Table 3.
Modela | F-measure | Precision | Recall | Slot error rate | Insertion error rate | Deletion error rate | Type error rate | Frontier error rate |
RBSb | 79.41 | 94.67 | 72.28 | 0.29 | 0.03 | 0.23 | 0.02 | 0.04 |
BiLSTMc | 73.93 | 83.89 | 67.57 | 0.45 | 0.09 | 0.25 | 0.07 | 0.15 |
BiLSTM + FTd | 88.08 | 89.48 | 87.17 | 0.21 | 0.07 | 0.08 | 0.03 | 0.09 |
BiLSTM + ELMoe | 88.03 | 88.81 | 87.38 | 0.24 | 0.1 | 0.08 | 0.03 | 0.1 |
BiLSTM + RBS | 83.74 | 88.46 | 80.24 | 0.27 | 0.08 | 0.13 | 0.03 | 0.09 |
BiLSTM + FT + RBS | 88.18 | 91.73 | 85.54 | 0.21 | 0.07 | 0.09 | 0.01 | 0.07 |
BiLSTM + ELMo + RBS | 89.86 | 90.83 | 89.17 | 0.19 | 0.09 | 0.05 | 0.03 | 0.08 |
BiLSTM-CRFf | 70.12 | 79.04 | 65.57 | 0.53 | 0.11 | 0.26 | 0.11 | 0.21 |
BiLSTM-CRF + FT | 87.16 | 88.58 | 86.41 | 0.25 | 0.09 | 0.08 | 0.03 | 0.12 |
BiLSTM-CRF + ELMo | 88.66 | 87.95 | 89.44 | 0.23 | 0.11 | 0.06 | 0.02 | 0.11 |
BiLSTM-CRF + RBS | 84.16 | 88.56 | 80.73 | 0.27 | 0.09 | 0.13 | 0.03 | 0.09 |
BiLSTM-CRF + FT + RBS | 87.74 | 89.72 | 86.25 | 0.22 | 0.08 | 0.08 | 0.02 | 0.09 |
BiLSTM-CRF + ELMo + RBS | 89.3 | 90.4 | 88.31 | 0.20 | 0.08 | 0.06 | 0.02 | 0.09 |
aModels are described according to their components; if neither ELMo nor FT is mentioned, then we used skip-gram embedding.
bRBS: rule-based system (ie, the outputs are added as extra features to the input of the deep learning module).
cBiLSTM: bidirectional long short term memory.
dFT: FastText embedding.
eELMo: embedding for language model.
fCRF: conditional random field.