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Abstract

This study used electrophysiological recordings to a large sample of spoken words to track the 

time-course of word frequency, phonological neighbourhood density, concreteness and stimulus 

duration effects in two experiments. Fifty subjects were presented more than a thousand spoken 

words during either a go/no go lexical decision task (Experiment 1) or a go/no go semantic 

categorisation task (Experiment 2) while EEG was collected. Linear mixed effects modelling was 

used to analyze the data. Effects of word frequency were found on the N400 and also as early as 

100 ms in Experiment 1 but not Experiment 2. Phonological neighbourhood density produced an 

early effect around 250 ms and the typical N400 effect. Concreteness elicited effects in later 

epochs on the N400. Stimulus duration affected all epochs and its influence reflected changes in 

the timing of the ERP components. Overall the results support cascaded interactive models of 

spoken word recognition.
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Introduction

Our ability to recognise spoken words is one of the most frequently used and important of 

our cognitive skills. So, it is perhaps somewhat surprising that there is much we still do not 

know about the underlying neuro-cognitive processes that are involved in mapping sound 

onto meaning. Though perceived as effortless, the ability to decode continuous, transient 

auditory information into a single word from tens of thousands of candidates within a 

fraction of a second involves a highly complex set of neuro-cognitive process. This task is 

further complicated by the fact that many words are acoustically quite similar to each other 

and that human speech is extremely variable due to both idiosyncratic speaker characteristics 

and phonological context which influences the acoustic properties of phonemes depending 

on neighbouring phonemes. Clearly, semantic and syntactic context have important roles in 

spoken language comprehension in real world contexts, but there is a general consensus that 

such higher-level processing is driven primarily by mechanisms operating at the level of 
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individual words. Models of spoken word recognition generally agree that this involves 

multiple hierarchical levels, which begin operating on partial information that activates 

representations of multiple word candidates in parallel which then compete for recognition.

One approach to untangling the array of underlying mechanisms involved in word 

recognition is to examine the impact of various linguistic factors on this process. The bulk of 

the work using this approach has employed behavioural dependent variables such as reaction 

time, although these measures largely occur after the processes of interest and therefore do 

not directly reflect the brain activity of the underlying neuro-cognitive processes. Moreover, 

such behavioural measures are generally unitary, offering a limited perspective on the 

dynamic nature of word processing. This latter issue might be particularly important in the 

case of spoken language where words unfold over time. Because they continuously reflect 

information processing in real time, event-related brain potentials (ERPs) have proven to be 

an excellent choice for studying the temporal dynamics of spoken word processing. 

However, while many studies have used ERPs to track the time course of visual word 

recognition (e.g. Grainger & Holcomb, 2009; Hauk, Davis, Ford, Pulvermüller, & Marslen-

Wilson, 2006), there are comparatively fewer studies of spoken word recognition (see 

Hagoort & Brown, 2000, for one example) and there are none that have looked at the 

influence of a wide array of linguistic variables. Here we report on a study in which fifty 

participants listened to over a thousand single spoken words while EEG was recorded.

Perhaps the most studied lexical variable in studies of word recognition is word frequency, 

which is typically measured as the number of occurrences of a word in a given corpus of 

written or spoken language. The basic finding, which has been widely replicated, is that 

listeners are more accurate and have faster reaction times to high frequency compared to low 

frequency words in a variety of tasks (see Rubenstein, Garfield, & Millikan, 1970, for an 

early demonstration, and Ferrand et al., 2017, for a recent megastudy). In spoken word 

recognition models, such word frequency effects can be accounted for in a number of ways. 

In activation models, higher frequency lexical units can have lower activation thresholds 

(Marslen-Wilson, 1990), higher resting states of activation (McClelland & Elman, 1986), 

stronger connections between units (Dahan, Magnuson, & Tanenhaus, 2001) or in a 

Bayesian modelling framework by assuming frequency effects reflect the higher prior 

probability for high frequency words (Norris & McQueen, 2008). Alternatively, models such 

as the Neighbourhood Activation Model (NAM) suggest that word frequency does not affect 

processing at a lexical level, but rather acts as a post-lexical decision bias (Luce & Pisoni, 

1998). Of course, it is entirely possible that a complex variable such as word frequency 

exerts an influence on spoken word comprehension across multiple processing levels and 

that the pattern of its influence may be sensitive to the task demands placed on the listener.

In ERP research on visual word recognition, word frequency manipulations have been 

shown to modulate the amplitude of the N400 (e.g. Smith & Halgren, 1987) a component 

usually associated with lexico-semantic processing. Thus, larger N400s for lower frequency 

words may reflect the increased processing necessary to map lexical representations of lower 

frequency words onto their meanings (Kutas & Federmeier, 2011). Consistent with this view 

is the finding that word frequency effects on the N400 decline as other factors that facilitate 

word processing (e.g. context) increase (Van Petten & Kutas, 1990). In addition to the N400 
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there has been conflicting evidence that earlier ERP components (as early as the N1) also are 

sensitive to manipulations of word frequency, at least in the visual modality (e.g. Chen, 

Davis, Pulvermüller, & Hauk, 2015; Hauk et al., 2006; Sereno, Rayner, & Posner, 1998). In 

their ERP megastudy using the same stimuli and a similar experimental design to the current 

study (see below), Dufau, Grainger, Midgley, and Holcomb (2015) found a very small effect 

of word frequency emerging at posterior (occipital) sites between 200 and 300 ms, with the 

largest effects of frequency occurring on the N400.

Effects of word frequency on spoken word ERPs have also been reported. In one study 

Dufour, Brunelliere, and Frauenfelder (2013) found that low frequency spoken words 

produced a larger anterior positivity and posterior negativity at 350 ms compared to high 

frequency words. Similar to written words, they also found larger late N400 activity (550 to 

650 ms) for low compared to high frequency spoken words. The lateness of the second effect 

(550 to 650 ms) could be consistent with a post-lexical locus of word frequency for spoken 

words, while the bipolar effect across the scalp at 350 ms might reflect a pre-recognition 

influence of word frequency.

Another variable that has been shown to influence spoken word processing is phonological 

neighbourhood density (PND). PND is a measure of the number of other words that are 

phonologically similar to a given word. Behaviourally, spoken words with dense 

neighbourhoods (i.e. words that share phonological characteristics with many other words) 

tend to be recognised more slowly and with less accuracy than words with fewer neighbours 

(Goldinger, Luce, & Pisoni, 1989). This pattern has been suggested to indicate the influence 

of interference or competition from the other similar words in a target word’s phonological 

neighbourhood (e.g. Vitevitch & Luce, 1999). This competition between similar sounding 

words is assumed by many models of spoken word recognition, however it is incorporated in 

different ways. In the Cohort model (Marslen-Wilson, 1987), words which share initial 

phonemes are co-activated and compete for recognition as more information becomes 

available. This predicts neighbourhood effects, but only among words which initially 

resemble each other (cohorts) and not with other sorts of phonological neighbours such as 

rhymes, which nevertheless have also been found to produce neighbourhood effects (e.g. 

Connine, Blasko, & Titone, 1993). The Neighbourhood Activation Model (NAM: Luce & 

Pisoni, 1998) provides a relatively simple and effective mathematical account of PND 

effects, although it does not incorporate the dynamic nature of speech (input that unfolds 

over time), and thus has difficulty explaining why cohorts produce more competition than 

rhymes (Allopenna, Magnuson, & Tanenhaus, 1998). Other models such as TRACE 

(McClelland & Elman, 1986) and Shortlist (Norris, 1994) better account for dynamic 

neighbourhood effects, though TRACE includes feed-back connections while Shortlist is 

only feed-forward. It should also be noted that facilitatory effects of PND have been found 

with the auditory lexical decision task (Ernestus & Cutler, 2015; Ferrand et al., 2017; Goh, 

Yap, Lau, Ng, & Tan, 2016), again suggesting that task demands might differentially alter 

the influence PND has on underlying mechanisms.

Effects of neighbourhood density have also been reported in ERP research. Most of this 

work has involved visual word recognition where words from large orthographic 

neighbourhoods (the visual equivalent of phonological neighbourhoods) have been shown to 
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generate larger N400s than words from small orthographic neighbourhoods (e.g. Holcomb, 

Grainger, & O’rourke, 2002; Laszlo & Federmeier, 2011). This greater N400 to high density 

words is thought to reflect the additional activation of a target word’s neighbours (Holcomb 

et al., 2002). In their megastudy Dufau et al. (2015) found that orthographic neighbourhood 

effects were largely restricted to the early phase of the N400 window (300 to 400 ms). Two 

studies have used ERPs to examine PND effects in spoken word recognition. Dufour et al. 

(2013) found smaller early positivities (250–330 ms) and larger N400s to French words with 

more phonological neighbours. A second study in English (Hunter, 2013) found larger P2 

amplitudes to words with more neighbours but did not report any effects on the N400.

Relative concreteness is another variable that has been shown to affect word recognition. 

Concrete words are responded to faster than abstract words in a variety of tasks (e.g. lexical 

decision; Goh et al., 2016; Whaley, 1978). This effect is usually explained by concrete words 

having greater semantic richness (Kieras, 1978), greater tendency to induce the use of 

mental imagery (Paivio, 1986), or some combination of both (Holcomb et at., 1999). In the 

visual domain, research with ERPs has identified two components which are both more 

negative to more concrete than abstract words; the N400 (Kounios & Holcomb, 1994) and a 

later component around 700 ms (West & Holcomb, 2000). While the effect of concreteness 

on the N400 is thought to reflect greater activation of lexical-semantic networks as 

mentioned above, the later effect at 700 ms is thought to represent a process related to 

mental imagery (West & Holcomb, 2000). In the visual megastudy by Dufau et al. (2015), 

concreteness effects paralleled those from previous ERP studies with larger late negativities 

for more concrete words starting around 300 ms and continuing on through the N400 epoch 

(Dufau et al., did not report effects beyond 500 ms). It is worth noting that in the case of 

concreteness, N400 amplitude seems to be negatively correlated with reaction time thus 

indicating a facilitative role, yet in the case of word frequency (and some, but not all 

neighbourhood effects), larger N400s are usually associated with longer reaction times, 

consistent with competition or more effortful processing. To date, we are unaware of any 

ERP studies that have manipulated concreteness with auditory words.

Another variable relevant to lexical processing is the length of words being comprehended. 

In the case of visual words the number of letters determines length. In the case of spoken 

words it is the temporal duration that is associated with length. And while these two indices 

are correlated (e.g. number of letters and numbers of phonemes), there is reason to predict 

that that the influence of these two indices of length might operate differently during word 

processing. In visual word recognition there is strong evidence of parallel letter processing 

within a single fixation (e.g. Grainger, 2008). However, because length for spoken words 

translates to the temporal domain and thus necessitates some degree of serial processing, the 

duration of a spoken word is likely to play a more important role during spoken word 

recognition than number of letters does in visual word recognition. In the case of spoken 

words, measures such as word duration, number of phonemes and uniqueness point are 

temporal variables that have been shown to influence word recognition. Although not as 

frequently examined, a few behavioural studies have looked for effects of spoken word 

duration (e.g. Pitt & Samuel, 2006; Strauss & Magnuson, 2008). In these studies duration 

has been suggested to have a somewhat counter intuitive effect on the dynamics of word 

processing. Although longer spoken words take longer to recognise, they also result in 
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greater lexical activation presumably because of their having additional acoustic information 

to influence processing. In their auditory lexical decision megastudy, Ferrand et al. (2017) 

reported that stimulus duration was the variable that accounted for the most variance (46%, 

followed by word frequency at 4% of additional variance, with a strong positive correlation 

between stimulus duration and RT - see also Ernestus & Cutler, 2015; Goh et al., 2016).

In the ERP literature on word length, the number of letters in a visually presented word has 

been shown to influence ERPs both quite early as well as later during word processing. For 

example, Hauk and Pulvermüller (2004) reported that longer visual words produced 

increased activity as early as 80 ms while shorter words elicited greater negativity in epochs 

up to 400 ms. The Dufau et al. (2015) megastudy found effects of word length emerging at 

around 200 ms and continuing into later epochs. Longer words tended to produce more 

negative-going waves than shorter words at 200 ms, and during the N400 epoch shorter 

words produced greater negativities. Of course, one confound for such visual effects is that 

longer words also tend to be larger stimuli, and increases in the size of any stimulus tends to 

produce larger early ERP effects (e.g. Luck, 2005). To our knowledge no study has looked at 

ERPs to spoken words as a function of word duration. One prediction based on the results of 

Pitt and Samuel (2006) is that while the time-course of ERP effects might be delayed for 

longer words, it might also be the case that longer words generate larger N400s than shorter 

words due to their activation of additional phonemic information. Note this prediction is the 

opposite of what Dufau et al. reported for visual word length effects.

The current study

The purpose of the current study was to use ERPs to provide a better understanding of how 

the above variables (word frequency, phonological neighbourhood density, concreteness and 

duration) affect the temporal dynamics of spoken word recognition. In all previous auditory 

ERP studies, variables such as these have been factorially manipulated and measures of 

processing have been obtained. However, this approach, which is arguably arbitrary in terms 

of where boundaries are placed for categorising what is a continuous variable, may 

oversimplify, or take away from, the complexity and variability that is inherent in language. 

Recently, researchers have begun conducting “megastudies” which seek to better understand 

these complexities by gathering data with large samples of participants and items. This 

method has a number of advantages including reduced experimenter bias towards item 

selection and the ability to run more advanced types of analyses (see Balota, Yap, Hutchison, 

& Cortese, 2012 for a review of advantages). This has been fruitfully applied to study visual 

word recognition with behavioural data (e.g. Balota et al., 2007; Ferrand et al., 2017) and 

ERP data (e.g. Hauk et al., 2006; Laszlo & Federmeier, 2014).

One such ERP study conducted by Dufau et al. (2015) presented over 1000 written words to 

a large sample of participants (n = 75). Their study allowed for precise item-level partial 

regression analyses of the contributions of a number of orthographic, lexical, and semantic 

variables to the ERPs of written words. Importantly, this method controls for the effects of 

other variables so that results could be more clearly attributed to each variable of interest. 

The current study used the same stimuli and general statistical approach as Dufau et al. 

However, rather than using visually presented stimuli we instead used the equivalent spoken 
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word stimuli and we did so in two separate experiments with 50 participants. Also, instead 

of using traditional regression techniques we used a comparatively new approach to 

analyzing ERP data; linear mixed effects regression (LMER).

Experiment 1 (lexical decision)

In Experiment 1 we used the same approach as Dufau et al. (2015), employing a go/no-go 

Lexical Decision (LD) task, however using spoken versions of the same stimulus set. 

Making word/non-word decisions to each item should arguably focus participants on the 

lower level lexical properties of the stimuli and we predict should have a comparatively 

larger impact on ERP components that are sensitive to earlier pre-lexical features of the 

stimuli. As mentioned earlier, we also used the LMER approach rather than partial 

correlations to analyze the data. In applying LMER to EEG data rather than averaging across 

items or participants, raw single trial EEG from each stimulus is used as input to the 

statistical algorithm. While such ERP data sets are substantially larger than those used in 

typical LME behavioural studies, several recent reports have demonstrated that the technique 

can be successfully applied to ERP data sets (e.g. Emmorey, Midgley, Kohen, Sehyr & 

Holcomb, 2017; Laszlo & Sacchi, 2015; Payne, Lee, & Federmeier, 2015). One advantage 

of LME models is that they allow both subject and item variance to be taken into account in 

the same analysis, thus providing a solution to the problems inherent in approaches using 

separate analyses (e.g. F1 and F2; Baayen, Davidson, & Bates, 2008; Clark, 1973). An 

additional advantage for studies such as the current one where the influence of multiple 

variables is being explored, but factorial manipulation is difficult, is the possibility of 

including all of the variables in the model thus controlling for potential collinearity between 

variables (see Payne et al., 2015). And finally, as mentioned above, LME modelling can be 

readily applied to continuous independent variables eliminating the need for forming 

arbitrary boundaries with such variables.

Method

Participants—A total of 61 participants were run in this study. However, 11 were 

eliminated from the final analysis due to too many trials exceeding muscular or ocular 

artifact rejection criteria (>20% of critical trials). The 50 remaining participants ranged in 

age from 18 to 29 years (mean age = 22.54 years old [SD = 2.79]) and included 50% 

females. Most were students at San Diego State University, compensated with $15 dollars 

per hour of participation. All participants reported being right handed, native English 

speakers with normal hearing and normal or corrected to normal vision with no neurological 

impairment.

Materials—The critical stimuli consisted of the same 960 words used in the parallel visual 

word study and were originally selected to represent an assortment of word frequencies (1 to 

1094/million) and word lengths (4 to 8 letters, Dufau et al., 2015). An additional 140 probe 

stimuli were also used. In Experiment 1, probe items were pseudowords formed by changing 

one or two phonemes of real words (none of which were critical items used in the analyses 

presented below). All 1100 stimuli were digitally recorded at a sampling rate of 44 kHz by a 

female speaker with a standard American accent in a sound proofed room using a SM57 
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microphone (Shure). Audio files were processed using Cool Edit 2000 software and were 

trimmed so that the onset of each word’s initial-phoneme was at the beginning of the digital 

file for that word. This allowed for precise alignment of word onset and the time-locking of 

ERP recording. The end of the file was trimmed to a point approximately eight ms into the 

silence after the offset of each word to ensure that no critical acoustic information in the 

words was clipped. Prior to analysis four critical items were eliminated because of 

perceptual ambiguities reported by several participants, which left 956 critical items for 

analysis.

The current study focused on four word based variables: Word Frequency, Phonological 

Neighbourhood Density, Concreteness, and Duration. For Frequency we used “Zipf” 

frequency (see Van Heuven, Mandera, Keuleers, & Brysbaert, 2014) which is a 

logarithmically normed frequency measure ranging between 1 and 7 based on American 

English subtitle frequencies (i.e. SUBTLEX-US frequency; Brysbaert & New, 2009). In our 

sample of words, this measure ranged between 1.59 and 6.09 with a mean of 4.03 (SD = 

0.83). Phonological neighbourhood density (PND) was quantified using phonological 

Levenshtein distance (PLD) obtained from the English Lexicon Project (Balota et al., 2007). 

Phonological Levenshtein distance is a measure of how many phoneme changes are required 

to change one word into another (see Yarkoni, Balota, & Yap, 2008 for a discussion of the 

measure). PLD represents the phonological distance between a word and every other word, 

so a high PLD means that the word does not have many neighbours, while a low PLD 

indicates it has many neighbours. The particular measure we used from the English Lexicon 

Project represents phonological neighbourhood density by taking the mean PLD between a 

word and 20 of its closest neighbours. Here, PLD ranged from 1 to 4.5 with a mean of 2.02 

(SD = 0.71). Concreteness ratings were taken from a separate group of 24 undergraduate 

students asked to rate all 960 items on a seven-point scale from very abstract (one) to very 

concrete (seven). This was the same measure used by Dufau et al. (2015) and was shown to 

correlate highly with other samples of concreteness ratings. Concreteness ratings ranged 

from 1.7 to 6.9 with a mean of 4.37 (SD=1.14). Word length was quantified by the duration 

of the audio files which ranged from 280 to 892 ms with an average duration of 611 ms (SD 

= 94 ms).

Procedure—Participants were seated in a comfortable chair, 150 cm from a stimulus 

monitor in a soundproofed, darkened room. The testing session began with a short practice 

block, followed by four experimental blocks. Auditory stimuli were presented via stereo 

headphones (Sennheiser model PC 151) placed around the EEG cap and set to same normal 

listening level (~65 dB) for each participant. Each experimental block contained 240 critical 

target words and 35 randomly intermixed probe items presented one at a time with an SOA 

of 1100 ms between word onsets (see Figure 1). Concurrent with the onset of each word a 

visual fixation stimulus was presented in order to keep the participant’s eyes fixed in one 

location. On average every 10 trials a visual “blink” stimulus replaced the fixation stimulus 

for four seconds. This indicated that the participant could blink/rest their eyes thus reducing 

the tendency for participants to blink during the critical word ERP epochs.

For this experiment, each participant completed two blocks of a go/no-go lexical decision 

task that alternated with two blocks of a go/no-go semantic categorisation task (see 
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Experiment 2 - note the probe items were changed for Experiment 2). The order of blocks 

was counterbalanced across participants and every critical word was presented in each task 

across participants. In the current experiment, participants were instructed to press a button 

on a game controller as soon as they heard a stimulus that was not a legal English word 

(pseudoword probes). The non-words probes made up approximately 13% of trials. The 

critical words made up the other 87% of trials and did not require a behavioural response.

EEG recording—The electroencephalogram (EEG) was collected using a 29-channel 

electrode cap containing tin electrodes (Electro-Cap International, Inc., Eaton, OH), 

arranged in the International 10–20 system (see Figure 2). Electrodes were also placed next 

to the right eye to monitor horizontal eye movements and below the left eye to monitor 

vertical eye movements and blinks. And finally, two electrodes were placed behind the ears 

over the mastoid bones. The left mastoid site was used as an online reference for the other 

electrodes and the right mastoid site was used to evaluate differential mastoid activity. 

Impedance was kept below 2.5 kΩ for all scalp and mastoid electrode sites and below 5 kΩ 
for the two eye channels. The EEG signal was amplified by SynAmpsRT amplifier 

(Neuroscan-Compumedics, Charlotte, NC) with a bandpass of DC to 200 Hz and was 

continuously sampled at 500 Hz.

Data analysis—While a traditional factorial approach to analyzing these data would have 

substantial power due to the high number of subjects and items, as mentioned previously this 

approach is highly susceptible to confounds due to uneven distribution of values between 

variables. The typical approach to dealing with such confounds is to arrange the stimuli in a 

factorial design such that the effects of each variable are controlled across the levels of the 

other variables. The problem here is that with four factors each with several levels, even with 

almost a thousand items there would be comparatively few items per cell in the design and 

this still assumes that enough items can be found to meet the rigid criteria of each such cell. 

To help overcome this problem the data were analyzed by constructing linear mixed effects 

regression models using the Ime4 package (Bates, Maechler, Bolker, & Walker, 2015) 

written in the statistical computing language R (R core team, 2014). Rather than averaged 

ERP data, for these analyses we used the single trial EEG data (after artifact rejection) from 

50 participants, 956 items, and 29 electrode sites as input to the analyses. The structure of 

the models used was based on the approach recommended by Payne et al. (2015).

A set of eight identical LME models were fit for eight consecutive 100 ms time windows 

starting at 100 through to 900 ms post word onset. The main effects included in the models 

were the word variables; Lexical Frequency, PLD, Concreteness and Duration. The word 

variable measures were normalised (z-scores) prior to fitting the LME models (Payne et al., 

2015). Distributional effects were modelled using the relative position of each electrode in 

three dimensional space using three continuous variables, corresponding to the X, Y, and Z 

coordinate position of each of the 29 scalp sites. For the X-position variable, the left and 

rightmost electrode sites (T3 and T4) had the most extreme values and interactions with this 

variable would indicate differences in the laterality of an effect. Conversely for the Y-

position variable, the most anterior and posterior electrodes (FPz and Oz) represent the most 

extreme values and interactions here indicate a difference in how anterior/posterior an effect 
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is distributed. The-Z position variable varies from a maximum at the central electrode Cz at 

the top of the head and descends to the outer ring of peripheral sites (from FPz to T3 to Oz 

to T4 and back to FPz), marking the two extremes. Interactions involving the Z-position 

factor indicate differences in the elevation of an effect. The two-way interactions were 

structured so each word variable had three possible two-way interactions, one with each of 

the three distributional variables (X, Y, and Z position). The overall effects of these 

distributional variables were also added into the models as covariates.

It should be noted that distributions of actual ERP effects are non-linear, and this limits the 

ability of linear models to appropriately analyze scalp distribution. ANOVA approaches 

generally model distribution by assigning electrode sites to separate levels of discrete 

distributional variables (e.g “laterality”). This allows for non-linearity, but introduces a 

number of issues that come with discretizing a continuous variable and using ANOVAs to 

analyze effect distributions (e.g. MacCallum, Zhang, Preacher, & Rucker, 2002; McCarthy 

& Wood, 1985). The current approach allows us to approximate the distribution of an effect 

as the extent to which it fits one of the 3 spatial dimensions. This encompasses some general 

ERP distributions (e.g. the typically centralised N400 distributions) but results in a greater 

degree of model misfit (and thus inflated type-2 error rate) for effects which have smaller or 

more complex distributions (see Tremblay & Newman, 2015). Nonetheless, any further 

specification of distributional factors would not be justifiable without stronger predictions.

Because of the complexity of the design, a maximal random effect structure was not possible 

due to convergence failures (Barr, Levy, Scheepers, & Tily, 2013). Instead, based on a model 

selection approach recommended by Matuschek, Kliegl, Vasishth, Baayen, and Bates 

(2017), random effects were structured to be conservative, yet still allow every model to 

converge. The resulting random effect structure for each model included random intercepts 

for participants, items, and electrode channel as well as by-subject random slopes for the 

effect of each of the four experimental variables (see appendix for model code).

The 95% profile likelihood confidence intervals and t-values were calculated for each 

comparison (Cumming, 2014). Because of the large number of comparisons, p-values from 

each model were also obtained using the “Anova” function in the CAR package (CRAN) 

which were then false-detection-rate (FDR) corrected using the MATLAB “Mass Univariate 

ERP Toolbox” (Groppe, Urbach, & Kutas, 2011). To add another level of conservation, 

effects were only interpreted as significant if the comparison was significant for both the 

confidence intervals and the FDR-corrected ANOVA p-values.

Data visualization—We also used LME models to compute the equivalent of scalp 

voltage maps to help in visualising the various effects in each model. For these analyses we 

used the same approach as above but instead of including distributional variables in each 

model, we computed separate LME solutions for each of the 29 scalp sites in each 100 ms 

time epoch and plotted the resulting LME t-statistics across the scalp using interpolated 

topographic maps (see appendix for individual site model code).

Additionally, ERPs were used to aid in the interpretation of results. Similar to a traditional 

factorial approach, averaged ERPs time-locked to stimulus onset were created off-line as a 
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function of each of the variables of interest (Frequency, PND, Concreteness and Duration). 

For each of these variables the data were sorted into four equally spaced levels which 

resulted in 239 trials per level. Trials with muscular or ocular artifact were rejected prior to 

averaging. The left mastoid was used as the reference electrode and averaged data were 

baselined using the mean voltage between −100 and 0 ms at each site. The averaged ERPs 

plotted in Figures 3–6 show the highest and lowest quartiles for each variable of interest per 

experiment. Note that these comparisons are only for visual reference and do not control for 

the influence of the other variables or random effects.

Results

Linear mixed effect model results—Due to the number of results, the confidence 

intervals and t statistics for each comparison are presented in a series of tables for each 

variable (Frequency, PND, Concreteness, and Duration). Effects are highlighted only if the 

comparison was significant for both the confidence intervals and the FDR-corrected 

ANOVA p-values. Included in each table are statistical topographic maps created by single-

site LME effect estimates calculated per electrode and task, using the same models as 

described above with the removal of the distributional variables. Also included for visual 

comparison are averaged ERPs comparing the highest and lowest quartile of each variable 

for a central (Cz) and a lateral (T3) electrode site.

Frequency effects—Starting in the first epoch from 100 to 200 ms there was a Frequency 

by Z-position interaction. This pattern indicates that along the continuum of word 

frequencies, items towards the lower end of the scale tended to produce greater ERP 

negativity than items towards the higher end and that this effect was larger towards the top of 

the head (see Figure 3a). In the following 200–300 ms epoch, the previous interaction 

remained and there was also a Frequency by Y-position interaction, suggesting the frequency 

effect was now more concentrated over posterior electrode sites. In 300–400 ms epoch these 

two two-way interactions remained however in the following 400–500 ms epoch there were 

no effects of Frequency. In the 500–600 ms epoch the frequency effect re-emerged and was 

significant as both a main effect as well as a Frequency by Z-position interaction. This 

indicated a strong, widespread frequency effect that was largest at central electrode sites. In 

the last three epochs (600–900 ms), these two effects remained significant, but in the 700–

800 ms and 800–900 ms epoch there were also Frequency by Y-position interactions 

indicating the distribution shifted towards the front of the head in later epochs.

Phonological neighbourhood density effects—In the initial 100–200 ms epoch there 

were no effects of PND. Starting in the 200–300 ms epoch there was a main effect of PND 

such that words with larger phonological neighbourhoods tended to produce greater 

negativity than words with smaller phonological neighbourhoods. This neighbourhood effect 

interacted with all three distributional variables and appears to reflect a wide distribution 

across the central line of electrodes which was larger on the right of the montage (see Figure 

4a). In the following 300–400 ms epoch there was a PND × Z-position interaction, reflecting 

a small reversal of the effect in central sites, with more negativity now for words from low 

density neighbourhoods (see map in Figure 4a). In the 400–500 ms epoch, there were no 

effects of PND or any interactions. Then, beginning in the 500–600 ms epoch and 
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continuing through the rest of the epochs, there were PND by Z-position interactions 

showing greater negativity to words with dense phonological neighbourhoods, especially in 

central sites. Additionally, in only the 500–600 ms time window there was a PND by Y-

position interaction, reflecting a more anterior distribution of the effect and perhaps 

indicating that this epoch is where the later PND effect is the strongest.

Concreteness effects—In the initial three epochs there were no effects of Concreteness. 

In the 400–500 ms epoch there was a Concreteness by X-position and a Concreteness by Z-

position interaction, demonstrating greater negativities to higher concreteness words with the 

effect more concentrated on the central-left side of the montage (see Figure 5a). These 

effects continue into the 500–600 ms epoch, with the addition of a main effect of 

Concreteness. In the following 600–700 ms epoch, the interaction between Concreteness and 

X-position switches to a Concreteness by Y-position indicating the effect now has a more 

posterior distribution. In the last two epochs from 700 to 900 ms, the effect remains as 

Concreteness by Z-position interactions and is still centrally distributed around the top of the 

head.

Duration effects—The effects of word duration started in the 200–300 ms epoch where 

Duration interacted with Z-position. Here the effect showed greater negativity for longer 

than shorter duration words (see Figure 6a). During the next two epochs, 300–400 ms and 

400–500 ms, there were main effects of Duration as well as distributional interactions 

showing the direction of the effect has reversed, with shorter words now producing more 

negativity. This effect was distributed perpendicular to the midline, especially in the 

rightmost sites. In the following 500–600 ms epoch, there was no main effect for Duration, 

however distributional interactions suggested that lateral right sites still showed remnants of 

the previous effect while in posterior sites the effect reversed once more, such that longer 

words elicit more negativity. In the remaining three epochs, this posterior effect grew in size 

and magnitude and became significant as a main effect in the 700–800 ms epoch with longer 

words producing greater negativities than shorter words. This pattern is especially apparent 

in the ERP plots in Figure 6a, and appears to be due to a shift in the latency of the N400 - 

shorter duration words producing a shorter N400 time-course.

Behavioural results—During Experiment 1, participants correctly detected, on average, 

77% of non-word probes with false alarms on 3% of critical trials. Reaction times for correct 

lexical decision judgments averaged 967 ms (SD = 188 ms).

Discussion

In Experiment 1, we found independent effects of four different word-based variables on the 

continuous processing of spoken words during a go/no-go lexical decision task. This 

included temporally and spatially widespread effects of word frequency, phonological 

neighbourhood density, concreteness and word duration. For word frequency, there was an 

increase in ERP negativity associated with decreases in word frequency. These effects began 

in the 100–200 ms epoch and became more exaggerated after 500 ms, near the peak of the 

auditory N400 (see Figure 3a). A somewhat different picture emerged for the phonological 

neighbourhood density (PND) variable. Here we found an early effect between 200 and 300 

Winsler et al. Page 11

Lang Cogn Neurosci. Author manuscript; available in PMC 2021 April 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



ms with greater negativity associated with increases in phonological neighbourhood density, 

and then a small reversal (dense neighbourhoods eliciting more positivity) in the 300–400 

ms epoch. However, in the timeframe of the N400 (500–900 ms), the pattern reverted to 

greater negativity for denser phonological neighbourhood words (see Figure 4a). For 

concreteness, we found a widely distributed pattern of larger negativities associated with 

words rated as more concrete, and this pattern started in the 400–500 ms epoch and persisted 

through 900 ms (see Figure 5a). Finally, there were also widespread effects of the duration 

of the spoken words. As can be seen in Figure 6a, this pattern appears to result mostly from 

a shift in the temporal distribution of the N400, with words of shorter duration resulting in 

an N400 that starts and ends earlier than the comparable effect for longer words. The one 

departure from this pattern is the centrally distributed larger negativity for long words in the 

200 to 300 ms epoch. This effect could be due to a larger P2 component for the shorter 

words.

Experiment 2 (semantic categorization)

Experiment 2 contains data from the same words and participants as Experiment 1, but 

instead of the lexical decision task, here we used a go/no-go semantic categorisation task 

(SC) which required subjects to determine if words were members of a specific semantic 

category (animals). Prior research has shown that experimental task can impact word 

processing in a variety of contexts. For instance, semantic priming has more of an effect on 

the auditory N400 during a memorisation task compared to a counting task, indicating that 

the N400 is not impervious to top-down influences (Bentin, Kutas, & Hillyard, 1993). 

Relevant to the current variables of interest, recent studies with written words have shown 

that the ERP effects of word frequency (Strijkers, Bertrand, & Grainger, 2015) and 

concreteness (Chen et al., 2015) are modulated by experimental task. Compared to lexical 

decision, a task like semantic categorisation that focuses participants’ attention to the 

semantic attributes of each word may have a larger impact on later meaning-sensitive ERP 

components such as the N400.

Method

The methods for the second experiment were identical to those of Experiment 1. The data 

were collected from the same subjects, in the same recording session as Experiment 1. The 

same set of 960 critical words and data collection procedures were also used. The only 

procedural difference was that the task during the two blocks of trials in this experiment was 

changed from lexical decision to semantic categorisation. This necessitated changing the 140 

pseudoword items from Experiment 1 to 140 animal names in Experiment 2. These items 

were digitally recorded and edited using the same parameters as the critical word stimuli. 

Participants were told to press a designated button whenever they heard an animal name and 

to withhold responding to all other (critical) words (go/no-go semantic categorisation).

The resulting data were analyzed from the same eight time windows as in Experiment 1 and 

the structures of the LME models were identical to those constructed for the lexical decision 

task, with the only difference being that they were fit using the semantic categorisation data.
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Results

As with Experiment 1, the confidence intervals and t statistics for each comparison are 

presented in a series of tables for each variable (Frequency, PLD, Concreteness, and 

Duration) below the results for Experiment 1. Effects are highlighted only if the comparison 

is significant for both the confidence intervals and the FDR-corrected ANOVA p-values. 

Included in each table are topographic statistical maps created by single-site LME model t 
statistics and averaged ERPs comparing the highest and lowest quartile of each variable for a 

central (Cz) and a lateral (T3) electrode site.

Frequency effects—In Experiment 2, there were no effects of Frequency in the first four 

epochs. Beginning in the 500–600 ms epoch, there was a main effect of Frequency as well as 

a Frequency by Z-position and a Frequency by Y-position interaction which showed that 

greater ERP negativities were associated with lower frequency words primarily in central 

and frontal electrode sites (see Figure 3b). These effects persisted through the final epoch, 

with the addition of a Frequency by X-position interaction in the 800–900 ms epoch, 

indicating an increasingly strong and widespread frequency effect.

Phonological neighborhood density effects—In the first epoch there was an 

interaction between PND and Y-position, probably due to a small negativity to low density 

words at frontal sites (see Figure 4b). Following in the 200–300 ms epoch there was a PND 

by X-position interaction and a PND by Z-position interaction, resulting from greater 

negativities associated with increases in neighbourhood density, especially over the central 

line and right hemisphere electrodes. The following epoch (300–400 ms) there were no 

significant effects of PND. In the 400–500 ms epoch there was again a PND by Z-position 

interactions in the same direction as the previous effect, though now distributed more 

centrally. This effect remained significant through the rest of the epochs, with the addition of 

a PND by Y-position interaction in the 700–800 ms and 800–900 ms epochs as the effect 

became more focused in posterior sites.

Concreteness effects—There were small Concreteness by Y-position interactions 

through the first three epochs (100–400 ms), with more concrete words producing greater 

ERP negativities in posterior sites. Starting in the 400–500 ms epoch, larger and more wide-

spread concreteness effects emerged as Concreteness by Z-position interactions. This pattern 

lasted for the rest of the measured epochs and reflected a distribution focused on the top of 

the head. From 500 to 800 ms there were also main effects of Concreteness indicating these 

were the epochs with the strongest and most widespread concreteness effects (see Figure 

5b). Additionally, in the 500–600 ms and 600–700 ms epochs there was a Concreteness by 

Y-position interaction indicating the effect was stronger in posterior sites.

Duration effects—The effects of Duration started in the 200–300 ms epoch, where there 

was a main effect and distributional interactions reflecting greater negativity to higher 

duration words in all but the most posterior sites (see Figure 6b). Between 300 and 500 ms 

there were Duration by Z-position interactions, although importantly in these epochs, the 

direction of the effect switched polarity; shorter duration words produced more negativity. In 

the following 500–600 ms epoch there was a Duration by Z-position and a Duration by Y-
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position interaction showing the pattern of Duration effects again flipped such that longer 

words produced more negative ERPs, especially in posterior-central sites. The Duration 

effect remained significant through 900 ms as distributional interactions and in the final two 

epochs, as main effects, indicating a widespread, central-posterior distribution of the later 

Duration effect.

Behavioural results—During Experiment 2, participants correctly detected, on average, 

84% of animal probes with false alarms on approximately 1% of critical trials. Reaction 

times for correct semantic categorisation judgments averaged 847 ms (SD = 186 ms).

Discussion

Experiment 2 used the same critical items, procedure, and model structure as Experiment 1 

except for the experimental task, which was semantic categorisation rather than lexical 

decision. Overall, the results were similar to Experiment 1, with frequency, PND, 

concreteness, and length all producing effects, although there were a few notable 

differences. In Experiment 2, there were no early frequency effects. Frequency only became 

significant after 500 ms, where high frequency words elicited less negativity than low 

frequency words (see Figure 3b). For PND, effects were observed early, in the first two 

epochs, and again later, after 400 ms, with words with larger neighbourhoods generating 

greater negativities than words with smaller neighbourhoods (see Figure 4b). There were 

small early effects of concreteness, but larger and more robust effects after about 400 ms, 

where concrete words elicited larger negativities than abstract words (see Figure 5b). Effects 

of duration were found across all epochs after 200 ms similar to Experiment 1. Shorter 

words produced more positivity in the 200–300 ms epoch, reflecting larger P2s. In the next 

two epochs shorter words produced more negativity than longer words, followed by the 

reversed pattern in the final four epochs, reflecting an earlier onset of the N400 for shorter 

words compared to longer words (see Figure 6b).

Task comparisons

To compare the results from each task, a set of simplified task models were constructed and 

fit using the data from both Experiment 1 and 2. These models were structured such that 

they contained the same random effects and main fixed effects as the previous individual 

task models of Experiment 1 and 2. However, we also added two-way interactions between 

task and each experimental variable. To keep the structure of the models manageable we did 

not include interactions with distributional variables (see appendix for task model code). 

Thus, these task models analyze differences in the experimental variable main effects 

between the two tasks across all electrode sites, but they do not analyze how the distributions 

of these effects might differ across tasks. The results of these models are included in the 

figure for each variable, below the two tasks (Figures 3–6).

Task interacted with Frequency in the first four epochs (100–500 ms), suggesting that there 

was a greater effect of Frequency during LD than SC. Indeed, inspection of the maps in 

Figure 3 shows a significant early effect of Frequency in Experiment 1, but no such effect in 

Experiment 2. There were no interactions between Task and Frequency in the following two 

epochs (500–700 ms), although in the final two epochs (700–900 ms), there was again an 
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interaction between Task and Frequency. However, the interactions in the last two epochs 

suggest that the Frequency effect was stronger or more widespread during SC than LD (note 

the flipped t statistic).

In the 100–200 ms, 200–300 ms and 400–500 ms epochs there were interactions between 

Task and PND showing a larger overall effect of PND in these epochs during the LD task 

compared to SC task (see Figure 4). There was not a Task by PND interaction in the 300–

400 or 500–600 ms epochs. In the final three epochs (600–900 ms) there were also Task by 

PND interactions, however now these interactions indicated it was the SC task which 

produced the larger PND effect.

Task and Concreteness interacted in the initial epoch (100–200 ms) due to a greater overall 

positive effect in SC combined with an overall negative effect in LD (see Figure 5; the 

concreteness main effect t-values). For the following 2 epochs (200–400 ms) there were no 

interactions between Task and Concreteness. Then for the next four epochs (400–800 ms) 

there was a Task by Concreteness interaction indicating a larger effect of Concreteness 

during SC compared to LD.

For Duration, there were widespread interactions with Task starting in the 100–200 ms 

epoch and extending to the 700–800 ms epoch. These interactions followed a pattern in 

which there were greater effects of Duration during SC when the effect was in the negative 

direction (lower duration words producing less negativity). When the effect was in the 

positive direction (lower duration words producing more negativity), the effect was larger for 

LD than SC.

General discussion

In this study 50 participants were presented with approximately a thousand spoken words in 

two experiments that differed only in the task participants engaged in. In Experiment 1 

participants made go/no-go lexical decisions to each item, pressing a button to occasional 

(13% of items) non-word probes. In Experiment 2 participants made go/no-go semantic 

categorizations to each item, pressing a button to occasional (13% of items) animal name 

probes. The remaining 960 trials in both experiments contained the same critical word items 

that did not require a behavioural response and therefore the ERPs to these reflect auditory 

word processing unbiased by overt motor responses. We measured ERPs in eight 

consecutive temporal epochs starting at 100 ms and ending 900 ms after word onset for each 

of the 956 critical words in the two experiments. LMER analyses were used to examine the 

independent effects of four variables (word frequency, phonological neighbourhood density, 

concreteness, and word duration) on the time-course of ERP measures of spoken word 

processing. Consistent with a variety of previous studies, including one that used the same 

basic approach and materials with written words (Dufau et al., 2015), we found that all four 

variables produced robust effects on mean EEG amplitude measures across the range of 

latencies examined. While the two experiments produced a similar overall pattern of effects 

there were also subtle differences in the precise time course of effects in the two 

experiments.
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Word frequency—In both the lexical decision (Experiment 1) and semantic categorisation 

(Experiment 2) tasks there were robust effects of word frequency across a range ERP latency 

windows. In both experiments the relationship between word frequency and ERP mean 

amplitude was the same with less frequent words tending to produce greater ERP 

negativities than more frequent words (see Figure 3). Remarkably, Experiment 1 found 

effects of frequency as early as the first measured epoch, 100–200 ms, with lower frequency 

items generating larger negativity around the vertex of the scalp. To our knowledge this early 

effect has not been observed during other studies of auditory word recognition, although a 

similar pattern has been reported for visual word recognition (e.g. Chen et al., 2015; Hauk et 

al., 2006). Dufour et al.’s auditory study did find an effect in a 330–400 ms epoch although 

of opposite polarity to typical ERP frequency effects. The current study used a much larger 

sample of words with greater variance than Dufour et al., perhaps explaining why effects 

were found much earlier.

Though perhaps useful for the interpretation of later frequency effects, the early onset of the 

frequency effect is clearly incompatible with certain early explanations of word frequency 

effects such as it represents only a response bias (Balota & Chumbley, 1984) or a post-

lexical selection bias (Luce & Pisoni, 1998). These earliest effects of frequency indicate that 

word frequency impacts initial phonological processing, even before the entire word has 

been heard. In connectionist models such as TRACE (McClelland & Elman, 1986), this 

effect could be explained by the greater activation level of higher frequency lexical 

representations sending more feedback to sub-lexical phonological representations, and thus 

reinforcing the activation of these units (see also, Gaskell & Marslen-Wilson, 1997). In these 

models, as well as Bayesian models (e.g. Norris & McQueen, 2008), the early effect of 

frequency could reflect higher phonetic probability of the initial phonemes of high frequency 

words, affecting the amount of necessary activation at the level of sublexical nodes or 

connections. In any case, these frequency effects add to the body of research suggesting that 

word frequency effects can occur prior to N400 onset (e.g. Assadollahi & Pulvermüller, 

2003; Hauk et al., 2006; Hauk & Pulvermüller, 2004; Sereno et al., 1998) and extends them 

to the spoken word processing domain.

Interestingly, these early frequency effects were only present during the lexical decision task 

(Experiment 1) and not semantic categorisation (Experiment 2). A similar dissociation was 

recently obtained for written words by Strijkers et al. (2015) who reported effects of word 

frequency that emerged earlier during a semantic task (150 ms) than during a colour 

discrimination task. They attributed this discrepancy to differences in the depth of 

processing, but this explanation may not be sufficient for the current findings, since the 

words in both LD and SC still need to be fully recognised. Here, the interaction may reflect 

the influence of task demands on early sublexical or lexical processing. Lexical decision 

may focus participants’ attention to the sublexical/lexical properties of the items in order to 

quickly perform the task, while during semantic categorisation, attention might be focused 

more on the conceptual properties of words which presumably become available later in the 

time course of spoken word processing. Broadly speaking, this task difference in word 

frequency provides strong evidence supporting the idea that even early stages of word 

recognition are affected by top-town influences.
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The most prominent effect of word frequency was found on the auditory N400 component 

where higher frequency words elicited less negativity than lower frequency words in both 

Experiment 1 and 2. This has been widely found in the visual domain (e.g. Dufau et al., 

2015; Van Petten & Kutas, 1990), though in the auditory domain, ERP studies of word 

frequency are limited. As mentioned above, one study (Dufour et al., 2013) has looked at 

word frequency effects on spoken word ERPs. While they did not find early effects of 

frequency like the current study, they did report an N400 effect between 550 and 650 ms 

epoch for auditory words. This is about the time frame in which the word frequency effect in 

the current study dramatically increases in size (see Figure 3). One possible interpretation of 

the pattern seen here is that the N400 frequency effect represents similar processes in both 

written and spoken word recognition, but tends to have a stronger later impact on spoken 

word processing due to the temporal dynamics of spoken word recognition. For example, if 

the N400 reflects the process of mapping lexical onto semantic representations as proposed 

by Grainger and Holcomb (2009), because this process likely extends over much of the 

temporal extent of a spoken word, this process is likely to have a longer timeframe to exert 

its influence. Another possibility is that the extended spoken word N400 effects could reflect 

in part the greater temporal variability of individual N400s to the different items used (see, 

Holcomb & Neville, 1990 for a similar explanation).

Some accounts of N400 frequency effects suggest that they reflect changes in the activity of 

lexical representations as a function of word frequency, with greater activity for more 

frequent words (for instance in models like Trace or Cohort and their descendants). Other 

explanations focus on the semantic nature of the N400, suggesting greater N400s to low 

frequency words represents the greater activation necessary to access their semantic 

networks (Kutas & Federmeier, 2011), potentially due to having fewer or weaker 

connections within their semantic network. In the current study, the later half of the N400 

frequency effect (after 700 ms) was larger, or at least more widespread, during semantic 

categorisation. Since semantic categorisation likely necessitates additional semantic 

processing, this pattern seems to favour a semantic explanation of the later frequency effect, 

or at least provides evidence that part of the N400 frequency effect is due to differences in 

processing within semantic systems.

Phonological neighborhood density—Across experiments, effects of PND were 

found in an early 200–300 ms epoch as well as in later epochs starting at 500–600 ms. The 

nature of these effects was that words with many lexical neighbours tended to produce more 

negative-going ERPs than words with fewer lexical neighbours. The earlier effect was 

largely isolated to one epoch, roughly corresponding to the auditory P2, and was focused on 

right lateral sites extending across the central line of electrodes to left lateral sites (see 

Figure 4). Neighbourhood effects in similar time frames have been observed in several 

studies using visually presented words (e.g. Midgley, Holcomb, Walter, & Grainger, 2008; 

Vergara-Martínez & Swaab, 2012). However, the two ERP studies investigating PND effects 

conducted in the auditory domain have not shown the effect seen in the current study. Both 

Dufour et al. (2013) and Hunter (2013) found early PND effects surrounding the P2 

component, however in both cases the patterns they reported were in the opposite direction 

(larger positivities to larger phonological neighbourhoods) to those found here. The 
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discrepancy between these two studies and the present study could be accounted for by 

differing methods. Besides concerns inherent with factorial designs (e.g. smaller number of 

items per condition, covariance between variables) and methodological choices (e.g. the use 

of an average reference in Dufour et al., 2013), there were differences in how PND was 

measured. Both of these prior studies used short words with the traditional measure of 

neighbourhood density (Vitevitch & Luce, 1998) and PND conditions in these studies co-

varied with phonotactic probability. These variables are correlated since the phonemes in 

words with many neighbours are more likely to be heard, but interestingly the effects these 

two variables have on word recognition and ERPs may be opposite. While higher PND 

generally is thought to interfere with word recognition due to increased competition between 

words, phonotactic probability may facilitate processing via a more frequent sublexical 

phonology in terms of phoneme frequencies or transitional probabilities between phonemes. 

Thus the early effect in the two prior studies may reflect an effect of phonotactic probability, 

and thus share an explanation similar to early frequency effects such as increased connection 

strength between more frequent sublexical units. Phonotactic probability and PND are still 

correlated in the present study, but less so than in the other two since we included a wide 

range of word lengths and used PLD20 as the measure of neighbourhood density which 

encompasses larger-scale neighbourhoods than the traditional neighbourhood density 

measure (Yarkoni et al., 2008). Additionally, there was a much greater range of PND values 

in the current study, and effects of other variables like word frequency were controlled for. 

Hence the early effect in the current study could reflect co-activation of phonological 

neighbour’s sublexical or lexical networks, perhaps driven by words with many cohorts.

This early effect (200–300 ms) was larger in Experiment 1 (LD) than Experiment 2 (SC). 

Similar to the interactions between frequency and task in this timeframe, this could indicate 

the ability of task demands to emphasise certain levels of processing. If this early effect 

represents sublexical or lexical co-activation, it could be amplified by attentional processes 

scrutinising every phoneme of the incoming input in order to better complete the more 

difficult lexical decision task. Meanwhile, participants doing semantic categorisation might 

withhold scrutiny until later processing stages. Further, during lexical decision, input needs 

to be compared with many more potential targets (every real word) than for semantic 

categorisation, which only needs to be compared with one semantic category. Thus a lexical-

level effect might have a smaller early component during semantic categorisation because 

the task constrains the number of words which need to be compared with to successfully 

participate in the task. Regardless, this pattern again indicates that task demands affect 

relatively early phonological processing, perhaps due to some pattern of constraining 

feedback activity during semantic categorisation, or increased overall attention during 

lexical decision.

The later effect beginning at 500 ms likely reflects an influence of PND on the auditory 

N400. This has been found during visual word recognition, where words from large 

orthographic neighbourhoods generate larger N400s than words from smaller 

neighbourhoods (e.g. Holcomb et al., 2002; Laszlo & Federmeier, 2011). In the auditory 

domain, one prior study has found this effect of PND in a 550–650 ms epoch (Dufour et al., 

2013), however another study found no effect of PND on the N400 (Hunter, 2013). For the 

later N400 effect, it seems likely that neighbourhood effects for both visual and auditory 

Winsler et al. Page 18

Lang Cogn Neurosci. Author manuscript; available in PMC 2021 April 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



words would share similar explanations. That is, high density words cause greater co-

activation of phonological or orthographic neighbours than low density words. With more 

activation in lexical-semantic networks, the target word requires more activation to be 

recognised and has more neighbours to inhibit. This increases the time and effort for the 

word recognition system to arrive at the correct word, leading to increased negativity on the 

N400 (Holcomb et al., 2002). Given its dynamic nature, neighbours may exert more long 

lasting influence during spoken word recognition compared to written word recognition. 

Especially for words with many cohorts, high density spoken words likely partially activate 

neighbours all the way to their semantic representations, before the entire word has been 

heard.

In the current study, this later effect of PND lasts until 900 ms, and was larger for SC 

(Experiment 2) than for LD (Experiment 1), providing more evidence that phonological 

neighbours in spoken word recognition co-activate to the point of their semantic 

representations. This also supports the interpretation that the earlier Task by PND interaction 

(200–300 ms) was in due to participants (covertly or overtly) focusing greater concentration 

during LD in early processing stages and in later stages for SC. Overall the finding of two 

separate PND effects, each of which interact oppositely with Task, suggests that for spoken 

word recognition neighbourhood density impacts processing in at least two stages, a pre-

recognition “first-pass” perhaps driven by greater numbers of cohorts or other predicted 

words, and a later, longer lasting, lexical-semantic stage possibly driven by the inhibition of 

lexical competitors and the co-activation of semantic information.

Concreteness—Across both experiments there were robust effects of concreteness 

between 400 and 900 ms after word onset and this effect was widely distributed around 

central sites. Although there are no published studies of ERPs to spoken words as a function 

of concreteness the pattern seen here is similar to the ERP effects reported in the written 

word recognition literature. For visual words, N400 effects have been shown across a variety 

of tasks and language contexts (e.g. Kounios & Holcomb, 1994; Holcomb et al., 1999) with 

larger N400s for words rated as being more concrete and smaller N400s for more abstract 

words. This pattern is usually interpreted as reflecting the richer semantic neighbourhoods, 

including those reflecting imagistic representations, engaged by words representing concrete 

concepts (Holcomb et al., 1999). That spoken words access a similar set of semantic 

representations as written words is consistent with a common semantic system architecture 

that is assumed by most models of word recognition (e.g. the BIAM of Grainger & 

Holcomb, 2009). Interestingly this effect of concreteness interacted with task such that it 

was stronger during SC than LD in the epochs between 400 and 800 ms. This follows a 

similar pattern as the later effects of frequency and PND which were also larger for SC than 

LD. Thus, it might share a similar explanation having to do with additional, or deeper, 

processing at later semantic levels during SC which affords more opportunity for 

concreteness effects.

One peculiarity of the concreteness effects was that in Experiment 2 there were significant 

distributional interactions with Concreteness as early as the 100–200 ms epoch. Examination 

of the statistical maps on Figure 5, suggests these interactions may be due to a graded effect 

of concreteness across the midline, originating in occipital sites where more concrete words 
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produced more negativity. The same comparisons in Experiment 1 were not significant. 

Given the timeframe, these earlier and weaker concreteness effects seem at first blush to be 

unlikely to be the result of an actual semantic concreteness effect (like the N400 effect), but 

rather may have to do with some physical property of more concrete or abstract words which 

was not in the LME models. That said, the presence and distribution of this early effect 

seems to be influenced by experimental task, suggesting that whatever the explanation is, it 

is not independent of top-down influences. Consistent with the top-down task explanation is 

the possibility that the SC task focused participants on the semantic level of analysis and 

therefore, like the early frequency and PND effects for LD, might have resulted in an early 

difference due to concreteness. This could in theory happen in a design with a lot of power if 

even a relatively small subset of items had an early cue to their semantic attributes.

Duration—In both Experiment 1 and 2, effects of duration were found across all epochs 

after 200 ms and are best understood by examining the duration ERP plots in Figure 6. The 

initial effect (200–300 ms) appears to be due to larger P2s to shorter words compared to 

longer words. This is the opposite of what has been found with visual word recognition 

which finds increased activity to longer words than shorter words in early components (e.g. 

Dufau et al., 2015; Hauk & Pulvermüller, 2004). This discrepancy between the two 

modalities makes sense given that it is likely that the amplitude of early ERP components is 

concordant with the amount of information present. Visually, longer words present more 

information at once and consequently may explain larger early components. However, for 

spoken words the information from longer items is not simultaneously present. Here, it is 

possible that the positivity to shorter words is due to a relatively larger, or more quickly 

revealed, amount of information compared to longer words especially during earlier epochs.

In the 300–400 and 400–500 ms epochs, the direction of the effect switched such that shorter 

words produced larger negativities than longer words. This is likely due to the faster onset of 

N400 activity to shorter words due to their faster temporal properties. Meanwhile for longer 

words, the word recognition system is still waiting on additional information to fully process 

these items leading to later and more spread-out N400 processing. Consistent with this 

interpretation, in the 500–600 ms epoch there is another switch in the direction of the 

duration effect. In these later epochs, there are greater negativities for longer compared to 

shorter words because the N400s of shorter words offset faster than the N400s of longer 

words.

Interestingly, there were widespread interactions between Task and Duration through 800 

ms. Overall this is due to a larger duration effect during LD between 100 and 300 and 

between 500 and 800 ms, separated by a larger effect during SC between 300 and 500 ms. 

This pattern seems to be related to differences in the ERPs of longer duration words which 

are more negative during SC, while the ERPs for shorter words appear similar (see ERPs in 

Figure 6). Though difficult to interpret, one possibility is that if during lexical decision 

recognition systems are attempting to work faster to deal with the more involved task, this 

may further increase the difference in component timing between shorter and longer words 

for LD compared to SC. Shorter words in the LD task transition faster from early processing 

phases to N400 processing, leading to a smaller duration effect on the P2, and a larger effect 

in early N400 epochs because the direction of these effects have opposite polarity.
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Conclusions

Methodologically, this study further demonstrates the effectiveness of large-scale item based 

analysis strategies for the understanding of word recognition processes. The LMER models 

revealed intricacies in the time course of the effects which would be normally obscured by 

the averaging processes of factorial designs. Further, for multi-dimensional stimuli such as 

words, the ability to control for collinearity between variables as well as subject, item, and 

electrode level random effects is critical for the understanding of the effects of separate 

variables. Moreover, the use of site-by-site LME t-statistic maps proved to be a very useful 

tool for the visualisation and interpretation of LME results from ERP data. The inclusion of 

all electrode sites into the analysis, coded as their relative coordinate locations in space 

appeared to appropriately analyze the spatial distribution of the effects in these experiments, 

but it is important to emphasise their exploratory nature and the fact that the LME approach 

assumes a linear relationship of the distributional variables which might not be appropriate 

for EEG scalp data. Therefore, we have attempted to be cautious in our interpretation of 

distribution-by-variable interactions particularly in terms of attributing differences as 

evidence of different neural generators (Urbach & Kutas, 2002). Future studies with stronger 

predictions may further improve ERP distribution modelling by specifying more complex 

linear functions as distributional interactions with an effect, or adopt another modelling 

framework such as generalised additive models which better accommodate non-linear effects 

(see Tremblay & Newman, 2015).

Theoretically, this study provides crucial evidence of the timeframe in which a number of 

important word-level variables affect the recognition of a large sample of diverse spoken 

words. Results showed that frequency, PND, and concreteness affected auditory N400 

amplitudes in a similar pattern as they do for visual words, supporting the idea that the N400 

represents largely amodal or multimodal processing. However, frequency and PND also 

produced convincing early effects, even before a word had been completely presented, 

reflecting the highly online process of word recognition and suggesting that these variables 

affect sub-lexical processing. Further, early frequency effects were only present in 

Experiment 1 (lexical decision), demonstrating the flexibility of even the earliest stages of 

word recognition. Duration was shown to affect P2 amplitude as well as modulate the timing 

of the N400 component. Overall, the results support interactive models of spoken word 

recognition and indicate the presence of either feedback mechanisms, or some separate 

mechanism which can otherwise explain early frequency and task effects.
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Figure 1. 
Procedure for both of the experimental tasks with an example of a prime item for each. 

Items were identical between the two tasks except for the probe items which were either 

animal names for semantic categorisation, or non-words for lexical decision made from 

transposed versions of animal names.
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Figure 2. 
Electrode montage used for EEG recordings.
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Figure 3. 
LME t statistics, confidence intervals, topographical LME t-statistic maps, and ERPs 

representing the Frequency effects for Experiment 1 (a) and Experiment 2 (b). Effects are 

only highlighted if significant with both confidence intervals and FDR-corrected p-values. 

ERP plots were made using the top and bottom quartiles of items sorted by frequency. (c) 

Statistics from task comparisons using separate LME models including task.
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Figure 4. 
LME t statistics, confidence intervals, topographical LME t-statistic maps, and ERPs 

representing the PLD (PND) effects for Experiment 1 (a) and Experiment 2 (b). Effects are 

only highlighted if significant with both confidence intervals and FDR-corrected p-values. 

ERP plots were made using the top and bottom quartiles of items sorted by PND. (c) 

Statistics from task comparisons using separate LME models including task.

Winsler et al. Page 29

Lang Cogn Neurosci. Author manuscript; available in PMC 2021 April 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 5. 
LME t statistics, confidence intervals, topographical LME t-statistic maps, and ERPs 

representing the Concreteness effects for Experiment 1 (a) and Experiment 2 (b). Effects are 

only highlighted if significant with both confidence intervals and FDR-corrected p-values. 

ERP plots were made using the top and bottom quartiles of items sorted by Concreteness. (c) 

Statistics from task comparisons using separate LME models including task.
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Figure 6. 
LME t statistics, confidence intervals, topographical LME t-statistic maps, and ERPs 

representing the Duration effects for Experiment 1 (a) and Experiment 2 (b). Effects are only 

highlighted if significant with both confidence intervals and FDR-corrected p-values. ERP 

plots were made using the top and bottom quartiles of items sorted by Duration. (c) Statistics 

from task comparisons using separate LME models including task.
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