Skip to main content
. Author manuscript; available in PMC: 2021 Apr 27.
Published in final edited form as: IEEE Rev Biomed Eng. 2021 Jan 22;14:181–203. doi: 10.1109/RBME.2020.2988295

TABLE 3:

Quantitative comparison of automated methods for mode/view classification. A2C-A3C-A4C-A5C (apical 2–3-4–5 views), PLAX (parasternal long axis view), PSAX (parasternal short axis view), PSA (Parasternal Short Axis), PSAM-PASAP (PSA of Mitral and Papillary), IVC (inferior vena cava), SC2C-SC4C-SCLX (subcostal 2–4 chamber and long axis), GSAT (Gray- Level Symmetric Axis Transform), SVM (support vector machines), TPR (True Positive Rate).

Work ROI Method Mode & View Method System & Data Train & Test Ground Truth Performance
[32] NA B-mode: A2C, A4C, PALX, PSAX, SC2C, SC4C, SCLX, other Conv. ML method GIST descriptor, probabilistic SVM Philips CX50; 33Hz; 270 videos, 5–10 heartbeats Train: 2700, Test: 2700 frames Domain expert annotation for all views TPR (Section 3.1): A2C-A4C (100), SAX (100), LAX (98), SC2 (96), SC4 (100), SCL (64), other (96)
[35] LV Detectors (MLBoost) in all viwes B-mode: A2C, A4C, PALX, PSAX Conv. ML method Fusion of LV detectors; multi-class boosting System: NA; 1303 videos, A2C (371), A4C (574), PSAX (203), PLAX (155) Train: 1080; Test: A2C (61), A4C (96), PSAX (28), PLAX (38) Manually localized LV regions TPR (Section 3.1): A2C (93.5), A4C (97.9), PSAX (96.4), PLAX (97.4)
[36] GSAT Detector B-mode: A4C, PALX, PSAX Conv. ML method Relational Structures, Markov Random Field, multi-class SVM System: NA; 15 normal vid., 2657 i-frames; 6 abnormal, 552 i-frames; Train: 2657, leave-one-out; Test: 552 Domain expert annotation for all views Average precision (Section 3.1): 88.35%
[37] Manual B-mode: A2C, A3C, A4C, A5C, SAB, SAP, PLA, PSAM Conv. ML method Optical flow, edge-filtered map, SIFT features, SVM System: NA 113 vid., 25 Hz 320×240 pix. 2470 frames leave-one-out; Manual labeling TPR (Section 3.1): A2C (51), A3C (54), A4C (93), A5C (61), SAB (1.0), SAP (93), PLA (88), PSAM (71)
[46] NA B-mode: A2C, A3C, A4C, PLAX, PSAX, IVC, other Deep learning: VGG-based CNN with 6 classes; ADAM, 64 batch 1 x 105 learning rate, 10–20 epochs; 2 hr training (GTX 1080), 600 ms runtime System: NA > 4000 studies Train: 40,000 images; Test: VC (159), A2C (555), A3C (174), A4C (756), PLAX (515), PSAX (458) Manual labeling TPR (Section 3.1): IVC (100), A2C (94) A3C (93), A4C (98), PLAX (99), PSAX (99.5)
[49] NA B-mode: A2C, A4C, PLAX, PSAX, ALAX, SC4C, SCVC, unknown Deep learning: Inception-based CNN with 7 classes; Adam, 10−4 rate, 64 mini-batch, 100 epochs GE Vivid E9, 4582 vid., 205 patients, avg. age: 64; GE Vivid E7, 2559 vid., 265 patients, avg. age: 49 Train: 4582 vids., 256,649 frames; Test: 2559 vids., 229,951 frames Manual labeling Overall accuracy:Frame (98.3 ± 0.6) Video (98.9 ± 0.6); runtime (4.4 ± 0.3) ms (GPU)
[50] NA B-mode: 12 apical, parasternal, subcostal, suprasternal views Deep learning: Lightweights VGG, DenseNet, and ResNet based models; ADAM, 1−4 rate, 300 batch Philips, GE, and Siemens systems; 3,151 patients, 16,612 cines, 807908 frames Patient level split: Train (60%), Valid (20%), Test (20%), Manual labeling by senior cardiologist Overall accuracy: 88.1%; fusion of 3 models
[51] NA B-mode: A2C, A3C, A4C, A5C, PLAX, PSAX, PSAM, PSAP Deep learning: Spatial CNN, input: raw image; Temporal CNN, input: acceleration image GE Vivid 7 or E9; 432 vid.; age: 7–85; 434×636, 26fps 341×415, 26fps Train: 280, Test: 152; Re-sized: 227×227×26 frames Clinicians in 2 hospitals labeled 8 views TPR (Section 3.1): A2C:100, A3C:100, A4C:100, A5C:71.4, PLAX:96, PSAX:95, PSAM:88, PSAP:75