Table 4.
Medication information predictions metrics results by models.
| Label | RBS | BiLSTM + ELMo | BiLSTM + ELMo + RBS | ||||||||
|
|
F-measure | Precision | Recall | F-measure | Precision | Recall | F-measure | Precision | Recall | ||
| Medication name | 90.31 | 96.46 | 84.89 | 92.2 | 93.79 | 90.67 | 95.33 | 95.33 | 95.33 | ||
| Medication class | 13.33 | 87.5 | 7.22 | 62.3 | 66.28 | 58.76 | 64.36 | 61.9 | 67.01 | ||
| Dosage | 90.43 | 96.62 | 84.98 | 92.17 | 91.13 | 93.23 | 95.29 | 95.52 | 95.05 | ||
| Frequency | 86.13 | 98.89 | 76.28 | 92.8 | 93.3 | 92.31 | 92.24 | 93.04 | 91.45 | ||
| Duration | 48.89 | 49.25 | 48.53 | 82.17 | 86.89 | 77.94 | 78.79 | 81.25 | 76.47 | ||
| Route | 47.92 | 85.19 | 33.33 | 75.52 | 72.97 | 78.26 | 72.86 | 71.83 | 73.91 | ||
| Condition | 33.64 | 100 | 20.22 | 55.9 | 62.5 | 50.56 | 62.16 | 77.97 | 51.69 | ||
aRBS: rule-based system
bBiLSTM: bidirectional long short term memory.
cELMo: embedding for language models.