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Abstract 

Programmed death-1/programmed death ligand-1 (PD-1/PD-L1) based immunotherapy is a revolutionary cancer 
therapy with great clinical success. The majority of clinically used PD-1/PD-L1 inhibitors are monoclonal antibodies 
but their applications are limited due to their poor oral bioavailability and immune-related adverse effects (irAEs). In 
contrast, several small molecule inhibitors against PD-1/PD-L1 immune checkpoints show promising blockage effects 
on PD-1/PD-L1 interactions without irAEs. However, proper analytical methods and bioassays are required to effec-
tively screen small molecule derived PD-1/PD-L1 inhibitors. Herein, we summarize the biophysical and biochemical 
assays currently employed for the measurements of binding capacities, molecular interactions, and blocking effects of 
small molecule inhibitors on PD-1/PD-L1. In addition, the discovery of natural products based PD-1/PD-L1 antagonists 
utilizing these screening assays are reviewed. Potential pitfalls for obtaining false leading compounds as PD-1/PD-L1 
inhibitors by using certain binding bioassays are also discussed in this review.
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Introduction
Tumors can bypass immune surveillance by exploiting 
immune-escape mechanisms including the induction of 
an immunosuppressive microenvironment and suppres-
sion of effector T cells’ function in the tumor microen-
vironment [1, 2]. Cancer immunotherapy is designed to 
re-activate anti-tumor immune response and enhance 
its effects, thereby restoring tumor immune suppression 
[3–5]. Activating T cell-mediated anti-tumor responses 
is one of the most effective strategies on the basis of the 
regulation of immune checkpoints, which are crucial 
receptors for preventing autoimmunity, protecting the 
host from tissue damage, and regulating self-tolerance 
[6–8].

T cell-mediated cancer immunotherapy is a break-
through since its discovery [9, 10]. The activation of 
cancer-specific T cells eliminates cancer cells by the rec-
ognition of tumor-specific antigens [10, 11]. T cell-medi-
ated cancer immunotherapy consists of three steps. First, 
antigens are presented by antigen-presenting cells (APCs) 
such as dendritic cells (DCs) as antigenic peptides, which 
are recognized by the T-cell receptor (TCR; Signal 1) [12]. 
The secondary signal is then delivered when B7 proteins 
(CD80 and CD86) on the APCs engage with CD28 on 
the T cells, leading to the activation of T cells [13]. Sub-
sequently, the activated cancer-specific T cells enter into 
the tumor sites and recognize tumor-specific antigens 
thereby destroying the cancer cells [13]. However, in the 
tumor microenvironment, cancer cells highly express co-
inhibitory protein ligands including CD80/86 and pro-
grammed death-ligand 1 (PD-L1) [14–16]. Co-inhibitory 
proteins including cytotoxic T-lymphocyte-associated 
protein 4 (CLTA-4) and programmed cell death protein 1 
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(PD-1) are activated by binding to their ligands expressed 
on cancer cells [17–19]. Consequently, cancer-specific T 
cell activation is prevented so the cancer cells can escape 
from immune surveillance. Therefore, blockage of the 
co-inhibitory signals on the T cells and the activation of 
cancer-specific T cells represent a promising strategy in 
cancer immunotherapy.

PD-1 is a co-inhibitory receptor mainly expressed on 
the surface of T cells [20]. PD-1’s primary function is 
to suppress the T cells’ activity by the regulation of the 
TCR signaling cascade [21–23]. High PD-L1 expression 
in tumor microenvironment is frequently observed in 
many types of cancers including Hodgkin’s lymphoma, 
breast cancer, renal cell carcinoma, melanoma, lung can-
cer, gastric cancer, and hepatoma [24–30]. In the tumor 
microenvironment, PD-L1 binds to PD-1 leading to T 
cell dysfunction, whereas blockage of their interactions 
recovers the T cell’s activity of destroying tumor cells [31, 
32]. Previous studies reported that the blockage of the 
PD-L1/PD-1 interactions is a promising strategy for can-
cer immunotherapy [18, 32, 33]. Blockage of PD-L1/PD-1 
interactions can terminate the PD-1 mediated-signaling 
pathways and reactivate the T cell-mediated anti-tumor 
responses by promoting T cell proliferation and enhanc-
ing effector T cell’s function [32, 34]. Clinical studies 
reported that the blockade of PD-1/PD-L1 interactions 
can boost T cell-mediated antitumor responses, generate 
durable clinical responses, and prolong patient survival 
rate [17, 35]. To date, monoclonal antibodies (mAbs) 
targeting PD-1 (e.g. Cemiplimab, Nivolumab, and Pem-
brolizumab) or PD-L1 (e.g. Durvalumab, Avelumab, and 
Atezolizumab) are approved by the United States FDA 
for the treatment of a series of malignancies [16, 36–38]. 
Although these mAbs exhibit promising therapeutic 
effectiveness in clinical studies, restrictions including 
immune-related adverse effects, immunogenicity, and 
high costs are imposed for the clinical utilization of anti-
body-based immune checkpoint inhibitors [15, 17, 39, 
40]. In addition, these mAbs exert limited permeability 
in the tumor tissues due to their large size [41, 42]. Their 
relatively long half-life increases the difficulty in drug 
elimination, which may lead to severe side effects. Alter-
natively, small molecule inhibitors may possess favorable 
tumor penetration and oral bioavailability [42]. Moreo-
ver, small molecule inhibitors may exert other advantages 
such as fewer side effects, are easier self-administered, 
have shorter biological half-life, and are less expensive 
than mAbs, which have attracted great attention in phar-
maceutical industries. However, most small molecule 
inhibitors against PD-1/PD-L1 are still in the early drug 
development stage with a focus on preclinical studies.

Currently, preclinical studies have demonstrated that 
small molecule inhibitors can exhibit superior capacities 

to inhibit tumor growth with favorable biosafety as 
compared to mAbs [42]. Among these small molecule 
inhibitors, several synthetic small molecules from Bris-
tol Myers Squibb (e.g. BMS1166 and BMS202) and Curis 
Inc. (i.e. CA-170) exhibit promising tumor suppression 
effects in interrupting the PD-1/PD-L1 interactions [43, 
44]. However, there are relatively fewer reports and pre-
clinical studies on natural product-derived small mol-
ecule inhibitors.

Bioassays are crucial to assess the blockage effects of 
small molecules against the PD-1/PD-L1 interactions 
as well as their binding affinities and how their biologi-
cal functions impact PD-1/PD-L1. Currently, bioassays 
to determine the potency of small molecule inhibitors 
against PD-1/PD-L1 include biophysical and biochemi-
cal assays, in  vitro cell-based assays, and in  vivo tumor 
xenograft model [45–47]. Biophysical and biochemi-
cal assays are used for the assessment of small molecule 
binding profiles and for the screening of potential inhibi-
tors. In  vitro cell-based assays and in  vivo tumor xeno-
graft models can evaluate small molecules’ functional 
effects on PD-1/PD-L1. In addition, due to the encour-
aging promise of small molecule inhibitors against PD-1/
PD-L1, researchers have developed various robust and 
effective assays for screening PD-1/PD-L1 inhibitors.

Herein, PD-1/PD-L1 immune checkpoints and their 
interactions are summarized. In addition, natural prod-
uct-based small molecule inhibitors against PD-1/PD-L1 
and current methodologies employed for their develop-
ment are reviewed. The potential pitfalls and future of 
small molecule inhibitors against PD-1/PD-L1 are also 
examined.

PD‑1/PD‑L1 and their interactions
PD-1 (CD279) is a transmembrane protein consisting 
of 288 amino acids belonging to the CD28 superfamily 
[28]. The structure of PD-1 consists of an extracellular 
IgV domain connected to a transmembrane region and 
an intracellular tail, which contains two phosphorylation 
sites on two motifs including the immunoreceptor tyros-
ine-based switch motif (ITSM) and immunoreceptor 
tyrosine-based inhibitory motif (ITIM) [28]. Immuno-
globulin (Ig)-like extracellular domain is responsible for 
engagement and signaling transduction to intracellular 
domain. After engagement with PD-L1 (CD274; B7-H1) 
and PD-L2 (CD273; B7-DC), PD-1 delivers ‘negative’ sig-
nals to T cells to suppress T cell’s activity. In addition, 
PD-1 is expressed on the surface of regulatory T cells, 
activated B cells, monocytes, macrophages, DCs, and 
natural killer cells [48]. However, the mechanisms of the 
regulation of PD-1 signaling pathways on these cells are 
unclear.
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PD-1 expression is dynamically changed and intricately 
regulated by host immune responses [49, 50]. Usually, it 
is expressed at a low, basal level in resting naive T cells 
(Th0 cells) to maintain immunological tolerance. How-
ever, PD-1 is upregulated by a series of immune cells 
including CD4 and CD8 T cells, B cells, macrophages, 
and DCs in response to initial immune stimuli [51]. PD-1 
is often down-regulated when the antigen is eliminated 
but its down-regulation can be observed prior to antigen 
clearance in the case of acute antigen exposure. By con-
trast, PD-1 expression maintains a high level in chroni-
cally stimulated antigen-specific T cells, which leads to 
their functional exhaustion in response to stimuli [52].

Similar to other B7 proteins, PD-L1 and PD-L2 are 
transmembrane glycoproteins [53]. Compared to PD-L2, 
PD-L1 is expressed on a variety of normal and immune 
cells including macrophages and DCs as well as cancer 
cells after exposure to pro-inflammatory stimuli [31]. In 
addition, PD-L2 is inducibly expressed in hematopoietic 
cells including macrophages, DCs, mast cells, and certain 
B cell populations [54, 55]. In the tumor microenviron-
ment, PD-L1 expressed by cancer cells binds to its recep-
tor PD-1 located on activated T cells on the tumor sites. 
This interaction consequently triggers inhibitory signals 
to the T cells and prevents the host immune system from 
suppressing the growth of tumor [56].

The structure of PD-L1 includes an extracellular 
domain followed by a transmembrane domain and an 

intracytoplasmic region [53]. As shown in Fig.  1b, the 
extracellular domain of PD-L1 consists of Ig variable dis-
tal and constant proximal regions. It is anchored to the 
membrane by a hydrophobic transmembrane sequence. 
The intracytoplasmic region consists of three conserved 
sequences including RMLDVEKC and DTSSK motifs, 
which are RNA pol-like motifs [57], and a QFEET motif. 
The DTSSK motif is a negative regulator of the RMLD-
VEKC motif, which is responsible for suppressing the 
phosphorylation of signal transducer and activator of 
transcription 3 in tumor cells [57].

The underlying mechanisms of the PD-1 signaling 
pathway are briefly summarized in Fig. 1a as PD-1 binds 
to PD-L1 suppressing ZAP70 and PI3K phosphorylation 
by recruiting Src homology 2 domain-containing protein 
tyrosine phosphatase (SHP)1 and SHP2 phosphatases 
to the ITSM and ITIM motifs in the intracellular tail 
[58]. Consequently, the TCR signaling cascade is termi-
nated [59]. SHP1 can bind to the ITIM and ITSM motifs, 
whereas SHP2 preferentially binds to the ITSM [60, 61]. 
However, it is still unknown whether SHP1 and SHP2 
compete to bind to the ITSM or both bind to the intra-
cellular tail. The engagement of PD-L1 with PD-1 leads 
to phosphorylation of ITSM and SHP-2 recruitment. 
As a result, the phosphatidylinositol 3-kinase (PI3K)/
Akt signaling pathway is suppressed [62, 63]. PI3K/Akt 
signaling pathway blockage further regulates a series of 
downstream cellular events including the activation of 
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Fig. 1  The signaling pathway of PD-1/PD-L1. a PD-L1 consists of an extracellular domain, a transmembrane domain, and an intracytoplasmic 
region but lacks intracellular signaling. The intracytoplasmic region consists of three conserved sequences including RMLDVEKC, DTSSK, and QFEET 
motifs. The part of the RMLDVEKC motif and the entire DTSSK motif that have been identified by MotifFinder are RNA pol-like motifs. b Antigens are 
presented by APCs as antigenic peptides, which are recognized by the T-cell receptor (TCR; Signal 1). The second signal (Signal 2) is delivered when 
B7 (CD80 and CD86) on the APCs engage CD28 on the T cells



Page 4 of 17Liu et al. Cancer Cell Int          (2021) 21:239 

the mechanistic targets of rapamycin (mTOR), the acti-
vation of Bcl-Xl, the production of interleukin (IL)-2, 
and the activation of nuclear factor-κB as well as inhibits 
protein synthesis and cell growth. In addition, PI3K/Akt 
signaling pathway blockage degrades transcription fac-
tor FoxO1, which binds to the promoter site of PD-1 and 
increases its expression [31, 62].

The protein crystal structures of the PD-1/PD-L1 com-
plex reveal that their interactions use large, hydrophobic 
surfaces of the extracellular domains [53]. Within the 
complex, PD-1 and PD-L1 are almost perpendicular to 
each other, facilitating interactions through the majority 
of the surface of their ‘‘front’’ strands. Currently, there are 

three identified hotspots on PD-L1 (Fig. 2). Two of three 
hotspots are regarded as drug binding pockets. The first 
hotspot is a classic pocket with a hydrophobic domain, 
which includes amino acid residues lTyr56, lGlu58, 
lArg113, lMet115, and lTyr123. This hotspot has a 
favorable size to accommodate an aromatic six-mem-
bered ring. The second hotspot with lMet115, lAla121, 
and lTyr123 residues can be effectively occupied by a 
branched aliphatic moiety, which can anchor with a ter-
minal hydrogen bond donor moiety at the carbonyl oxy-
gen of lAla121. The third hotspot is an extended groove 
formed by the main chain and the side chains spanning 
residues lAsp122 to lArg125, and is flanked by the side 
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Fig. 2  The structure of PD-L1 (4ZQK) and three main hot spots between PD-1 and PD-L1. a The structures of PD-L1 and PD-1. Amino acid residues 
in the main hot spots are labeled as orange color. b Three main hot spots are exhibited. The first hotspot includes lTyr56, lGlu58, lArg113, lMet115, 
and lTyr123. The second hotspot includes lMet115, lAla121, and lTyr123. The third hotspot is an extended groove formed by the main chain and 
the side chains spanning residues lAsp122 to lArg125, and is flanked by the side chain of lAsp26
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chain of lAsp26. This hotspot can provide multiple 
hydrogen bond donors/acceptors. However, it has a rela-
tively shallow space, making it a difficult target for inhibi-
tors of protein interactions.

Overall, it is challenging to target the interface of PD-1/
PD-L1 because of its large and flat hydrophobic pockets 
(1970 A2) as compared to some other druggable proteins 
with deep hydrophobic pockets [53]. One of the rational 
designs for the discovery of PD-1/PD-L1 inhibitors is to 
evaluate the interactions between the leading compounds 
and these drug binding pockets using computational 
based screening methods, which can be further validated 
by in vitro and in vivo bioassays to eliminate false positive 
“hits”.

Current methodologies for the development 
of PD‑1/PD‑L1 inhibitors
Over the past decades, considerable research efforts have 
been dedicated to the development of small molecule 
inhibitors against PD-1/PD-L1 immune checkpoints 
[64–66]. Biophysical and biochemical assays along with 
cell-based assays have been developed to identify and 
evaluate the binding affinity between these inhibitors and 
PD-1/PD-L1, and their blockage effects toward PD-1/
PD-L1 interactions. A workflow for screening potential 
inhibitors of PD-1/PD-L1 is shown in Fig. 3.

Binding affinity is one of the most critical parameters 
to measure the capacity of potential inhibitors binding to 
PD-1/PD-L1 proteins. PD-1/PD-L1 interactions can be 
characterized by a series of methods summarized in this 
review. These biophysical methods are usually performed 
at the protein level. Although these methods may lead to 
indefinite parameters regarding the dissociation constant 
(KD) [53, 55, 67, 68], binding affinity measurement is still 
usually required to identify small molecule inhibitors 
against PD-1/PD-L1.

Surface plasmon resonance (SPR)
SPR is an optical biosensor technology based on the eva-
nescent wave phenomenon to measure changes in the 
refractive index of biosensor [69]. The light generated 
by the light source hits the biosensor and prism. Analyte 
flows through the channel and binds to the target pro-
tein, leading to a shift in the refractive index of the bio-
sensor. The interactions between analyte and proteins 
are monitored in a real-time manner and the amount of 
bound proteins and rates of association and dissociation 
are measured with high precision. SPR is widely used for 
determining intermolecular interactions. PD-1/PD-L1 
interactions are based on their extracellular domains 
and their interactions include hydrophobic and polar 
effects. Small molecule inhibitors with blockage effects 
against PD-1/PD-L1 interactions bind to their extracel-
lular interface. Therefore, SPR is an ideal tool to measure 
the binding affinity between inhibitors and PD-1/PD-L1. 
SPR can also determine the real-time kinetic constants 
between inhibitors and PD-1/PD-L1, which requires the 
immobilization of PD-1/PD-L1 protein on certain bio-
sensors. His-tagged and tag-free PD-1/PD-L1 have been 
widely immobilized on the biosensors using amine cou-
pling methods [44, 65]. For instance, Yang and colleagues 
developed an SPR technology-based screening method 
that has successfully screened caffeoylquinic acids as 
PD-1/PD-L1 inhibitors by immobilizing tag-free PD-1/
PD-L1 extracellular fragment on the CM5 biosensor 
chip [65]. An advantage of SPR is that no modification 
is required for the target proteins as compared to other 
screening methods including NMR-based AIDA and 
HTRF.

Biolayer interferometry (BLI)
BLI, similar to SPR, is a label-free technique monitor-
ing real-time biomolecule interactions [70]. The work-
ing mechanism of BLI is similar to SPR as it detects 
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Fig. 3  The screening workflow of PD-1/PD-L1 inhibitors. The identification of PD-1/PD-L1 inhibitors is required by using a series of assays including 
binding affinity assay, blockage ability assay, cell-based functional assay and xenograft model assay
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the changes of the optical interference patterns on the 
protein-coated biosensors that are generated by mass 
changes from the interactions between analyte and pro-
tein [70]. Less protein is required for BLI measurement, 
which facilitates high-throughput screening with great 
potential to screen small molecule inhibitors against 
PD-1/PD-L1. Unlike SPR which detects biomolecular 
interactions under flow conditions, BLI is conducted 
under non-flow conditions which impair its ability to 
depict the kinetic profiles.

Isothermal titration calorimetry (ITC)
ITC is a useful method to characterize the thermody-
namic parameters of interactions between analytes and 
proteins [71]. The binding events are accompanied by 
changes of enthalpy (∆H). Analyte-protein interactions 
driving the process and parameters including stoichi-
ometry of binding (n), the binding constant (Ka), KD, 
∆H, and entropy (ΔS) can be determined. PD-1/PD-L1 
interactions exhibit a favorable ΔHobs and TΔS and their 
binding is driven entropically [53]. However, Pascolutti 
and colleagues reported that the driving force of wild-
type PD-1/PD-L1 exhibits an entropic component [72]. 
An advantage for ITC measurement is that it does not 
require immobilization, protein modification, or fluores-
cent labeling. It is also an approach that can measure all 
binding parameters in a single assay. However, ITC is not 
suitable for high throughput screening due to being time-
consuming with high sample consumption.

Microscale thermophoresis (MST)
MST is a suitable technology for determining the intra-
molecular interactions with less sample consumption 
[73]. MST is based on the directed movement of mol-
ecules along a microscopic temperature gradient [74]. 
Changes in their hydration shell, charge, or size can be 
determined in this process. MST technology requires 
two binding partners, one is labeled with fluorescence 
dye and the other one is free-labeled [74]. MST does not 
require immobilization. Intermolecular interactions can 
be measured under physicochemical conditions or bio-
logical solutions. In addition, protein purification is also 
not required to access the protein of interest [75]. How-
ever, the binding partner labeled with hydrophobic fluo-
rescence may lead to non-specific binding. Consequently, 
the bias of the results might be observed due to the indis-
criminate fluorescent labeling.

MST is applied to determine PD-1/PD-L1 bind-
ing affinities [67] whereby cell lysate is extracted from 
CHO-K1 cells that express PD-1-eGFP or PD-L1-eGFP, 
to prepare the fluorescently labeled binding partner. 
PD-L1 or PD-1 protein is used as label-free binding 
partners. The KD value of 7.2  μM ± 1.9  μM between 

hPD-1 and hPD-L1-eGFP is obtained using MST [67], 
which is similar to SPR assay (KD value of hPD-1/hPD-
L1 = 8.2 ± 0.1  μM) [53, 76]. Therefore, MST technol-
ogy highlights its potential application for studying the 
interactions between PD-1/PD-L1 and their inhibitors.

Differential scanning fluorometry (DSF)
DSF is an excellent screening assay to discover low-
molecular-weight ligands with binding affinities for 
target proteins by monitoring the amount of the fluo-
rescent dye that binds to the protein [77]. Ligand is 
added into the solution containing protein and fluores-
cent dye in the polymerase chain reaction (PCR) micro-
plates. Fluorescent intensities are measured as the 
temperature is gradually raised by the PCR instrument 
[78]. The binding of PD-1/PD-L1 inhibitors induces 
thermal stabilization of PD-1/PD-L1, which is propor-
tional to the inhibitors’ affinity [79]. DSF is suitable for 
high-throughput screening due to the small amount 
and low concentrations needed for protein binding. 
However, impurities (e.g. detergent molecules) have to 
be excluded from the reaction system. In addition, the 
interactions between fluorescent dye and target pro-
teins may interfere with the detection results. Recently, 
it was reported that proteins that have already been 
labeled with green fluorescent can be applied to avoid 
the interactions with the fluorescent dye [80].

Fluorescence polarization immunoassay (FPIA)
FPIA is based on the principle of fluorescence anisot-
ropy. As a homogenous assay, it determines the rota-
tional and translational motion of excited fluorescent 
molecules in the reaction mixture [81]. It is a rapid and 
quantitative method to detect several biomolecular 
interactions and enzyme activities. This assay is a feasi-
ble mix-and-read method with fewer reagents required, 
which is suitable for high-throughput screening of pep-
tides or nucleotide sequences binding to PD-1/PD-L1. 
For instance, it has been successfully demonstrated that 
FPIA can be applied to analyze the affinity between 
self-inhibitory peptides (refers to peptides disrupting 
the PD-1/PD-L1 complex formation) and PD-1 [82]. A 
major disadvantage of FPIA is that the protein–protein 
interactions containing extensive interfaces can lead to 
low sensitivity for detecting biomolecules that are dis-
proportionately important for the affinity of the inter-
actions. In this case, competitive binding assays with 
specific fluorescence polarization probes can be applied 
to study the interactions between the molecules (e.g. 
PD-1/PD-L1 inhibitor) and their featured interfaces 
[83, 84].
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Nuclear magnetic resonance (NMR)
NMR is a powerful tool to determine the structure, 
dynamics, and biomacromolecule interactions. NMR 
can also detect the binding affinities of protein targets 
with small molecules that have a broad affinity range 
[85, 86]. It can detect weak intermolecular interactions, 
which makes it a valid screening tool for low-affinity 
fragments [86]. However, binary screening NMR does 
not give information on whether the small molecules can 
exert blockage effects on protein–protein interactions. 
To overcome this limitation, Musielak and colleagues 
described an NMR competitive assay, termed as weak-
antagonist induced dissociation assay-NMR (w-AIDA-
NMR). In this competitive assay, lead compounds with 
capacity of dissociating protein–protein interactions are 
depicted by the strength of their binding affinities with 
protein components involved in the protein–protein 
interactions [85, 87]. The KD value of PD-1/PD-L1 com-
plex is approximately 8  μM, which might be too strong 
for the NMR-based screening for “weak” fragments, as 
these fragments exhibit lower affinities with 2 to 3 orders 
of magnitude. Therefore, instead of using PD-1, PD-1 
mutant can be applied to estimate the KD value of frag-
ments with PD-1/PD-L1. The KD values between frag-
ments and PD-L1 by using w-AIDA-NMR method are 
similar to the corresponding data from the HTRF assays, 
supporting the reliability of the w-AIDA-NMR method. 
In addition, some small molecule PD-L1 inhibitors that 
block the PD-1/PD-L1 interactions have also been char-
acterized using AIDA NMR [64, 88, 89]. Interestingly, 
a combination of AIDA-NMR, PD-1/PD-L1 structure-
based design, and fragment merging approaches creates 
novel chemotypes as a starting point for the develop-
ment of small molecule inhibitors against PD-1/PD-L1 
[88]. Recently, high-field NMR spectrometers have been 
developed to improve the NMR’s sensitivity and resolu-
tion [90], which highlights the potential application of 
NMR-based methods in large-scale screening.

The enzyme‑linked immunosorbent assay (ELISA) 
and alphaLISA
ELISA is a solid-phase type of enzyme immunoassay to 
detect the presence of proteins using antibodies against 
the proteins to be measured [91]. Because PD-L1 has 
a strong binding affinity with PD-1, PD-1/PD-L1 pair 
ELISA can be applied for screening small molecules 
with blockage effects towards PD-1/PD-L1 interactions. 
Briefly, PD-1 or PD-L1 protein (or PD-1/PD-L1 extra-
cellular domain) is coated by incubation with biotin 
labelled-PD-L1 or PD-1 with or without the small mol-
ecules of interest. Next, streptavidin–horseradish peroxi-
dase and colorimetric horseradish peroxidase substrates 
are added. The inhibitory abilities of small molecules 

towards PD-1/PD-L1 interactions are determined by 
comparing the optical density values among the experi-
mental groups. Although ELISA is a widely used detec-
tion platform for PD-1/PD-L1 inhibitors, it requires 
multiple procedure steps (e.g. washes) with a relatively 
narrow dynamic range (typically 2 logs). Therefore, more 
than one sample dilution is required, which makes PD-1/
PD-L1 pair ELISA less feasible to adapt for high-through-
put screening.

Alternatively, AlphaLISA is a homogeneous immuno-
assay that can be used to screen for PD-1/PD-L1 inhibi-
tors in a high-throughput manner [92]. AlphaLISA is a 
bead-based immunoassay without the requirement of 
‘wash’. Therefore, it avoids washing times thereby reduc-
ing the total assay time as compared to ELISA. The prin-
ciple of the AlphaLISA method is based on luminescent 
oxygen-channeling chemistry. AlphaLISA consists of 
donor beads and acceptor beads. Streptavidin-coated 
donor beads are used to bind biotinylated-PD-L1, and 
anti-His acceptor beads are used to bind to His-tagged 
PD-1. Donor beads and acceptor beads interact with 
each other due to the strong binding affinity between 
PD-1 and PD-L1. Donor beads contain a photosensi-
tizing agent that can be illuminated by a wavelength of 
680 nm generating singlet oxygen, which initiates a cas-
cade reaction with the acceptor beads. Consequently, the 
acceptor beads will generate a remarkable signal ampli-
fication (at 615 nm) by singlet oxygen released from the 
donor beads. Small sample volumes (1–5  μL) with high 
sensitivity and wide dynamic ranges (typically 3 logs) are 
required in the AlphaLISA assay. Therefore, it is an ideal 
platform for high-throughput screening.

Bioluminescent reporter cell‑based assay
Bioluminescent reporter cell-based assay, which consists 
of two engineered cell lines including PD-1 effector cell 
line and PD-L1 aAPC/CHO-K1 cell line, can be used for 
screening the PD-1/PD-L1 inhibitors [93]. PD-1 effec-
tor cell line is constructed on Jurkat T cell line that sta-
bly expresses PD-1 by transfection of luciferase reporter 
plasmids containing NFAT response element. PD-L1 
aAPC/CHO-K1 cell line is constructed on CHO-K1 cell 
line that expresses PD-L1 by engineering cell surface 
proteins to activate cognate TCRs without antigen. In 
the co-culture system, PD-1 binds to PD-L1 and subse-
quently suppresses the TCR signaling and luminescence 
mediated by NFAT response element. The presence of 
PD-1/PD-L1 inhibitors blocks the PD-1/PD-L1 interac-
tions, leading to the reactivation of TCR signaling and 
luminescence. Quantification of TCR activation with or 
without PD-1/PD-L1 inhibitors is measured by the inten-
sity of luciferase activity. In addition, the NF-κB reporter 
assay is an alternative option for the NFAT response 
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element reporter system. However, it is preferable to use 
the NFAT response element reporter system because 
the NF-κB signaling is a less specific marker of the CD3 
dependent T cell activation that can be activated by other 
stimuli7 [94, 95].

Unlike the other aforementioned biophysical and bio-
chemical assays that cannot evaluate the functional 
impact of small molecules on PD-1/PD-L1 interactions, 
bioluminescent reporter cell-based assay has an advan-
tage of assessing the biological functions of PD-1/PD-L1 
inhibitors by measuring the activation of NFAT sign-
aling pathway. In addition, this commercialized assay 
is a labor- and time-efficient tool, which is suitable for 
high-throughput screening. Moreover, bioluminescent 
reporter cell-based assay has less variation as compared 
to primary cell-based assays [96]. However, the current 
bioluminescent reporter cell-based assays cannot provide 
information of antigen-specific or multiparametric inter-
actions. Due to PD-1/PD-L1 mediated downstream sign-
aling transductions involved in many proteins [31], the 
bioluminescent reporter cell-based assay is insufficient to 
evaluate the functions of PD-1/PD-L1 inhibitors on the 
signaling transduction-related proteins.

T cell‑based assay
Although a cell-free assay system can be used to evaluate 
the basic biological functions of PD-1/PD-L1 inhibitors, 
further biological effects of leading inhibitors on PD-1/
PD-L1’s physiological properties, including their subcel-
lular localization, or functional changes upon stimula-
tion, might not be evaluated sufficiently with cell-free 
assays alone. To evaluate the bioactivities and compli-
cated physiological functions of PD-1/PD-L1 inhibitors, 
T cell-based assays are often used.

T cell-based assays consist of effector cells expressing 
PD-1, cells presenting PD-L1, and the activation signal 
(CD3 activator) for effector cells. Several methods for the 
development of inhibitors targeting PD-1/PD-L1 using T 
cell-based assays have been reported [47]. The activation 
of CD3 (Signal 1) is an essential step for the activation 
of PD-1 effector cells in this assay. The TCR/CD3 can be 
expressed by the effector cells and activated by several 
biological components including peptide/MHC com-
plex on the target cells, superantigen in the presence of 
APCs expressing MHC II, soluble CD3ε antibodies, and 
activator cells expressing transmembrane aCD3ε. In the 
T cell-based assays, tumor cells or target cells express-
ing tumor-associated antigen are often used [97]. In 
these assays, the presence of effector cells express tumor-
associated antigen-specific CAR containing the CD3ζ 
signaling domain, or TCR/CD3 effector cells with CD3 
antibodies and tumor-associated antigen antibodies, 

leads to the dependent activation of CD3 in the effector 
cells.

In the T cell-based assays, immobilized cell lines are 
preferable to avoid issues with accuracy and reproduc-
ibility associated with primary cells [98, 99]. For instance, 
the immobilized Jurkat human T cell line, a commonly 
used T cell line, has been successfully developed to meas-
ure the CD3 dependent T cell activation [100]. In addi-
tion, the Jurkat human T cell line is suitable for genetic 
engineering, which can be applied for evaluating the 
biological effects of small molecules targeting PD-1. Ver-
steven and colleagues developed an antigen-specific and 
high-throughput T cell-based assay by using a geneti-
cally modified TCR-deficient Jurkat T cell line that is also 
transduced with PD-1 plasmid [101].

T cell-based assays are widely used to evaluate the 
blocking abilities and biological functions of PD-1/PD-L1 
inhibitors [102]. Although the binding abilities of small 
molecule inhibitors against PD-1/PD-L1 are usually ana-
lyzed by biophysical and biochemical assays, T cell-based 
assays are also used to evaluate their blocking abilities 
based on flow cytometry method [103]. To evaluate the 
blocking abilities of PD-1/PD-L1 small molecule inhibi-
tors, cell co-culture based assays or single-type cell incu-
bated with PD-1 or PD-L1 proteins are often used. For 
instance, small molecule inhibitors can be incubated in 
a co-culture system with T cells expressing PD-1 and 
APCs/tumor cells expressing PD-L1. The blocking abili-
ties of small molecule inhibitors can be evaluated by 
measuring PD-1/PD-L1 expression using flow cytometry 
[104]. Similarly, in a single-type cell incubated with PD-1 
or PD-L1 protein, the blocking affinity of small molecule 
inhibitors against PD-1 or PD-L1 protein is measured by 
the qualification of fluorescence intensity.

The primary aim for using T cell-based assay is to 
verify the biological functions of PD-1/PD-L1 inhibi-
tors. In the tumor microenvironment, overexpression 
of PD-1 leads to T cell dysfunction, whereas PD-1/
PD-L1blockage reactivates T cell’s biological func-
tions [105]. The functional assays need a co-culture 
system consisting of PD-1 expressing cells and PD-L1 
expressing cells. It is based on the change of T cell dys-
function in the presence of small molecules targeting 
PD-1/PD-L1. The functional assays of T cells include 
measurements of cell proliferation, T cell-related 
cytokine release (IL-2 and interferon (IFN)-γ), and the 
change of PD-1 downstream events including signaling 
proteins and their phosphorylation [106]. For instance, 
low proliferative capacity is a key character of T cell 
dysfunction [54], and cell proliferation is one of the 
most used assays to evaluate the biological functions 
of PD-1/PD-L1 inhibitors. In addition, the detection of 
IL-2 and IFN-γ are also widely used in the functional 
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assay as IL-2 and IFN-γ are essential for T cell prolif-
eration and activity, respectively [107, 108]. Further-
more, signaling proteins involved in the PD-1/PD-L1 
axis-mediated signaling transductions can be investi-
gated to evaluate the biological effects of PD-1/PD-L1 
inhibitors.

Natural product‑derived PD‑1/PD‑L1 inhibitors
Most mAbs have inherent shortcomings including lim-
ited permeability, irAEs, immunogenicity, and high 
cost, as compared to small molecules derived PD-1/
PD-L1 inhibitors [109, 110]. Small molecule inhibitors 
usually have less side effects, shorter biological half-
life, and are less expensive with easier administration 
routes. Several published review articles have summa-
rized the advantages of various synthetic small mol-
ecule PD-1/PD-L1 inhibitors [64, 66, 111]. Recently, 
several natural product-derived small molecules with 
blockage effects against PD-1/PD-L1 interactions have 
been reported. Instead of elaborating on all current 
small molecule inhibitors, herein we summarize natu-
ral product-derived PD-1/PD-L1 inhibitors with an 
emphasis on the screening methodologies that were 
applied for their identification.

Macrocyclic compounds
Gramicidin derivatives from Bacillus brevis
Gramicidin S is a natural decacyclopeptide consisting 
of two repeating pentapeptides as cyclo(-Val-Orn-Leu-
D-Phe-Pro-)2, which imposes a unique amphiphilic 
structure with hydrophilic and hydrophobic residues on 
the opposing side of cyclopeptide plane ring. Sun and 
co-workers hypothesized that gramicidin S’s amphiphi-
lic structure can be complementary to the interface of 
PD-L1/PD-L1 thereby facilitating their binding capacity 
[112]. An in vitro binding assay (HTRF) was determined 
to evaluate the blockage efficacy of cyclopeptides towards 
PD-L/PD-L1 binding and gramicidin S exhibited a weak 
blockage efficacy of 6.86%. They further chemically syn-
thesized a series of cyclopeptides using the skeleton of 
gramicidin S [112]. Among the synthesized gramici-
din S derivatives, Cyclo(-Leu-DTrp-Pro-Thr-Asp-Leu-
DPheLys(Dde)-Val-Arg (Fig. 4) exhibits the most potent 
blockage efficacy of 95.8% at 20 µM against PD-1/PD-L1 
interactions. It had the lowest IC50 value of 1.42  µM 
against PD-1/PD-L1 interactions based on the co-immu-
noprecipitation assay. Co-administration of Cyclo(-Leu-
DTrp-Pro-Thr-Asp-Leu-DPheLys(Dde)-Val-Arg (40  mg/
kg) by intraperitoneally injection (ip) with anti-CD8 anti-
body suppressed the tumor volume (54.8%) and tumor 

Fig. 4  Chemical structures of natural products based PD-1/PD-L1 inhibitors including cyclo(-Leu-DTrp-Pro-Thr-Asp-Leu-DPhe-Lys(Dde)-Val-Arg-), 
rifabutin, kaempferol, kaempferol-7-O-rhamnoside, eriodictyol, fisetin, glyasperin C, cosmosiin, ellagic acid, and caffeoylquinic acids
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weight (64.9%) in a B16F10 tumor bearing animal model. 
Immunohistochemistry staining showed that treatment 
with Cyclo(-Leu-DTrp-Pro-Thr-Asp-Leu-DPheLys(Dde)-
Val-Arg enhanced the percentage of CD3+ T cells and 
CD8+ T cells in the tumor tissues. In addition, the bind-
ing properties of the most promising cyclopeptide were 
well characterized using a panel of biochemical, bio-
physical, and cell-based assays including SPR, Western 
blotting (WB), NMR, circular dichroism (CD), co-immu-
noprecipitation, and molecular docking. The key findings 
in this study are summarized in Table 1.

Ansamycin antibiotic
Patil et  al. used an AlphaLISA assay to screen the 
inhibitory effects of FDA-approved macrocyclic drugs 
against PD-1/PD-L1 interactions [113]. A collection 
of 20 macrocyclic compounds including actinomycin 
D, amphotericin B, bacitracin, bryostatin, candicidin, 
clarithromycin, cyclosporin A, cyanocobalamin, eryth-
romycin, everolimus, geldanamycin, ivermectin B1a, 
macbecin, metocurine, monocrotaline, nystatin, plerix-
afor, rifampin, sirolimus, and troleandomycin was 
screened at a concentration of 50 µM using the AlphaL-
ISA assay. Among these macrocyclics, only rifampin 
(Fig.  4), an ansamycin type of antibiotic, effectively 
blocked the interactions between PD-1 and PD-L1 
(blockage efficacy = 47.9%) whereas the other com-
pounds were less effective (blockage efficacy < 20%). Four 
additional rifampin analogs including rifabutin, rifapen-
tine, rifamycin SV, and 3-formyl rifamycin were selected 
for further evaluation. Rifampin analogs (50 µM) showed 
promising blockage efficacy ranging from 24 to 66.7%, in 
which rifabutin was the most active macrocyclic antibi-
otic with an IC50 value of 25  µM (Table  1). In addition, 
molecular docking demonstrated that rifabutin is able 
to form a stable ligand–protein complex facilitated by 
several molecular forces including π–π stacking interac-
tion and hydrogen bonding. However, binding affinities 
between these ansamycin antibiotics and PD-1/PD-L1 
proteins are not reported.

Phenolic compounds
Kaempferol and kaempferol‑7‑O‑rhamnoside
Kaempferol and its glycosides including kaempferol-
3,7-dirhamnoside and kaempferol-7-O-rhamnoside, are 
flavonoids from Geranium thunbergia (Geranii Herba 
extract) with reported antitumor activities [114]. In vitro 
assays were used to demonstrate that kaempferol and 
kaempferol-7-O-rhamnoside are able to block PD-1/
PD-L1 interactions. Competitive ELISA assays were 
used to measure the inhibitory effects of kaempferol and 
kaempferol-7-O-rhamnoside (Fig. 4) on the PD-1/PD-L1 
interactions, which were supported by cell co-culture 

(Jurkat T/CHO-K1 cells) assay. The EC50 values of 
kaempferol and kaempferol-7-O-rhamnoside were 16.46 
and 15.37  μM, respectively, against PD-1/PD-L1 inter-
actions in a dose-dependent manner. The direct binding 
between kaempferol and PD-1 or PD-L1 were meas-
ured by obtaining the binding kinetics including the KD, 
ka, and kd using BLI and SPR technologies. In addition, 
a computational-based approach was used to map the 
binding site of kaempferol and kaempferol-7-O-rhamno-
side on PD-1 or PD-L1 and calculate the binding energy 
between the ligands and proteins.

Apigenin and cosmosiin from Salvia plebeia
Choi et  al. reported that Salvia plebeia R. Br. extract 
(SPE) blocked the interactions between PD-1 and PD-L1 
[115]. Two flavonoids including apigenin and cosmosiin 
(Fig.  4) from SPE showed blockage effects against the 
interactions between PD-1 and PD-L1 in a cell-based 
assay (aAPC/CHO-K1 cells) and a competitive ELISA 
assay. PD-L1 aAPC/CHO-K1 cell co-culture based assay 
demonstrated that EC50 values of SPE and SPE-ethyl 
acetate fraction were 27.2  mg/mL and 1.08  mg/mL, 
respectively, against PD-1/PD-L1 interactions. In addi-
tion, cosmosiin, identified as the strongest PD-1/PD-L1 
inhibitor among 7 SPE fractions, was able to directly bind 
to PD-1 and PD-L1 with a KD value of 386 and 85  µM, 
respectively, in the BLI assay. Computational docking was 
then determined to predict cosmosiin’s binding capac-
ity to PD-1 and PD-L1, showing a binding energy of -6.2 
and -5.8  kcal/mol, respectively (Table  1). Moreover, the 
inhibitory effect of SPE on PD-1 and PD-L1 was further 
supported by in  vivo assays using a humanized PD-L1 
knock-in MC38 tumor-bearing animal model. Treatment 
of SPE at doses of 100 and 300  mg/kg exhibited tumor 
inhibition rates of 44.9 and 77.8%, respectively, in a dose-
dependent manner on day 16. In addition, treatment of 
SPE (300  mg/kg) enhanced the infiltration of CD8+ T 
cells in the tumor tissues.

Eriodictyol and fisetin from Rhus verniciflua Stokes extract
Li and colleagues screened 800 herbal extracts for the 
PD-1/PD-L1 inhibition capacity, which led to the iden-
tification of Rhus verniciflua Stokes extract as an active 
inhibitor using competitive ELISA [116]. Four phenolic 
compounds including eriodictyol, fisetin, quercetin, and 
liquiritigenin were isolated from the Rhus verniciflua 
Stokes extract with PD-1/PD-L1 blocking effect. Erio-
dictyol and fisetin showed the most potent inhibitory 
effect in the competitive ELISA with an IC50 value of 0.04 
and 0.4  µM, respectively. However, the binding affinity 
between eriodictyol or fisetin and PD-1/PD-L1 was not 
reported.
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Table 1  A summarize of natural product-derived PD-1/PD-L1 inhibitors

Natural products Methodology Key finding(s)

Name Type Sub-type

Amphotericin B Macrocyclic Macrolide AlphaLISA; MD Not active

Bacitracin Cyclic peptide

Everolimus Macrolide

Clarithromycin Macrolide

Cyclosporin A Cyclic peptide

Actinomycin D Cyclic peptide Weak PD1/PD-L1 inhibitor (less than 20% inhibition at 
50 µM)Cynocobalamin Porphyrin

Bryostatin Macrolide

Candicidin Macrolide

Geldanamycin Polyketide

Ivermectin B1a Macrolide

Macbecin Ansamycin

Metocurine Alkaloid

Monocrotaline Alkaloid

Nystatin Macrolide

Plerixafor Bicyclam

Sirolimus Macrolide

Troleandomycin Macrolide

Rifampin Ansamycin PD1/PD-L1 inhibition was 47.9% at 50 µM

Rifabutin PD1/PD-L1 inhibition was 66.7% at 50 µM
IC50 was 25 µM

Rifapentine PD1/PD-L1 inhibition was 52.1% at 50 µM

Rifamycin SV PD1/PD-L1 inhibition was 34.5% at 50 µM

Formyl rifamycin PD1/PD-L1 inhibition was 40.2% at 50 µM

Rifaximin PD1/PD-L1 inhibition was 24.0% at 50 µM

Gramicidin S Macrocyclic Cyclic peptide HTRF; NMR; SPR; CD; MD PD1/PD-L1 inhibition was 6.86% at 20 µM

Gramicidin S derivative PD1/PD-L1 inhibition was 95.8% at 20 µM; IC50 was 
1.42 µM

Conserved the β-sheet conformation of the gramicidin 
S skeleton

KD was 1.66 mM and 5.67 µM for PD-1 and PD-L1, 
respectively

Kaempferol Phenolic Flavonoid ELISA; BLI; SPR
Cell based assay
MD

IC50 for blocking PD-1/PD-L1 was 7.797 µM
Cellular PD-1/PD-L1inhibition IC50 was 14.46 µM
Calculated binding energy was -5.4 and -5.0 kcal/mol 

for PD-1 and PD-L1, respectively

Kaempferol-7-O-rhamnoside Flavonoid Cellular PD-1/PD-L1inhibition IC50 was 14.46 µM
KD was 31.1 and 19.7 µM for PD-1 and PD-L1, respec-

tively
Calculated binding energy was -5.6 and -5.3 kcal/mol 

for PD-1 and PD-L1, respectively

Cosmosiin Phenolic Flavonoid ELISA; BLI
Cell based assay
MD

Increased T-cell functional activity by 1.91-fold; Had 
KD value of 386 and 85 µM for PD-1 and PD-L1, 
respectively

Fit to a 1:1 binding model to PD-1 and PD-L1; Had a 
predicted binding affinity of − 6.2 and − 5.8 kcal/mol 
for PD-1 and PD-L1, respectively

Apigenin Flavonoid Increased T-cell functional activity by 2.03-fold

Eriodictyol Phenolic Flavanone ELISA Had an IC50 of 0.04 µM for PD-1/PD-L1

Fisetin Flavonol Had an IC50 of 0.04 µM for PD-1/PD-L1

Glyasperin C Phenolic Isoflavan HTRF Had an PD-1/PD-L1 inhibition rate of 64.3% at 100 µM
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Glyasperin C from Glycyrrhiza uralensis
Bao et  al. reported the isolation of a flavonoid, glyas-
perin C (Fig.  4), from Glycyrrhiza uralensis and its 
PD-1/PD-L1 inhibitory effect using a commercially 
available homogeneous time resolved fluorescence 
(HTRF) assay [117]. The isolated compounds showed 
PD-1/PD-L1 inhibition ratios ranging from 30 to 65% 
at 100 µM.

Ellagic acid from black raspberry (Rubus coreanus Miquel) 
extract
Kim et  al. reported that a black raspberry (Rubus core-
anus Miquel) extract (RCE) interrupted the binding 
of PD-1 and PD-L1 with an IC50 value of 83.8 ± 4.7  μg/
mL in the competitive ELISA assay [118]. PD-L1 aAPC/
CHO-K1 cell co-culture based assay revealed that RCE 
increased the production of IL-2 by 1.8-fold with an EC50 
value of 56.15 ± 14.35  μg/mL, as compared to the con-
trol group. The inhibitory effect of RCE on PD-1/PD-L1 
interaction was further supported by in  vivo data using 
a humanized PD-L1 knock-in MC38 tumor-bearing 
animal model, in which oral administration of RCE (50 
and 100  mg/kg/day) exhibited tumor inhibition rates of 
66.94% and 73.81%, respectively, on day 21. In addition, 
the major phytochemical in RCE was identified as ellagic 
acid (Fig. 4) and its effects on PD-1 and PD-L2 interac-
tion were evaluated using in vitro assays including com-
petitive ELISA, WB pull-down, and cell-based assays 
(PD-1 Jurkat effector cell/ PD-L1 CHO-K1 cell). Ellagic 
acid was shown to block PD-1/PD-L1 interaction in a 
concentration-dependent manner with an IC50 value of 
22.92  μg/mL (Table  1). In addition, ellagic acid-conju-
gated sepharose 4B beads pull-down assay showed that 
ellagic acid was able to directly bind PD-1 and PD-L1 and 
interrupt their binding capacity [118].

Caffeoylquinic acid derivatives
Caffeoylquinic acid and its derivatives (Fig.  4) with a 
caffeoyl group attached to the −  3, −  4, and −  5 posi-
tion of quinic acid, respectively, were identified as PD-1/
PD-L1 inhibitors using SPR spectroscopic method [65]. 
The KD values of caffeoylquinic acid and its deriva-
tives on PD-1 and PD-L1, ranged from 0.507 × 10–5 to 
1.68 × 10–5  M and from 1.71 × 10–5 to 8.13 × 10–5  M, 
respectively, as determined by SPR (Table 1). In addition, 
a competitive SPR assay was used to compare the bind-
ing capacity between quinic acid derivatives with one or 
two caffeoyl group(s) and PD-1. It was concluded that, as 
compared to dicaffeoylquinic acids, mono-caffeoylquinic 
acid derivatives had a stronger binding affinity with PD-1 
and PD-L1.

Heterocyclic compounds
Several heterocyclic compounds containing nitro-
gen atoms have been reported to show blockage 
effects against PD-1/PD-L1 interactions. Using in sil-
ico virtual screening methods, Lung et  al. reported 
that two pyrrolidine-oxadiazole derivatives including 
(3S,3aR,6S,6aR)-N6-[4-(3-fluorophenyl)-pyrimidin-2-yl]-
N3-(2-pyridylmethyl)-2,3,3a,5,6,6a-hexahydrofu (ZINC 
ID#67902090) and 1-isopropyl-3-[(3S,5S)-1-methyl-5-[3-
(2-naphthyl)-1,2,4-oxadiazol-5-yl]pyrrolidin-3-yl]urea 
(ZINC ID#12529904) were identified as PD-1/PD-L1 
inhibitors among 180,000 natural compounds from the 
ZINC12 database [119]. The inhibitory effects of ZINC 
67,902,090 and 12,529,904 were evaluated by the AlphaL-
ISA binding and PD-L1 dimer formation assays. AlphaL-
ISA binding assays demonstrated that ZINC 67,902,090 
and 12,529,904 have the potencies of 30 to 40% for 
inhibiting the PD-1/PD-L1 interaction, as compared to 
BMS-202 (100%). PD-L1 dimer formation assay showed 
that ZINC12529904 significantly promoted the amount 

Table 1  (continued)

Natural products Methodology Key finding(s)

Name Type Sub-type

Caffeoylquinic acid Phenolic – SPR KD = 1.24 × 10−5 M for PD-1; not detected for PD-L1

3-O-caffeoylquinic acid Caffeoylquinic acid KD = 1.95 × 10−6 M for PD-1; 1.71 × 10−5 M for PD-L1

4-O-caffeoylquinic acid Caffeoylquinic acid KD = 5.07 × 10−6 M for PD-1; not detected for PD-L1

5-O-caffeoylquinic acid Caffeoylquinic acid KD = 1.68 × 10−5 M for PD-1; 8.13 × 10−5 M for PD-L1

Ellagic acid Phenolic – ELISA
WB
Cell based assay

Blocked PD-1/PD-L1 binding with an IC50 value of 
22.92 μg/mL

Bound to PD-1 and PD-L1 in WB;

ZINC 67,902,090 Heterocyclic Pyrrolidine-oxadiazole AlphaLISA
WB
MD

PD-1/PD-L1 inhibition potency was 30% as compared 
to BMS-202

ZINC 12,529,904 PD-1/PD-L1 inhibition potency was 40% as compared 
to BMS-202
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of PD-L1 dimer, whilst ZINC 67,902,090 only slightly 
increased the amount of PD-L1 dimer. The binding mode 
of these two compounds was supported by the molecular 
docking study but their direct binding affinities were not 
investigated.

Perspective
In 2018, the Nobel Prize in Physiology or Medicine was 
awarded to James Allison and Tasuku Honjo for their dis-
covery of immune checkpoint therapy [120, 121]. PD-1 
functions as a T-cell brake and the activation of PD-1/
PD-L1 suppresses T cell’s proliferation, survival, and 
activity in the tumor microenvironment [31]. Clinical 
studies supported that PD-1/PD-L1 blockage can effec-
tively introduce durable antitumor immune responses 
with less toxicity in many types of cancers [16]. Cur-
rently, the majority of approved PD-1/PD-L1 inhibitors 
are mAbs [16, 109] while the development of small mol-
ecule inhibitors directly blocking PD-1/PD-L1 interac-
tions is still in the stage of infancy.

Over the past decade, with a more advanced under-
standing of PD-1/PD-L1 interactions and the underly-
ing mechanisms, there has been an explosion of interest 
in the development of bioassays that can be applied for 
screening small molecule inhibitors against PD-1/PD-L1 
[64, 88, 101, 102, 104]. Biophysical and biochemical 

assays are powerful for screening the promising "hits" and 
for characterizing the binding parameters between iden-
tified "hits" and PD-1/PD-L1. Assays including ELISA, 
alphaLISA, bioluminescent reporter cell-based assays, 
and T-cell based assays are crucial to eliminate false posi-
tive “hits” as well as evaluate their biological functions. 
A rational workflow was established for screening PD-1/
PD-L1 inhibitors (Fig.  5a). SPR technology was per-
formed to evaluate binding affinities between small mol-
ecule and PD-L1. The identified PD-L1 inhibitors were 
selected for PD-1/PD-L1 pair ELISA assay. Once the 
inhibitors exert blockage effects on PD-1/PD-L1 inter-
actions, bioluminescence reporter cell-based assay can 
be applied for determining their biological functions. 
The identified PD-L1 inhibitor without blockage effects 
on PD-1/PD-L1 interactions is a "false" positive hit. For 
instance, punicalagin (PA) is an ellagitannin found in 
pomegranate (Punica granatum). Our screening data 
demonstrated that PA exhibits a stronger binding affinity 
with PD-L1 than BMS-1166, a positive PD-L1 inhibitor 
(Fig. 4b). The KD value of 5.5 × 10–10 M is determined by 
SPR. Notably, the PD-1/PD-L1 pair ELISA demonstrated 
that PA only showed minor blockage effects against 
PD-1/PD-L1 interactions (Fig.  5b). As discussed, bio-
physical methods, such as SPR, provides binding param-
eters of identified inhibitor with PD-1 and/or PD-L1. 

Conclusion: PA is a false positive hit.
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Fig. 5  A workflow was established for screening PD-1/PD-L1 inhibitors. a SPR technology was performed to evaluate binding affinities followed by 
PD-1/PD-L1 pair ELISA assay. Once the inhibitors exert blockage effects on PD-1/PD-L1 interactions, bioluminescence reporter cell-based assay will 
be applied for determining their biological functions. b The binding and inhibitory effects of Punicalagin (PA) and BMS1166 against human PD-L1 
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However, PA might not exert blockage effects towards 
PD-1/PD-L1 even if it has strong binding affinities with 
PD-L1. Future studies with in vivo models are warranted 
to confirm this.

As summarized, the PD-1/PD-L1 interface is chal-
lenging to target because of its large and flat hydropho-
bic interface. Binding parameters need to be measured 
for the small molecules and PD-1/PD-L1 interactions 
including the ones at their interactive interface and other 
non-interactive sites. Therefore, it is important to prop-
erly apply complementary approaches including bio-
physical, biochemical, and cell-based assays to achieve 
robust measurements. These combination strategies are 
critical to eliminate false positive “hits” (such as PA as 
demonstrated in this review), which may only have bind-
ing capacity without blockage effects on PD-1/PD-L1 
interaction. Nevertheless, we believe that more versatile 
and advanced bioassays can be developed in the future 
to shed more light on the discovery of PD-1/PD-L1 
inhibitors.
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