls.

Other low level image processing-based methods for chamber segmentation can be found in 

[55] (watershed algorithm), [56] (Otsu thresholding and edge detection), [57] (thresholding 

and morphological operations), [58] (watershed algorithms), and [59] (thresholding and 

morphological operations). The methods of this category are easy to implement and have 

low computational complexity as compared to the methods of other categories. However, 

these methods are highly sensitive to the signal-to-noise ratio (SNR). In addition, these 

methods perform poorly, and might completely fail, in detecting the border in images with 

obscure boundaries, non-uniform regional intensities, and confusing anatomical structures 

(e.g., valve).

Deformable Model-Based Methods:  Chen et al. [60] generates the active contour of LV by 

solving a coupled optimization function that combines shape and intensity priors. The first 

optimization part is the weighted sum of the energy of the geometric contours of similar 

shapes. Minimizing this energy provides the initial contour and the transformation that 

aligns it to the prior shape. The geometric contours of all shapes, which are used to generate 

the prior shape, are obtained by manually tracing the cardiac boundaries of 85 images 

captured from 61 patients at end-diastole (ED). The second optimization part provides the 

optimal estimate of the weight by maximizing the mutual information of the image geometry 

(MIIG). The process of solving both parts generates the final LV segmentation. The visual 

results demonstrate that the proposed method can provide LV contours that are close to the 

contours provided by experts. It also shows that using MIIG provides a better description 

than MI (mutual information) because MIIG takes into account the neighborhood intensity 
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distribution. MIIG, however, has a significant computational cost. A simpler active contour-

based method is presented in [61]. The method combines Hough transform and active 

contour to detect LV in PSAX and PLAX images. Hough transform is used to generate LV 

initial shape. Active contour is then used to generate, via energy minimization, the final 

exact shape of LV. The detected LV border is used to calculate the following indices: LV 

areas in PSAX and PLAX views, LV volume, LV mass, and wall thickness.

Conventional active contour methods suffer from slow convergence. In [62], Marsousi et al. 

used B-spline snake algorithm for segmenting the endocardial boundary of LV chamber. The 

presented method does not require expensive optimization computation and is faster than 

conventional active contour methods. The main limitation of this method lies in the selection 

of the initial contour; i.e., if the selected initial contour lies far from the actual boundary, 

higher iterations of balloon force or Gradient Vector Flow [63] should be executed, which 

causes error and leads to tremendous increase in the time complexity. To avoid this problem, 

the method requires experts to manually select some points inside LV chamber. To automate 

the point selection, Marsousi et al. extends their method in [64] to select the best initial 

contour using a novel active ellipse model. Particularly, the intersection point of all 

chambers in A4C view is detected at the nearest point to the mass center. After detection the 

point, an initial ellipse is placed on the top-left side of the point followed by growing the 

initial ellipse until it fits the boundary. This method is tested using 20 A2C and A4C images 

collected from normal and abnormal cases. A comparison between this approach [64] and 

the previous approach [62] is performed using Dice’s Coefficient (90.66±5.17 [62] and 

92.30 ± 4.45 [64]) and computational time (1.52 ± 0.82 [62] and 0.63 ± 0.29 [64]).

Other deformable-based methods for chamber segmentation can be found in [65] (Speckle 

resistant Gradient Vector Flow and B-spline), [66] (variational level set approach), [67] (k-

means and active contour), [68] (constrained level-set), [69] (phase-based level set 

evolution), [70] (phase-based level set evolution), and [71] (active contour model and SIFT). 

Although deformable-based methods provide accurate segmentation, these methods are 

view-specific and hence do not perform well with widely varying shapes. In addition, these 

methods are highly sensitive to the initial contours and tend to become computationally 

complex.

Statistical Model-Based Methods:  One of the first works that use statistical model for LV 

segmentation is presented in [72]. The proposed framework consists of three main stages: 

global despeckling, Active Appearance model (AAM) training, and LV segmentation. The 

global despeckling reduces speckle noise while maintaining the important image features. 

The second stage involves generating AAM model that represents the shape and texture of 

all end-diastole (ED) and end-systole (ES) images in the training set. To model the shape 

from the training images, the manually labeled contour and four landmark points in each 

image are used to align and register the images in the training set. The appearance model of 

AAM is generated using a weighted concatenation of three parts: the intensities of the 

original image shape, the intensities of the denoised image shape, and the mean gradient at 

each of the four landmark points. The final AAM model is constructed from the eigenvectors 

of the largest eigenvalues that are obtained by applying PCA to the combined model (shape 

and texture model). The third stage involves positioning the model in a new target image by 
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solving an optimization problem. The proposed approach is tested using two fetal datasets: 

synthetic fetal echo images and clinical fetal echo images. The overall segmentation 

accuracies of the proposed method are 84.12% and 84.39% for synthetic and clinical 

images, respectively. The visual results demonstrate the superiority of the proposed method 

as compared to methods that use active shape models (ASM) [73], [74] as well as 

conventional AAM and constrained AAM [75].

Statistical based methods for chamber segmentation are view-specific and sensitive to the 

large variations in shape or appearance; i.e., cannot handle the large variations in chamber 

shape and appearance. Also, these methods can easily be trapped in local minima and 

require manual annotation.

Conventional Classification-Based Methods:  The methods in this category utilize 

traditional machine learning approaches for labeling each pixel as chamber or background.

A machine learning-based method for fetal chambers segmentation is presented in [76]. The 

method starts by initializing a dictionary D0 as a random matrix and computing the sparse 

coefficients of this matrix (X0) from the training samples using Orthogonal Matching Pursuit 

(OMP). To generate a compact dictionary, sub-dictionaries (atoms) with utilization ratios 

less than a pre-determined threshold is discarded followed by updating the atom indices and 

coefficients to obtain a new group dictionary. After learning the group dictionary D, a new 

test sample is converted to two sparse coefficients Xout and Xin with respect to Dout and Din 

sub-dictionaries, where out and in subscripts indicate the area outside and inside the 

chambers. The corresponding reconstruction residue Rout and Rin are then calculated using a 

proposed reconstruction residue function.

The final boundary is obtained by classifying each pixel in the sample image as one or zero 

using the calculated minimum reconstruction residue. The proposed method, called Adaptive 

Group Dictionary Learning, is evaluated using 40 clinical fetal echocardiograms. The 

experimental results demonstrate the efficiency of the proposed method as compared to 

previous machine learning-based methods [77], [78]. The construction of only two sub-

dictionaries limits the proposed method to images that have two intensity patterns, and 

suggest that it might fail when applied to images with several intensity patterns.

Deep Learning-Based Methods:  Semantic CNNs divide the image into different objects 

by labeling each pixel with the class of its enclosing object. These networks consist of only 

convolution and pooling layers organized in an encoder-decoder structure.

In [46], four separate semantic U-net models [79] are trained for segmenting the cardiac 

structures in PLAX, PSAX, A2C, and A4C views. The number of training data (images and 

masks) for each model are 128, 72, 168, and 198 for PLAX, PSAX, A4C, and A2C, 

respectively. The training data for all models are augmented using cropping and blacking out 

techniques. All the models are trained using ADAM optimizer, 1 × 10−4 learning rate, 1 × 

10−6 weight decay, 0.8 middle layers drop out, mini-batch size of 5, and 150 epochs. The 

trained models achieved good to excellent performance with IoU values that range from 73 

to 92. The segmented cardiac chambers for each image is used to compute geometric 

Zamzmi et al. Page 15

IEEE Rev Biomed Eng. Author manuscript; available in PMC 2021 April 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



dimensions, volumes, mass, longitudinal strain, and ejection fraction. These indices are then 

used for assessing cardiac structure and function. As discussed in the paper, the proposed 

automated framework showed superior performance as compared to manual measurements 

across all cardiac indices. Recent studies that use U-net and FCN for chamber segmentation 

can be found in [80], [81].

Machine learning-based methods (conventional and modern) for chamber segmentation 

showed excellent performance and outperformed the performance of human experts. 

However, building robust machine learning-based methods require a relatively large and 

well-annotated datasets. Also, these methods, especially deep learning-based, can be 

computationally expensive. Further, these methods may segment pixels outside the desired 

cardiac region due to the lack of model constraint. Finally, existing deep learning-based 

methods lack interpretability; i.e., they do not interpret nonlinear features or show the 

important human-recognizable clinical features.

4.4.2 Doppler, Envelopes Segmentation—The accurate tracing of spectral envelopes 

and estimation of maximum velocities in Doppler images has a great clinical significance. 

We review next existing methods for spectral envelope segmentation, and provide a 

summary in Table 4.

Low Level Image Processing-Based Methods:  Zolgharni et al. [82] presented a 

thresholding-based method to detect spectral envelopes in long Doppler strips that span over 

several heartbeats. The analysis of long Doppler strips allows to extract additional velocity 

measures and leads to better understanding of the cardiac function. The method starts by 

manually locating the Doppler region (ROI) followed by converting pixel to velocity on the 

vertical axis and pixel to time on the horizontal axis. The baseline (zero velocity) is then 

determined and used to separate the negative Doppler profiles. Positive Doppler profiles are 

detected using a proposed objective thresholding method. The generated binary images are 

further processed to remove small connected areas. Finally, maximum velocity profiles are 

obtained using the biggest-gap algorithm as follows. A column vector is scanned from left to 

right to find a gap (cluster of consecutive black pixels). The largest gap from the top is 

selected as a point on the profile. The final output of the Biggest-Gap algorithm represents 

the maximum velocity envelope. This envelope is further smoothed using a low-pass first-

order Butterworth filter. To extract Doppler indices from the spectral envelopes, Gaussian 

model is fitted to the velocity profile and used to calculate peak velocity and velocity time 

integral. The automated measurements of velocity-time-integral showed strong correlation (r 

= 0.94) and good Bland-Altman agreement (SD = 6.9%) with the expert values. Similarly, 

the automated measurement of peak-velocities showed strong correlation (r = 0.98) with the 

expert values.

Another low level image processing-based method is presented in [83]. The proposed 

method extracts three Doppler indices, namely peak pressure gradient, peak velocity, and 

pressure half time, from the spectral envelopes for the purpose of assessing the severity of 

aortic regurgitation (AR). The method starts by locating the Doppler ROI based on the fixed 

locations of the vertical and horizontal axes (specific assumption). Before applying edge 

detector, several pre-processing operations such as noise filtering and contrast adjustment 
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are performed. Then, Canny edge detector is applied to segment the spectral envelope. Once 

the envelope is segmented, the horizontal and vertical axes are converted into time and 

velocity. Finally, the curve is scanned to detect the highest peak value, which is used to 

compute the peak pressure gradient and pressure half time. To evaluate the performance of 

the proposed method, the automatic indices, computed from Doppler images of 11 subjects, 

are compared with human assessment. The results proved the feasibility of using the 

proposed algorithm in assessing the severity of AR as it showed strong correlation with 

human assessment for three age groups: 0.98 correlation for group 1 (20–35 years old), 0.92 

correlation for group 2 (36–50 years old), and 0.83 correlation for group 3 (51–60 years 

old).

Texture analysis is a low level image operation that involves detecting regions in a given 

image based on their texture content (i.e., spatial variation in pixel intensities). Applying 

texture filters to an image returns a filtered image. Each pixel of this new image is a 

statistical representation of a neighborhood around this pixel in the original image. Biradar 

et al. [84] proposed to use combinations of three texture filters, which are entropy, range, 

and standard deviation, to detect the envelope in CW Doppler images. The filtered image is 

then thresholded and processed morphologically using erosion and dilation operations. The 

proposed method is evaluated using CW images of 25 patients suffering from aortic 

regurgitation. The experimental results showed that using a combination of entropy, range, 

and standard deviation filters can accurately delineate the spectral boundaries of CW 

Doppler images.

Other low level image processing-based methods for detecting velocity profiles can be found 

in [85] (thresholding and edge detection), [86] (Otsu thresholding), [87] (empirical 

thresholding and Random sample consensus), [88] (thresholding and edge detection), [89] 

(local adaptive thresholding), and [90] (thresholding and edge detection). Low level image 

processing-based methods can detect spectral envelopes of different blood flows without any 

pre-training and with a minimum amount of data. However, these methods are very sensitive 

to the image noise and artifacts as well as the image contrast and intensity patterns.

Deformable-Based Methods:  Gaillard et al. [63] investigated the use of active contour for 

detecting Doppler spectral envelopes. The initial snake is generated using an automated 

method presented in [65]. The final snake of the envelope is then found by minimizing the 

internal and external energy functions using the generalized gradient vector flow field 

(GGVF) [63]. The detected envelopes are used to extract several indices (e.g., velocity time 

integral). These indices are strongly correlated (r=0.99) with the indices computed manually 

by human experts. Other contour-based method for cardiac and Doppler segmentation are 

presented in [91], [92]. As shown in these works, the shape and location of the initial 

contour greatly impacts the process of segmentation; additionally, these methods might 

require manual annotations and tend to be computationally expensive.

Model-Based Methods:  Kalinic et al. [93] proposed a model-based method for segmenting 

the velocity profile in CW images. The segmentation process consists of two main steps: 

registration step and transferring step. The registration step generates a set of parameters that 

describe the geometric transformation of target-reference mapping. The reference image 
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(model) is chosen to be the least different from the rest of the images in the dataset. This 

reference image is chosen by calculating the mutual mappings of all the images as described 

in [93]. After selecting the reference image, the velocity profile of this image is segmented 

manually by a cardiologist. The velocity profile of a new target image can be obtained by 

geometrically transferring, using the parameters obtained in the registration step, the profile 

of the reference image (model) to target image. The proposed method is evaluated using 59 

velocity profiles extracted manually from CW images [93]. Instead of manually selecting the 

reference image, Kalinic et al. [94] extended [93] and used an atlas generated from CW 

Doppler images of healthy volunteers to register a new target image. The atlas image 

(reference image) is the statistical average of all images constructed using the arithmetic 

image averaging operation as discussed in [94]. Detailed presentation of the atlas model and 

discussion of results can be found in [94]. A recent model-based method that uses an atlas 

for constructing the spectral envelope is presented in [95].

Although model-based methods have been successfully used in spectral envelopes 

segmentation, these methods have difficulty handling the Doppler variations among patients 

and various disease types. Furthermore, they require manual annotation, and can become 

computationally expensive.

Machine Learning-Based Methods:  Park et al. [96] introduced a learning-based method 

for detecting the spectral envelope of mitral valve (MV) inflow. The method starts by 

training a series of detectors to detect a left root point (E velocity), right root point (A 

velocity), a single triangle box (E and A velocities overlapped), and a double triangle box (E 

and A velocities separated). Each of these detectors, which are trained using negative and 

positive examples, provided label and detection probability. After identifying the region of 

interest using these detectors, the triangle shape was inferred using a shape inference 

algorithm [96]. Given training images and their corresponding shapes, this algorithm learns 

a non-parametric regression function that gives a mapping from an image to its shape. Once 

the shape profiles are generated, the best shape among all candidates is selected as the final 

spectral envelope shape. Finally, four flow measurements [96] are computed from the 

detected envelopes. This method is evaluated using 298 Doppler images and compared with 

manually traced envelopes. The experimental results presented in [96] proved the superiority 

of the proposed method as compared to a previous method [97]. Known limitations of 

machine learning-based methods are: 1) the need of a large number of manually labeled 

images and 2) the subjectivity and difficulty of extracting the best set of features.

In summary, we present above several automated methods for spectral envelope 

segmentation. Existing methods for Doppler segmentation have different limitations that 

need to be addressed to obtain robust and practical automated clinical applications. For 

example, current methods are sensitive to the image noise, variations, and are designed for 

specific Doppler profile. Future research, therefore, should focus on developing 

segmentation methods that are robust to noise, different variations, and blood flows. Another 

future direction would be to automate Doppler gate localization to speed up the acquisition 

process, increase the quality of the recorded Doppler, and enhance the segmentation 

performance. Finally, an interesting direction for future research would be to investigate the 

use of recent deep learning methods for spectral envelope segmentation.
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In addition to the aforementioned methods, we refer the reader to automated non-image 

methods applied directly to the raw signal for maximum velocity estimation [98], [99], 

[100], [101]. These methods are highly affected by the signal-to-noise levels and the 

transducer configurations. Further, they can only be applied to the original Doppler signal 

during the acquisition.

4.4.3 M-mode, Wall Segmentation—M-mode echo is used to provide an accurate 

assessment of small cardiac structures with rapid motions (e.g., valves). Assessing cardiac 

function from M-mode requires to accurately delineate wall boundaries followed by 

estimating different indices (e.g., left ventricular dimension at end-systole). This process is 

challenging due to the presence of image artifacts and false echoes between the cardiac 

walls. Contrary to B-mode and Doppler images, only few methods are proposed to delineate 

wall boundaries in M-mode images.

For example, Fancourt et al. [102] proposed a fully automated method for delineating 

anterior and posterior walls in M-mode images. The method starts by splitting an M-mode 

image into anterior wall and posterior wall regions. For each region, the relative distance 

offsets between all pairs of scans are calculated using cross-correlation [102]. These offsets 

are converted to relative wall motion using global optimization followed by calculating the 

absolute wall motion from the relative wall motion using interpolation (interpolating over 

M-mode images). The proposed method is designed and evaluated using a small and 

invariant dataset. In summary, very few automated methods are proposed to segment cardiac 

walls in M-mode images. Therefore, an important future direction would be to develop 

automated M-mode analysis methods using large datasets collected by different vendor/

software from different populations.

4.5 Cardiac Disease Classification

The majority of automated echo methods for CVD classification focus on 1) detecting 

diseases that cause Wall Motion Abnormalities (WMA) based on analysis of B-mode or 2) 

evaluating cardiac dysfunction from Spectral Doppler. We are not aware of any automated 

method that uses M-mode for CVD classification.

4.5.1 CVD Classification from B-mode Echo—B-mode echo is commonly used for 

detecting and assessing wall motion abnormalities (WMA). These abnormalities are 

observed in several cardiac diseases such as cardiomyopathy and coronary artery disease 

(CAD) [2]. Four terms are usually used in echocardiography to describe different types of 

WMA: Hypokinetic (reduced movement), akinetic (lack of movement), dyskinetic 

(abnormal movement), and aneurysm (abnormal wideness) [2]. Cardiomyopathy is a disease 

of the heart muscle that can cause abnormal dilation, thickening or lack of function of focal 

segments of the heart. Dilated cardiomyopathy (DCM), hypertrophic cardiomyopathy 

(HCM), and ischemic cardiomyopathy (IC) are three major cardiomyopathy diseases. DCM 

is a cardiac muscle disease that enlarges LV wall and causes abnormal global motion. HCM 

is another muscle disease that causes thickening of the cardiac muscle (myocardium), which 

can lead to stiffness of LV as well as global and regional motion abnormalities. Ischemic 

cardiomyopathy (IC) causes weakness of the cardiac muscles [2]. CAD (coronary artery 
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disease) occurs when the coronary arteries become narrowed or blocked. MI (myocardial 

infarction) is a serious cardiac disease that occurs as a result of severely narrowed or blocked 

coronary artery. Coronary artery disease can be detected by the presence of regional WMA 

on echocardiogram [2].

Several machine learning-based methods published in the literature can detect WMA, CAD, 

and cardiomyopathy diseases based on automatically extracted B-mode indices (e.g., LV 

volume) or disease-relevant features extracted directly from the images.

For example, Leung and Bosch [103] proposed an automated method to assess WMA. The 

proposed method is developed and evaluated using B-mode data (A2C and A4C) collected 

from 129 random patients; data of 65 patients are used for training and data of 64 patients 

are used for testing. The ground truth (LV endocardial contours) is provided using a semi-

automated technique and further validated by two cardiologists. Scores of abnormalities are 

also provided by the cardiologists as follows: 0 = normokinesia, 1 = hypokinesia, 2 = 

akinesia, and 3 = dyskinesia. These scores are grouped to create two classes: normal motion 

(score of 0) and abnormal motion (score > 0). The annotated contours are used to construct 

LV shape model, which is further analyzed using PCA to extract statistical parameters for 

abnormality classification. Different combination of PCA shape modes and parameters are 

used to train the classifier. In all cases, higher correct classification rate is achieved using 

less shape parameters. The trained binary classifier achieved up to 91.1% average accuracy 

in classifying wall motions as normal or abnormal. Similarly, Qazi et al. [104] used a shape-

based method to automatically delineate the boundary of LV in each frame. Then, several 

cardiac structural and functional features, namely circumferential and radial strains, as well 

as local, segmental, and global Simpson volumes, are extracted from the delineated LV 

shape. The extracted numerical features are then reduced (Kolmogorov-Smirnov test) to 

select the best features for training the classifier. The trained classifier, tested using 220 

cases, achieved a sensitivity that ranges from 80% to 90% in classifying cases as normal or 

abnormal (hypokinetic, akinetic, dyskinetic, and aneurysm).

Shalbaf et al. [105] proposed quantitative regional index for WMA detection and CAD 

predication. The proposed method is evaluated using 345 cases (B-mode, A2C and A4C) 

collected from 10 healthy volunteers and 14 patients with CAD. The ground truth labels, 

which include LV region, landmarks, and scores of abnormalities, are annotated by a group 

of trained cardiologists. The proposed method combines affine transformation and B-spline 

snake to delineate LV and calculate a novel index for WMA classification. Specifically, the 

proposed index is computed from the control points of B-spline snake model. For 

classification, two threshold values, determined using the quantitative regional indices of all 

images in the training set, are used. The determined thresholds are used to classify the 

testing set (125 cases) as normal or abnormal (hypokinetic, akinetic, dyskinetic, aneurysm). 

The agreement between the scoring of abnormalities obtained by the proposed index and 

those assigned by two experts achieved 83% absolute agreement and 99% relative 

agreement.

For CAD risk assessment, Araki et al. [106] introduces a method for classifying patients as 

high or low risk. The method starts by extracting 56 types of grayscale features that 

Zamzmi et al. Page 20

IEEE Rev Biomed Eng. Author manuscript; available in PMC 2021 April 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



represent the coronary texture directly from the image. Examples of these features include 

gray level co-occurrence matrix (GLCM), gray level run length matrix (GLRLM), intensity 

histogram, gray level difference statistics (GLDS), neighborhood gray tone difference matrix 

(NGTDM), invariant moment, and statistical feature matrix (SFM). Then, six combinations 

of features are generated, and the best combination is chosen based on classification 

accuracy. The best set is used to train Support vector machine (SVM) for CAD risk 

assessment. The method is evaluated using 2865 B-mode frames collected from 15 patients. 

These frames are labeled, using stroke-risk biomarker (cIMT > 0.9mm), as high-risk (1508) 

and low-risk (1357). To select the best kernel of SVM and the best set of feature 

combination, K-fold cross validation protocol with 10 trials is used. The proposed method 

achieved up to 94.95% average accuracy and 0.95 AUC in classifying patients as low-risk 

and high-risk. Other machine learning methods for CAD detection and risk assessment can 

be found [107] (first-order statistical features, ANOVA for reduction, and NN classifier), 

[108] (trace transform and fuzzy texture), [109] (discrete wavelet transform and marginal 

fisher analysis), and [110] (GLCM and SVM).

Sudarshan et al. [111] presented a machine learning framework for myocardial infarction 

(MI) detection and assessment. For feature extraction, Local Configuration Pattern (LCP) 

descriptor is used to extract 17850 LCP features from 46200 Curvelet Transform (CT) 

coefficients of echo. Prior to classification, the extracted features are reduced using Marginal 

Fisher Analysis (MFA) followed by fuzzy entropy based ranking method (mRMR) to select 

the best set of features. The proposed framework achieved an accuracy of 98.99%, 

sensitivity of 98.48%, and specificity of 100% using Support Vector Machine (SVM) 

classifier with only six features. In addition to handcrafted features, a novel index, called 

Myocardial Infarction Risk Index (MIRI), is proposed to detect three types of MI: normal, 

moderate, and severe. MIRI is generated by combining the most distinguishing features of 

MFA, and it is formulated as follows: MIRI = (0.15 × MFA 8) + (0.3 × MFA 1) + 2.5. The 

mean values of MIRI for normal, moderate and severely MI are 6.6, 7.4, and 5.9, 

respectively. Using the proposed index for the identification of MI stages achieved excellent 

performance comparable to the performance of classification using handcrafted (LCP) 

features. We refer the reader to other automated method for MI detection and assessment 

[112] (DWT, GLCM, and higher-order moment spectra [HOS] features and SVM) and [113] 

(HOS, Fractal Dimension (FD), Hu moments, Gabor features and SVM).

Automated methods for detecting and diagnosing dilated cardiomyopathy (DCM) and 

hypertrophic cardiomyopathy (HCM) are proposed in [114] and [115]. In [114], the 

automated method starts by denoising each frame followed by segmenting LV in that frame 

using Fuzzy c-means (FCM). The segmented LV is used to extract cardiac parameters such 

as volume and ejection fraction (EF). In addition to these parameters, principal component 

analysis (PCA) and discrete cosine transform (DCT) algorithms are applied to the 

segmented LV to extract shape and statistical features for DCM and HCM diagnosis. The 

extracted PCA and DCT features are used with NN, SVM and combined K-NN to detect 

normal hearts, hearts affected with DCM, and hearts affected with HCM. The experimental 

results showed that the highest performance (92.04%) in classifying normal and affected 

heart is obtained using PCA features with NN classifier. It also showed that PCA features 
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are better than DCT and cardiac indices (e.g., ejection fraction) for DCM and HCM 

diagnosis because moderately and mildly abnormal cases can have normal indices values.

Narula et al. [115] used an ensemble of three machine learning classifiers, namely SVM, 

random forests (RF), and neural networks (NN), to automatically differentiate between 

hypertrophic cardiomyopathy (HCM) and physiological hypertrophy in athletes (ATH). The 

proposed ensemble approach is developed and evaluated using data obtained from 77 ATH 

and 62 HCM patients. Several geometric (e.g., LV diameter) and mechanical (e.g., strain) 

indices are extracted from the delineated chamber using a commercial software, and further 

reduced using information gain (IG) algorithm. The output of IG algorithm revealed that 

volume (IG = 0.24), mid-left ventricular segmental (IG = 0.134), and average longitudinal 

strain (IG = 0.131) are the best features or predictors for differentiating between HCM and 

ATH. The model, which was evaluated using 10-fold cross validation, achieved 87% 

sensitivity and 82% specificity in distinguishing HCM from ATH. It achieved 96% 

sensitivity when adjusted for age. The paper concluded the capability of machine-learning 

algorithms to accurately discriminate between physiological and pathological patterns of 

hypertrophic remodeling.

4.5.2 CVD Classification from Doppler Echo—Doppler outperforms other imaging 

modalities in assessing valve regurgitation and stenosis [116]. The accurate detection of 

valve dysfunction relies heavily on the Doppler indices extracted from the spectral envelopes 

(Section 4.4.2).

Kiruthika et al. [83] proposed an automated method for assessing the severity of aortic valve 

regurgitation. To delineate the spectral envelopes and extract three Doppler indices, several 

low level image processing-based techniques, namely filtering, morphological operations, 

thresholding, and edge detection, are used. Once the spectral envelope is delineated, 3 

Doppler indices are extracted: peak pressure gradient (PPG), peak flow velocity (PFV), and 

pressure half time (PHT). These indices showed strong correlation with manual indices 

when applied to 22 images of 11 patients with mild, moderate, and severe aortic 

regurgitation; i.e., assessment of aortic regurgitation severity showed a strong positive 

correlation (r=0.95).

Another method for quantifying the severity of valve dysfunctions is presented in [63]. 

Deformable-based method (active contour) is used to delineate the spectral envelope of the 

left ventricular outflow tract (LOVT) and transvalvular flow (TF) in 30 patients with aortic 

or mitral stenosis, 20 with normal sinus rhythm and 10 with atrial fibrillation. The delineated 

envelopes are then used to extract three important Doppler indices: the maximum velocity 

(Vmax), the mean velocity (Vmean), and the velocity time integral (VTI). Comparison 

between the automatically extracted indices and manual indices extracted by two 

experienced echocardiographers showed good agreement. In addition, the results of B&A 

analysis on Vmax, Vmean, and VTI for all patients showed acceptable limits of agreement and 

small bias; −3.9% to +0.5% (Vmax), −4.6% to −1.4% (Vmean), and −3.6% to +4.4% (V TI).

Kalinic et al. [94] presented a method for detecting aortic stenosis (AS) and coronary artery 

disease (CAD) using Doppler indices extracted from spectral envelopes. The segmentation 
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of the spectral envelope is performed by registering the input image to an atlas. The 

registration step consists of geometric transformation, similarity measure, and optimization. 

The atlas, which is used as a template for segmentation, is constructed from spectral 

envelopes of healthy volunteers (59 envelopes). The proposed method is validated using 36 

profiles belong to patients with CAD, 53 profiles belong to patients with AS, and 59 profiles 

belong to healthy volunteers. Once the envelope is segmented, three Doppler indices are 

extracted and used for disease detection. These indices are time-to-peak, peak value, and 

rise–fall time ratio. The experimental results showed strong statistical correlation between 

the parameters extracted automatically and those extracted manually by the expert 

cardiologist.

Similar to [94], disease-specific atlases are constructed using a proposed hybrid framework 

[95]. Specifically, two atlases are created from the aortic Doppler images of 100 healthy 

individuals and 100 patients with AS and used as template for segmentation. After 

segmenting the envelope, four diagnostic values, namely area, jet velocity, mean and peak 

gradient, are extracted and combined with physiological parameters (e.g., heart rate) to 

detect 3 levels of AS: mild, moderate, and severe. The experimental results showed 

comparable segmentation and assessment performance between the automated and manual 

methods (see [95] for results).

Table 5 provides a summary of automated methods for CVD classification from B-mode and 

Doppler echo. We refer the reader to [106], [117] for comprehensive discussions of CAD, 

MI, and HCM diseases. Further, comprehensive discussions of Doppler disease-specific 

features and the importance of automated diagnosis of valve regurgitation and stenosis can 

be found in [118], [119]. In summary, automated CVD classification has attracted 

researchers and clinicians in the past decades. Most existing works, however, focus on 

detecting LV dysfunction or diagnosing its abnormality. Future research should focus on 

analyzing other chambers (e.g., RV and LA) as well as all chambers together (whole heart). 

Existing works also focus on analyzing normal or slightly abnormal cardiac structures, and 

predicting common cardiac diseases (e.g., DCM). Therefore, future research should focus on 

analyzing abnormal structures and rare diseases. One obvious limitation of this direction is 

the lack of datasets acquired from patients with abnormal structures and rare diseases. 

Finally, future works should focus on developing automated CVD classification for fetuses 

and neonates because less attention has been paid to these populations as compared to 

adults.

5 Echocardiography Datasets

As the performance of automated echo analysis system depends highly on the data, there is a 

critical need for collecting well-annotated, diverse, and relatively large echo datasets. 

Several datasets are publicly available for cardiac CT and MRI modalities. Examples of 

these datasets include MESA [120], Cardiac MRI [121], SCD [122], DETERMINE [123], 

SCMR [124], and CHD [125] for CMR modality, and Left atrial CT dataset [126] for CT 

modality. In case of echocardiography, we are not aware of any Doppler or M-mode datasets 

that are publicly available for research use. We are aware of only three B-mode echo datasets 

made available publicly for researchers. These datasets are EchoNet-Dynamic [127], 
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CETUS [128], and STACOM [129]. The characteristics of these datasets are presented in 

Table 6.

5.1 EchoNet-Dynamic Dataset

EchoNet-Dynamic dataset [127] contains 10,025 echo videos (2D B-mode, A4C) collected 

from 10,025 patients admitted to Stanford University Hospital between 2006 and 2018. 

Patients average age is 68 ± 21 and 49% of them are female. The number of patients in 

training, validation, and testing sets are 7460, 1288, and 1277, respectively. Videos of the 

dataset are recorded from different angles, locations, and image acquisition techniques (e.g., 

iE33, Sonos, Acuson SC2000, Epiq 5G). Each video is de-identified and cropped to get the 

anatomical region. The cropped region (600x × 600 or 768 × 768) is then downsampled, 

using cubic interpolation, into standardized 112 × 112 pixels. In each video, LV boundary is 

traced at end-systole (ES) and end-diastole (ED) frames by a human expert. In addition to 

the videos, the dataset contains demographic information and cardiac indices obtained by a 

registered sonographer and verified by an echocardiographer. These indices are ejection 

fraction (EF), end-systolic volume (ESV), and end-diastolic volume (EDV). To the best of 

our knowledge, EchoNet-Dynamic is the largest labeled echo dataset made available 

publicly (via Github) to the research community.

5.2 CETUS Dataset

CETUS [128] is another open access 3D-US (B-mode, A4C) dataset for the automatic 

delineation of LV borders at ED and ES frames. It was released in conjunction with the 

Challenge on ”Endocardial Three-dimensional Ultrasound Segmentation” during MICCAI 

2014. The dataset has 3D-US images collected from 45 subjects, divided into three groups: 

1) 15 healthy subjects, 2) 15 patients with a history of myocardial infarction (MI), and 3) 15 

patients with a history of dilated cardiomyopathy (DCM). The data are acquired at three 

different hospitals: Rennes University Hospital-France, University Hospital Leuven-

Belgium, and Erasmus MC-Netherlands. In addition, the data acquisition is performed using 

three different machines: a GE Vivid E9, using 4V probe, a Philips iE33, using either X3–1 

or a X5–1 probe, and a Siemens SC2000, using 4Z1c probe. Using these machines, each 

hospital collected data for 5 subjects from each group. This data collection setup ensures that 

the group, hospital, and ultrasound machines are equally distributed. Images are excluded 

from further analysis if they violate a set of pre-determined criteria (see Table 6). The 

dataset ground truth segmentations are obtained by 3 expert cardiologists using a non-

commercial contouring package (Speqle3D) at ED and ES frames. The data and their 

corresponding ground truth segmentation are divided into a training set (15 subjects) and a 

testing set (30 subjects).

5.3 STACOM Dataset

STACOM [129] is an open access benchmark that was prepared for a challenge 

called ”Cardiac Motion Analysis Challenge” at MICCAI 2012. The benchmark includes 

data of two modalities (MRI and 3D-US) and 16 anatomies, each has 13 to 30 frames. The 

data of 15 healthy volunteers (aged 28 ± 5 years, 19% female) without a clinical history of 

cardiac disease and one dynamic phantom are recruited at the Division of Imaging Sciences 

and Biomedical Engineering (King’s College London, UK) and the Department of Internal 
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Medicine (University of Ulm, Germany), respectively. The ultrasound data are acquired 

using iE33 3D echocardiography system with a 3D × 301 matrix array transducer in full-

volume acquisition (FVA) mode. All the data are acquired from the left ventricle (LV) in 

apical view during breath-hold to minimize artifacts. A total of 12 landmarks (4 walls at 3 

ventricular levels) was manually tracked by two observers over the whole cardiac cycle 

using an in-house application. These points were registered to 3D coordinates using a point 

based similarity transform. The median of inter-observer variability for phantom and 

volunteer datasets are 0.77 mm and 0.84 mm, respectively.

The benchmarks (data and ground truth) for CETUS and STACOM datasets are publicly 

available for research use via Cardiac Atlas Project.

6 Current Limitations and Future Directions

Despite the high imaging quality of CMR and CT, echo remains the most popular and 

commonly used modality for diagnosing CVD. This is mainly attributed to the portability, 

availability, less complexity, and lower cost of echo as compared to other modalities. These 

attributes make it possible, especially in low-resource settings, to take full advantage of echo 

and use it for diagnosis. However, the interpretation of the acquired echo data requires 

echocardiographic expertise which is lacking in low-resource settings. In addition, the 

manual interpretation is error-prone and suffers from intra-/inter-reader variability. In such 

cases, fully automated screening and diagnostic systems have a significant potential in 

mitigating subjectivity and providing high-quality and cost-efficient healthcare, especially 

for patients in low-resource settings.

In this paper, we reviewed existing automated methods for performing different echo tasks. 

These methods achieved good to excellent performance and proved the feasibility of using 

fully automated systems for acquisition, interpretation, and diagnosis. Therefore, the 

question arises of whether or not automated echo screening and diagnosis systems are ready 

to be incorporated into the clinical practice. Our extensive review revealed that several issues 

and limitations need to be addressed prior to using fully automated systems in clinical 

practice, point-of-care ultrasound (POCUS), and low-resource settings.

Performance of automated systems: how much accuracy is acceptable or enough?

Current methods proved the feasibility of using automated echo interpretation and diagnosis. 

However, it is not clear if the accuracy of these methods is acceptable for diagnosis in 

clinical practice; i.e., the impact of the obtained accuracy on clinical outcomes is not clear 

and requires further investigation. Thus, it is important for future research to focus attention 

on not only the technical development but also on measuring the quality of automated 

methods (e.g., [130]) and the actual impact of these methods on clinical outcomes.

Similar acquisition configurations and unrepresentative datasets.

Most existing methods are designed using datasets collected by specific devices under 

specific configurations; i.e., they are sensitive to the acquisition’s devices and 

configurations. Therefore, we believe another important future direction would be to provide 

a systematic comparison of existing devices/configurations for echo acquisition and study 
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their impact on performance. In addition, we believe future methods should focus on using 

datasets collected by various devices under different configurations to enhance 

generalizability. Another major limitation of the most current studies is that they are built 

and evaluated using relatively small and invariant datasets. This can lead to significant 

variations in performance across different datasets. Hence, future research should also focus 

on using relatively large and variant datasets for developing robust systems. The use of large 

and representative datasets is especially important when developing deep learning-based 

methods.

Limited automated echo acquisition methods.

The majority of automated methods are applied to echo images after acquisition to perform 

view classification, quality assessment, region segmentation, indices calculation, or CVD 

diagnosis. To speed up the acquisition process, future research should focus on automating 

echo screening and acquisition tasks. For example, locating the optimal imaging plane and 

sample volume (gate) requires time and expertise. Therefore, developing automated gate 

localization methods can decrease the acquisition complexity, reduce the time of manual 

gate adjustments, and increase reproducibility.

Limited methods for M-mode and Color Doppler.

Among all echo modes, B-mode, especially the apical, short, and long axis views, received 

the most attention followed by spectral Doppler. Only few automated methods are proposed 

to analyze M-mode, color Doppler, and rare B-mode views. M-mode images is commonly 

used to diagnose several cardiac diseases in fetuses. Color Doppler is well-suited for 

assessing valves regurgitation and stenosis as well as detecting septal defects and 

intracardiac shunts. Future research, therefore, should focus on developing robust systems 

that can interpret all views and modes, including M-mode and color Doppler.

LV chamber analysis is the primary focus of most existing automated methods.

As LV chamber plays a critical role in blood circulation and the diagnosis of several CVD, 

existing methods focus mainly on segmenting and analyzing this chamber. RV, LA, and RA 

chambers have received less attention due to their complex shape and unclear boundaries. 

Because cardiac indices extracted from RA, LA, and RV chambers are also important for 

diagnosing various CVD, future works should develop fully automated methods that can 

handle the complex structures of these chambers. Future research should also focus on 

segmenting the heart as a whole to enable global assessment that considers the combined 

motion of all chambers together.

Population-specific methods evaluated using normal and homogeneous cases.

Existing automated methods paid less attention to fetuses/neonates/children, and focus 

mainly on adults. Because cardiovascular systems of adults and fetal exhibit significant 

differences [131], these methods would perform poorly or might completely fail when 

applied to fetuses/neonates/children. In addition, automated methods that are developed and 

evaluated using normal datasets might not work on cases that have abnormal or greater than 

mild pathological deformities. To address these issues, future works should focus on 1) 
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developing cross-population methods or 2) population-specific methods for fetal, neonatal, 

and adult. Future works should also focus on developing algorithms robust to image 

inhomogeneity, pathological deformities, and shape irregularities, to assist in analyzing and 

predicting rare CVD.

Learning multiple echocardiography tasks in isolation.

Automated echo image analysis typically includes several tasks such as noise reduction, 

detection, segmentation, and classification. These tasks are often implemented through 

separate machine learning methods. This approach of analysis involves unnecessary 

repetitions and limits the actual impact of machine learning. Therefore, it is important to use 

advanced machine learning methods, such as multitask learning, to simultaneously learn 

several related echo tasks at once. This approach would improve generalization and 

decreases resource utilization while preventing unnecessary repetitions of building task-

specific models in isolation.

Lack of interpretable and explainable automated echo methods.

Current automated echo methods generate an output, based on features extracted from the 

images, without providing feature importance weights or an explanation for the detected 

output. The lack of explainability and transparency can lead to unreliable decision making 

(black-box decisions). Hence, future work should focus on integrating explainability into 

automated systems using approaches that range from Global variable importance measures 

to ICNN (interpretable convolutional neural networks) [132] or model-agnostic explanations 

[133].

Lack of automated scientific discoveries in cardiology.

current methods are designed, using labeled training data, to compute established parameters 

(e.g., LV volume). These parameters are then fed into machine learning classifiers to detect 

known patterns. Supervised learning approach relies on expert’s knowledge, and therefore, 

cannot extract knowledge unknown to the experts. To automate scientific discoveries in 

cardiology, it is important to explore unsupervised and reinforcement learning approaches. 

These approaches can detect new patterns, extract knowledge unknown to experts, explore 

different actions, and learn which actions lead to a better diagnosis.

Current echo systems are partially automated.

Current automated systems require experts to manually localize Doppler gate, detect ROIs, 

or select ED/ES frames prior to performing a specific cardiac image analysis task (e.g., 

segmentation). Future research, therefore, should focus on developing fully automated (end-

to-end) systems that could be used efficiently in real-time to acquire data, analyze desired 

views and frames, segment cardiac region, and diagnose diseases without, or with minimum, 

user intervention. Such fully automated systems have the potential of reducing clinical 

workflow as well as improving patient outcomes. These systems can be used in POCUS and 

low-resource settings to provide high-quality and cost-efficient healthcare.
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Automated real-time echo analysis.

Several challenges need to be addressed before adopting automated real-time echo analysis 

and integrating it into clinical and low-resource settings. For example, existing methods 

focus mainly on improving performance. Little consideration has been given to issues such 

as speed, computation time, memory usage, model size, power/energy consumption, and 

scalability. Future works, therefore, should consider these issues and design lightweight 

systems that can achieve maximum performance in latency-sensitive applications and 

resource-limited environments.

Dataset and code availability.

Open-access code and publicly available datasets can speed up and strengthen advances in 

automated echo analysis because it facilitates reproducibility of results and allows to extend 

existing methods. Hence, it is very valuable for future works to provide the data and code 

necessary for replication and improvement. So far, we are aware of only few echo datasets 

and codes [46], [127] that are publicly available for research use. We described these 

publicly available echo datasets in Section 5.

7 Conclusion

Automated echo analysis is critical to improve the limitations of current practice and provide 

high-quality healthcare to the patients in low-resource settings. The first step of any 

automated system involves accurately detecting ROI as it highly impacts the performance of 

subsequent automated tasks (e.g., segmentation). In this paper, we reviewed automated ROI 

detection methods as well as automated methods of four cardiac tasks: echo quality 

assessment, mode/view classification, boundary segmentation, and CVD diagnosis. We also 

provided a summary of publicly available echo datasets followed by a thorough discussion 

of current limitations and potential future directions. This paper provides biomedical 

engineers and clinicians a standalone summary of automated echocardiography analysis and 

interpretation.
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Appendix A

Echocardiography Modes

A.1 M-mode

M-mode provides a one dimensional view or trace of the motion for a specific cardiac 

structure (e.g., mitral valve). It helps visualizing the temporal changes in the depth of echo-

producing interfaces. The X axis (top or bottom) of M-mode shows time and the Y axis 

(sides) shows distance. This type of echo imaging has a high temporal resolution and is 

useful for measuring rapid motions (e.g., opening and closing of valves). Figure 2 presents 

an example of an image acquired using M-mode echo.
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Fig. 2. 
M-mode echocardiography recorded from the first author. IVS: Inter-ventricular Septum; 

PW: Posterior Wall; IDs: Internal Diameter (systole); IDd: Internal Diameter (diastole); 

green curve is ECG signal.

A.2 B-mode

This mode provides a cross-sectional image of the heart’s tissues and boundaries. Each point 

in B-mode represents an echo and the brightness (B-mode) of each point represents the 

strength of the reflected echo. A comprehensive B-mode acquisition involves imaging the 

heart from different windows or views by positioning the transducer in different locations 

[2]. The most common B-mode views include [2]: parasternal long axis and short axis 

(PLAX and PSAX), apical two-chamber (A2C), apical three-chamber (A3C), apical four-

chamber (A4C), apical five-chamber (A5C), Sub-Costal Long and Short Axis View (SCLX 

and SCSX), and Suprasternal Notch View (SSN). Figure 3 presents an example of B-mode 

A4C view.

A.3 Doppler mode

Doppler measures the velocity and direction of blood cells within the heart. There are two 

main types of Doppler imaging: Color Doppler and Spectral Doppler. Color Doppler 
visualizes blood flow direction and velocity using a color scale, where red hues represent 

flow toward and blue hues represent flow away from the transducer. As shown in Figure 4, 

color Doppler is usually superimposed on B-mode grey-scale image.
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Fig. 3. 
B-mode A4C view echocardiography.

Fig. 4. 
Spectral Doppler mode echocardiography (mitral valve [MV] flow). The upper part of the 

image shows the color Doppler. Image is taken from Open-i.

Spectral Doppler (Figure 4) uses the frequency shift in reflected waves to visualize the blood 

flow as a graph that shows the velocity of blood flow (Y axis) over time (X axis). A velocity 

value displayed above the baseline indicates flow towards the transducer and a value 
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displayed below the baseline indicates flow away. The baseline is a horizontal line that has 

zero velocity. This type of echocardiography is routinely performed using either continuous 

or pulsed wave Doppler [2]. Pulsed Wave Doppler or PW Doppler utilizes a single 

transducer element to send and receive an ultrasound wave. By sending and receiving pulses, 

PW Doppler has the ability to measure the velocity of blood flow at a specific cardiac region 

(a.k.a., sample volume). This makes PW Doppler a very powerful method for providing site-

specific information. However, a major limitation of PW Doppler is its inability to display 

high velocities due to aliasing phenomena [2]. Continuous Wave Doppler or CW Doppler, 

on the other hand, accurately measures high blood velocities. It has two dedicated transducer 

elements for continuously sending and receiving ultrasound waves. This type of Doppler is 

not site-specific and is frequently used to measure high blood velocities of cardiac 

pathologies [2].
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Fig. 1. 
Flowchart of our review. The histogram associated with each mode represents the number of 

automated works for each task.
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