Skip to main content
. 2021 Mar 16;9(3):e17934. doi: 10.2196/17934

Table 3.

Overall medication component information predictions metrics by models.

Modela F-measure Precision Recall Slot error rate Insertion error rate Deletion error rate Type error rate Frontier error rate
RBSb 79.41 94.67 72.28 0.29 0.03 0.23 0.02 0.04
BiLSTMc 73.93 83.89 67.57 0.45 0.09 0.25 0.07 0.15
BiLSTM + FTd 88.08 89.48 87.17 0.21 0.07 0.08 0.03 0.09
BiLSTM + ELMoe 88.03 88.81 87.38 0.24 0.1 0.08 0.03 0.1
BiLSTM + RBS 83.74 88.46 80.24 0.27 0.08 0.13 0.03 0.09
BiLSTM + FT + RBS 88.18 91.73 85.54 0.21 0.07 0.09 0.01 0.07
BiLSTM + ELMo + RBS 89.86 90.83 89.17 0.19 0.09 0.05 0.03 0.08
BiLSTM-CRFf 70.12 79.04 65.57 0.53 0.11 0.26 0.11 0.21
BiLSTM-CRF + FT 87.16 88.58 86.41 0.25 0.09 0.08 0.03 0.12
BiLSTM-CRF + ELMo 88.66 87.95 89.44 0.23 0.11 0.06 0.02 0.11
BiLSTM-CRF + RBS 84.16 88.56 80.73 0.27 0.09 0.13 0.03 0.09
BiLSTM-CRF + FT + RBS 87.74 89.72 86.25 0.22 0.08 0.08 0.02 0.09
BiLSTM-CRF + ELMo + RBS 89.3 90.4 88.31 0.20 0.08 0.06 0.02 0.09

aModels are described according to their components; if neither ELMo nor FT is mentioned, then we used skip-gram embedding.

bRBS: rule-based system (ie, the outputs are added as extra features to the input of the deep learning module).

cBiLSTM: bidirectional long short term memory.

dFT: FastText embedding.

eELMo: embedding for language model.

fCRF: conditional random field.