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Abstract

In this paper, we propose a Bayesian hierarchical approach to infer network structures across 

multiple sample groups where both shared and differential edges may exist across the groups. In 

our approach, we link graphs through a Markov random field prior. This prior on network 

similarity provides a measure of pairwise relatedness that borrows strength only between related 

groups. We incorporate the computational efficiency of continuous shrinkage priors, improving 

scalability for network estimation in cases of larger dimensionality. Our model is applied to patient 

groups with increasing levels of chronic obstructive pulmonary disease severity, with the goal of 

better understanding the break down of gene pathways as the disease progresses. Our approach is 

able to identify critical hub genes for four targeted pathways. Furthermore, it identifies gene 

connections that are disrupted with increased disease severity and that characterize the disease 

evolution. We also demonstrate the superior performance of our approach with respect to 

competing methods, using simulated data.
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1 Introduction

1.1 General Motivation for Network Analysis in Genomics

Bayesian hierarchical models are becoming increasingly popular for inference with genomic 

data. These methods are powerful tools to understand the structure of complex diseases and 

to evaluate patterns of variable association, particularly for the analysis of studies with a 

small sample size. As complex diseases are multi-level illnesses defined by changes at the 

cellular level [17,32], we can apply network-based inference to genes and their products in 

order to better understand the underlying biological mechanisms and thereby develop more 

targeted treatments. In order to accomplish this goal, it is important to develop flexible and 

computationally efficient models which can adequately analyze the dependence structure of 

these highly dimensional datasets. A common approach to describe conditional dependence 

relationships of random variables is graphical models, which have been successfully applied 

to protein–protein interaction, co-expression, and gene regulatory networks [10,25,41,42].

1.2 Introduction to Statistical Methods for Networks Analysis

Bayesian approaches to network estimation have been found to be successful for both 

decomposable and unrestricted graphical models. These approaches have the critical 

advantage of quantifying the uncertainty associated to network estimation. For the 

decomposable setting, implementation of hyper-inverse Wishart priors enables the 

development of efficient stochastic search procedures to estimate network structure. [7] used 

this approach to determine explicitly the marginal likelihoods of the graph. This method was 

extended to Bayesian variable selection for both high-dimensional decomposable and 

nondecomposable undirected Gaussian graphical models [19]. [35] described a feature-

inclusion stochastic search algorithm, which uses online estimates of edge-inclusion 

probabilities to guide Bayesian model determination for decomposable Gaussian graphical 

models. When compared to Markov Chain Monte Carlo, Metropolis-based searches, and 

lasso methods, their algorithm was found to be superior in both speed and stability.

In the context of biological networks, it is often inappropriate to restrict the model space to 

only decomposable graphs [26]. Efficient and flexible Bayesian methods for 

nondecomposable Gaussian graphical models were proposed using the G-Wishart prior by 

[2,11]. Rather than computing the normalizing constant of marginal likely-hoods 

analytically, as is the case for decomposable graphs, Markov Chain Monte Carlo methods 

are used to sample over the joint spaces of precision matrices and graphs in order to avoid 

posterior normalizing constant computation. Further improvement was proposed by [45] 

with the implementation of a new exchange algorithm requiring neither proposal tuning nor 

evaluation of normalizing constants for the G-Wishart distribution. Reduced computational 

complexity and greater flexibility in prior specification was described by [39] with graph 

theory results for local updates that facilitate fast exploration of the graph space.

In recent years, such evidence of successful single network structure estimation has led to 

extensions of the methods to inference for multiple graphical models. Approaches for 

multiple graphical models are particularly appropriate when the biological network evolves 

with respect to clinical features, such as disease stage. [16] extended the graphical lasso to 
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multiple undirected graphs sharing the same variables with similar dependence structures. 

They propose a method which preserves common structure while allowing for differences 

through a hierarchical penalty targeting removal of common zeros in the precision matrices. 

[9] proposed the more general joint graphical lasso approach based on maximizing a 

penalized log likelihood. Their approach explores the properties of two penalty structures: 

the fused graphical lasso encouraging shared edge values and shared structure, and the group 

graphical lasso which supports shared structure but not shared edge values. [46] described a 

Bayesian approach assessing heterogeneous patterns of association between Gaussian 

directed graphs for related samples. Another Bayesian approach was proposed by [29] 

linking graph structure estimation with a Markov Random Field prior favoring an edge if the 

same edge is included in related sample group graphs. In their method, subgroups are not 

assumed related and shared structure is learned by defining a spike-and-slab prior on 

network relatedness parameters.

Computational burden is a major challenge for Bayesian graphical models, motivating the 

development of methods which are more efficient and have greater scalability. Successful 

developments in related problems have come from the use of continuous shrinkage priors. 

[13] used these priors in the form of a two-component normal mixture model in regression 

analysis. These priors have received even more attention as alternatives for regularizing 

regression coefficients, see [1,15,27]. When used in estimating covariance matrices through 

regularizing concentration elements, continuous shrinkage priors have been shown to result 

in fast and accurate estimation [21,43]. [44] developed a stochastic search structure learning 

algorithm for undirected graphical models. His method uses continuous shrinkage priors 

indexed by latent binary indicators, and allows for efficient block updates of the network 

parameters.

In this paper, we propose a new approach for multiple network analysis which builds on 

earlier methods [29] by improving scalability with a continuous shrinkage prior in the spirit 

of [44]. This results in a computationally more efficient approach that can be applied to 

larger networks. In particular, our work is motivated by the problem of analyzing network 

evolution of gene networks underlying the complex chronic obstructive pulmonary disease 

(COPD). Our paper is organized as follows: Section 2 provides a description of our 

motivating problem and the details of the dataset we apply our method to. Section 3 presents 

an introduction to Bayesian graphical models and introduces our proposed method, the prior 

models and the method for posterior inference—in addition to an outline of our Markov 

chain Monte Carlo method. Section 4 outlines our simulation studies, and section five 

describes the application of our method to four selected gene pathways involved in COPD. 

Section 6 concludes the paper.

2 The ECLIPSE COPD Cohort Study

Chronic obstructive pulmonary disease (COPD) is the 3rd leading cause of death in the US 

[37] and acute exacerbations of COPD (AECOPDs) are the 2nd leading cause of hospital 

stays [28,37]. Although 90 % of COPD patients are smokers, about 75 % of smokers do not 

develop COPD. There is a poor understanding of the risk factors that account for disease 
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susceptibility or resistance to cigarette smoke (CS), as well as of the pathogenic mechanisms 

underlying the development of emphysema and airway inflammation.

Whole-blood gene expression data from 226 subjects were generated within the Evaluation 

of COPD Longitudinally to Identify Predictive Surrogate Endpoints (ECLIPSE) cohort using 

the Affymetrix Human Genome U133 Plus 2.0 Array and are available at NCBI GEO 

GSE22148 [12,36]. Raw data (CEL files) were log-transformed and normalized using the 

RMA method [18] in the affy R package. Probesets were filtered so that there were present 

calls in all samples for a final set of 12525 probesets.

Subjects were classified into four groups by severity of radiologic emphysema, a subtype of 

COPD; [0–5) percent emphysema (n = 61), [5–10) percent emphysema (n = 43), [10,20) 

percent emphysema (n = 46), and [20+] percent emphysema (n = 51). Twenty-five subjects 

had missing values for percent emphysema and were not used in subsequent analyses.

We examined four candidate pathways that were selected based on the analysis of genomic 

and metabolomic data from an independent study on the genetic epidemiology of COPD 

called COPDGene [31]. In the COPDGene cohort, gene expression data from peripheral 

blood mononuclear cells (PBMCs) were generated on 131 subjects using the same 

Affymetrix platform as the ECLIPSE data [3]. On those same subjects, plasma metabolite 

abundance was generated using liquid chromatography/mass spectrometry [4]. Differently 

expressed genes and differently abundant metabolites were identified for airflow obstruction 

(FEV1pp forced expiratory volume in 1 second percent predicted) correcting for age, sex, 

body mass index, and current smoking status. KEGG pathways [20] that showed enrichment 

of the significant genes and metabolites were prioritized and the top four candidate pathways 

were used to explore their role in emphysema for this work: glycerophospholipid 

metabolism (GPL), oxidative phosphorylation (OxPhos), regulation of autophagy 

(RegAuto), and Fc γ R-mediated phagocytosis (FcyR). For each of the pathways, there were 

60 (GPL), 83 (OxPhos), 28 (RegAuto), and 104 (FcyR) probesets that were collapsed to 41 

(GPL), 62 (OxPhos), 20 (RegAuto), and 57 (FcyR) unique genes by selecting the probeset 

with the strongest association with emphysema. These 4 pathways may play a role in the 

response to cigarette smoke exposure and are interesting candidates for more detailed 

exploration in emphysema.

3 Proposed Method

The goal of our work is to model and infer the network structure of multiple pathways 

relevant to COPD. For each pathway, we are interested in understanding how connections 

between genes break down between the four sample groups defined by the severity of 

emphysema. We achieve this via a Bayesian hierarchical model, described in 3.1 and 3.2, 

that allows to jointly estimate a separate network for each group while comparing networks 

across groups in order to determine pairwise relatedness.

For each given pathway, we observe four nk × p data matrices Xk, where k = 1, …, K = 4 

indexes the group, nk is the sample size for group k, and p is the total number of genes in the 
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pathway. Assuming samples are independent and identically distributed within each of the K 
groups, we can write the likelihood for subject i in group k as

Xk, i N μk, Ωk
−1 , i = 1, …, n,

where μk ∈ ℝP  is the mean vector for group k and Ωk = Σk
−1 = ωi, j, k  is the precision 

matrix for group k, a symmetric positive definite matrix constrained to a set of restrictions 

ωi,j,k = 0, as defined by a graph Gk which is an undirected graphical model representing the 

conditional dependence relationships existing between the p genes. Each Gk is a 

mathematical object consisting of two sets, vertices V = {1, …, p} and edges E ∈ V × V, so 

G = (V, E). In an undirected graph, an edge exists between vertices i and j if (i, j) ∈ E and (j, 
i) ∈ E. In the context of our application, each vertex in Gk corresponds to a gene. An edge is 

included in the network if the two corresponding genes are conditionally dependent, while 

the absence of an edge between two vertices means the two corresponding genes are 

conditionally independent given the remaining genes. For each group k, graph Gk can be 

thought of as a symmetric binary matrix where each off-diagonal element gk,i,j denotes the 

inclusion of edge (i, j) in Gk.

3.1 Continuous Shrinkage Prior

In the context of Bayesian analysis of large networks, one of the main challenges is to define 

a prior distribution on Ωk. The most common approach is to assign a G-Wishart prior, which 

is the Wishart distribution restricted to the space of precision matrices where zeros are 

specified by either a decomposable or nondecomposable graph [33]. While this provides a 

flexible formulation for modeling, both the prior and posterior normalizing constants are 

intractable, limiting the method in scalability and computation. We address these difficulties 

with a recent approach that overcomes these issues, and propose for each network a 

continuous shrinkage prior as defined by [44]. Let Ωk = (ωi, j,k) p×p be the p-dimensional 

concentration matrix for gene interactions for each group. Our prior is a product of p(p – 

1)/2 two-component normal mixture densities, on the off-diagonal elements, and p 
exponential densities, on the diagonal elements, of the type

p Ωk |G = C(θ) −1 ∏
i < j

(1 − π)N ωi, j | 0, v0
2 + πN ωi, j | 0, v1

2

× ∏
i

Exp ωi, i | λ
2 IΩk ∈ M+ ∝ ∏

i < j
N ωi, j | 0, vgi, j

2 ∏
i

Exp ωi, i | λ
2 ,

Where vgi, j
2 = v1

2 if edge (i, j) is a connection in the network, i.e., gi, j = 1, and vgi, j
2 = v0

2 if 

gi, j = 0 and the connection is not in the network. The two-component normal mixture model 

has been shown to be a successful prior in the context of variable selection, which in our 

case is equivalent to edge selection, and the choice of hyperparameters v0
2 and v1

2 has been 

closely studied by George and McCulloch (1993, 1997). The hyperparameter spaces for θ = 

{υ0, υ1, π, λ} are υ0 > 0, υ1 > 0, λ > 0, and π ∈ (0,1) and υ0 and υ1 can be set as either 

small or large, resulting in a spike-and-slab prior. If for example, υ0 is chosen to be small, 
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the event gi, j = 0 indicates that the edge ωi,j comes from the N 0, v0
2  or diffuse component 

of the mixture, and consequently ωi, j is closer to zero and can be estimated as zero. In 

contrast, if υ1 is chosen to be large, the event gi, j = 1 means ωi, j comes from the other 

component N 0, v1
2  and ωi, j can then be thought of as substantially different from zero. C(θ) 

and the indicator function ensure that the density function integrated over the space M+ is 

one. We define this prior by introducing binary latent variables which can be viewed as 

edge-inclusion indicators G ≡ gij i < j ∈ G ≡ 0, 1 p(p − 1)/2, creating a hierarchical model 

defined by

p Ωk |G, θ = C G, v0, v1, λ −1 ∏
i < j

N ωi, j |0, vgi,j
2 ∏

i
Exp ωi, i

λ
2 .

and by the prior p(G|θ), that is outlined in Sect. 3.2. The constant C(G,υ0, υ1, λ) ∈ (0, 1) is 

a normalizing constant which ensures proper distributions. Further details on this constant 

can be found in [44].

3.2 Linking Graphs with a Markov Random Field Prior

To encourage selection of similar edges in related graphs, we define a Markov random field 

(MRF) prior on the graph structures. In Bayesian variable selection, MRF priors have been 

used to model dependencies between covariates in regression models [23,30,40]. Our prior 

follows a similar structure, but it is imposed on the indicators of edge inclusion contrary to 

indicators of variable inclusion. Each random variable in the set gi,j = {g1,i, j, …, gk,i, j} is 

then binary and an indicator of edge inclusion within the model. Consequently, each gk,i, j 

could be modeled by a Bernoulli prior. If all gk,i, j were independent, a product of Bernoulli 

distributions could be used to model this binary vector. A MRF prior is introduced to capture 

and model the dependence structure between these binary random variables. A MRF 

distribution can be seen as a generalization of a set of independent Bernoulli distributions in 

a multivariate setting. For the binary vector of edge-inclusion indicators gi,j = (g1,i, j, …, 

gk,i, j)T where 1 ≤ i < j ≤ p, we define a MRF prior distribution as

p gij |vi, j, Θ = C vi, j, Θ −1exp vi, j1Tgi, j + gi, jTΘgi, j ,

where vi, j is a specific parameter for each set of edges gi,j, Θ is a K × K symmetric matrix 

denoting pairwise relatedness for each sample group’s graph, and 1 is the unit vector of 

dimension K. The off-diagonal elements of Θ, θkm, allow us to share information between 

sample groups k and m, when appropriate, as well as to obtain a measure of relative network 

similarity across groups. The normalizing constant is defined as

C vi, j, Θ = ∑
gi,j ∈ 0, 1 K

exp vi, j1Tgi, j + gi, jTΘgi, j .

As long as the number of sample groups K is reasonably small, the computation of the 

normalizing constant is straightforward. From the probability of the binary vector of edge-
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inclusion indicators, we can see that the prior probability of an edge (i, j) being absent from 

all K graphs is p(gi,j = 0|vi, j, Θ) = 1/C(vi, j, Θ).

The joint prior on the graphs (G1, …, GK) is the product of the densities for each edge

p G1, …, Gk |v, Θ = ∏
i < j

p gij |vi, j, Θ ,

where v = {vi, j|1 ≤ i < j ≤ p}. The conditional probability of the inclusion of edge (i, j) in 

Gk, given the inclusion of that edge in all remaining graphs, is then

p gk, i, j | gm, i, j m ≠ k, vi, j, Θ =
exp gk, i, j vi, j + 2∑m ≠ kθk, mgm, i, j

1 + exp vi, j + 2∑m ≠ kθk, mgm, i, j
.

We also define prior distributions on v and Θ to reduce false selection of edges to account 

for a lack of correction for multiple testing from a fixed prior probability of inclusion, as 

noted by [34] in the setting of variable selection. This approach also allows us to obtain 

posterior estimates of these parameters, reflecting more information learned from the data.

3.3 Prior on Network Similarity

We are interested in a measure of network similarity that characterizes the relatedness of the 

gene network between the disease subgroups, and allows us to study the disruption and 

conservation of gene pathways as COPD evolves.

We define Θ as a K × K symmetric super-graph with nonzero off-diagonal elements θk,m 

capturing similarity between group k and group m. Consequently, the magnitude of θk,m 

indicates pairwise similarity of the two graphs Gk and Gm. Then, we select our prior 

following [29] as a spike-and-slab prior on the off-diagonal entries θk,m. Because we want 

the “slab” portion defined on the positive domain to comply with positive values of θk,m for 

related networks, we desire a density in the positive domain that allows discrimination 

between zero and nonzero values. Since the Gamma(x|α, β) probability density function is 

equal to 0 at x = 0 and is nonzero for x > 0 and α > 1, it is an appropriate choice for the 

density of the slab portion of our mixture model prior. Our prior on the network relatedness 

parameters is then defined as

p θk, m |γk, m = 1 − γk, m δ0 + γk, m
βα

Γ(α)θk, m
α − 1e−βθk, m,

with fixed hyperparameters α and β and latent indicator variable γk,m which indicates the 

event that graph k is related to graph m. We define an independent Bernoulli prior on the 

γk,ms, with hyperparameter w ∈ [0,1],

p γk, m |w = wγk, m(1 − w) 1 − γk, m .
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This prior borrows strength between groups when appropriate without enforcing similarity if 

groups have different network structures. Our joint priors for the off-diagonal entries of the 

super-graph and for γ are then

p(Θ |γ) = ∏
k < m

p θk, m |γk, m ,

p(γ) = ∏
k < m

p γk, m |w .

3.4 Edge-Specific Prior

We can specify a prior for the edge-inclusion probability vij to encourage sparsity of the 

graphs G1, …, Gk. This same prior can be used in order to incorporate prior knowledge of 

connections between genes. Negative values of vi, j will reduce the prior probability of 

inclusion for edge (i, j) in all graphs Gk, and consequently a prior favoring smaller values of 

v will lead to a preference for model sparsity, which can be attractive in applications where it 

is beneficial to reduce the number of parameters and make results more interpretable. In 

contrast, larger values of vi, j make edge (i, j) more likely to be selected according to whether 

or not it has been selected in other graphs. If we are given a known reference network, say 

G0, we can use this network to define a prior which encourages higher selection probabilities 

for those edges in G0. If θk,m = 0 for all m ≠ k, or if for nonzero θk,m no edges gm,i, j are 

selected, the probability of inclusion of edge (i, j) in Gk can be written as

p gk, i, j |vi, j = evi, j

1 + evi, j
= qi, j .

Then we can impose a prior on qi, j which reflects the belief that graphs having similarities 

to the reference network G0 = (V, E0) are more likely than those with differing edges

qi, j =
Beta(1 + c, 1)  if (i, j) ∈ E0
Beta(1, 1 + c)  if (i, j) ∉ E0,

where c > 0. Then, because vi, j = logit(qi, j), we can apply a univariate transformation to the 

Beta(a, b) prior on qi, j to write the prior on vi, j as

p vi, j = 1
B(a, b)

eavi, j

1 + evi, j a + b

If dealing with a case where there is no prior knowledge on the graph structure, one can 

choose a prior favoring lower values to encourage sparsity, such as qi, j ~ Beta(1,4) for all 

edges (i, j). In the case where most edges are believed missing for all graphs but those edges 

present in one graph tend to be included in all other graphs, a prior favoring larger values for 

θk,m can be chosen with a prior favoring smaller values for vi, j.
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3.5 Posterior Inference

Defining Ψ as the set of all parameters and X as our observed data for all sample groups, our 

joint posterior is

p(Ψ |X) ∝ ∏
k = 1

4
p Xk |μk, Ωk p μk |Ωk p Ωk |Gk

∏
i < j

p gi, j |vi, j, Θ ⋅ p vi, j p(Θ |γ)p(γ) .

This distribution is analytically intractable, so in order to obtain our posterior sample we 

construct a Markov Chain Monte Carlo (MCMC) sampler.

3.5.1 MCMC Sampling Scheme—Our MCMC scheme begins with a block Gibbs 

sampler in which we sample network-specific parameters Ωk and Gk from full conditionals 

of their posterior distributions. Then, we sample the graph similarity parameters Θ and γ 
from their conditional posterior distributions using a Metropolis–Hastings method that is 

equivalent to a reversible jump and incorporates between-model and within-model moves.

The main advantages of our prior on the precision matrices and the latent graphs are that (1) 

simultaneous block updates of all p(p–1)/2 edge-inclusion indicators are enabled and (2) no 

Markov chain approximation of intractable normalizing constants is required. Our Gibbs 

sampler can be viewed as a p-coupled stochastic search variable selection algorithm in the 

spirit of [13]. The generic iteration t of our algorithm can be summarized as follows:

a. Update graph Gk
(t) and precision matrix Ωk

(t) for each group k = 1, …, 4.

b. Update the network relatedness parameters θk, m
(t)  and γk, m

(t)  for 1 ≤ k < m ≤ 4.

Details on Step a and Step b of our algorithm are provided in the Appendix.

3.5.2 Model Selection—There are two approaches for making inference on the graph 

structure. The first is to use a maximum a posteriori (MAP) estimate representing the mode 

of the posterior distribution for each sample group’s graph. However, since the space of 

possible graphs is so large and we may only visit a particular graph a few times during the 

MCMC, this approach is generally not preferred in the context of large networks. Here, to 

infer gene connections, we use a more practical approach and estimate the posterior 

marginal probability (MPP) of edge inclusion for edge gk,i, j as the proportion of MCMC 

iterations after burn-in where edge (i, j) was included in graph Gk. Following [29], we then 

select those edges with marginal posterior probability of inclusion (MPP) > 0.5 for each of 

the four sample groups.

4 Simulation Studies

We use simulated data with related graph structures to assess the performances of the 

proposed approach. We also compare performances with alternate approaches. We consider 

two scenarios. The first scenario includes p = 25 nodes, the second scenario includes p = 50 

nodes, to investigate how the method works for a larger scale problem. We begin by 
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constructing four precision matrices Ω1, Ω2, Ω3, and Ω4, each corresponding, respectively, to 

graphs G1, G2, G3, and G4. For each graph, there are p × (p – 1)/2 possible edges to be 

predicted. Ω1 is set to the p × p symmetric matrix with entries ωi,i = 1 for i = 1, …, p, entries 

ωi,i+1 = ωi+1,i = 0.5 for i = 1, …, p – 1, and ωi,i+2 = ωi+2,i = 0.4 for i = 1, …, p – 2. For Ω2, 

we randomly generated a matrix with 70 % of the edges in Ω1. We constructed Ω3 by 

randomly changing five zero entries of Ω1 to be nonzero. Lastly, Ω4 was generated as a 

symmetric matrix with entries ωi,i = 1 for i = 1,… p, ωi,i+1 = ωi+1,i = 0.5 for i = 1, …, p – 1, 

and entries ω1,p = ωp,1 = 0.4. Graph structures for the four groups in the 25-node scenario 

are shown in Fig. 1. To ensure that each generated precision matrix was positive definite, we 

used a similar approach to that of [9] where each off-diagonal element is divided by the sum 

of the off-diagonal elements in its row, and then the matrix is averaged with its transpose. 

Consequently, Ω2 and Ω3 are symmetric and positive definite but with off-diagonal elements 

with values less than half of those for Ω1 and Ω4. As a result, the true value of connection 

strength is weaker which resulted in worse performance of any method for groups two and 

three. We generated the data matrices Xk of size n = 100, for k = 1, …, 4, from normal 

distributions N 0, Ωk
−1 , characterized by Ω1, …, Ω1 as the true precision matrices. For the 

25-node scenario, edge counts were 47, 43, 52, and 25 for group one to group four, 

respectively, and pairwise shared edges were

Counts of shared edges  =

⋅ 43 47 24
⋅ 43 22

⋅ 24
⋅

For the 50-node scenario, edge counts were 97, 89, 102, and 50 for group one to group four, 

respectively, and pairwise shared edges were

Counts of shared edges  =

⋅ 89 97 49
⋅ 89 47

⋅ 49
⋅

.

For prior specification, we used a Gamma(α, β) density with α = 1 and β = 9 for the slab 

portion of the mixture prior on θk,m which results in a prior with mean 0.111. The tail 

probability is 1 – P(θk,m ≤ 1) = 0.04, thereby avoiding assigning weight to larger values of 

θk,m and allowing for better discrimination between zero and nonzero values. To include the 

prior belief that the networks could be related, we set the hyperparameter w = 0.5 in the 

Bernoulli prior defining the network relatedness latent indicator γk,m. Parameters a and b 
were set to be a = 1 and b = 19 for all pairs (i, j) in the prior for vi, j, resulting in a prior 

probability of edge inclusion around 5%. Hyperparameters υ0 and υ1 are set to be υ0 = 0.02 

and υ1 = 1 according to published guidelines [44], ensuring the MCMC converges quickly 

and mixes well. The MCMC was run as described in Sect. 3 with 20,000 iterations of burn-

in and 40,000 iterations as a basis for posterior inference. Marginal posterior probability of 

inclusion (MPP) for each edge gk,i, j is estimated as the percentage of MCMC samples post 

burn-in which include edge (i, j) in graph k. In order to assess accuracy, we report results for 

25 simulated data sets: the 25-node simulated scenario is presented in Table 1 and the 50-
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node case in Table 3. We report the true positive rate (TPR), the false positive rate (FPR), 

and the Matthews correlation coefficient (MCC) using a threshold of 0.5 for edge selection, 

and the area under the curve (AUC) (Table 2). The MCC is defined as follows:

MCC = TP × TN − FP × FN
TP+FP TP+FN TN+FP TN+FN ,

where TP, TN, FP, and FN stand for the true positives, true negatives, false positives, and 

false negatives, respectively. MCC takes values between −1 (total disagreement) and +1 

(perfect selection) and measures the quality of the edge selection for a given threshold. A 

value of 0 suggests that the network reconstruction approach is no better than tossing a coin. 

Results in Tables 1 and 3 suggest that the TPR is higher in groups one and four, accounting 

for the fact that the magnitudes of the nonzero entries of Ω1 and Ω4 are greater than those of 

Ω2 and Ω3. The perfect AUC values of 1.00 for group 1 and group 4 illustrate that the 

marginal posterior probabilities of edge inclusion successfully provide an accurate means for 

learning the graph structure. The overall expected false discovery rate, or FDR, for edge 

selection is 0.12 for both the 25- and 50-node scenarios (Table 4).

The average marginal posterior probability for elements of Θ is estimated as the percentages 

of MCMC samples with θk,m > 0 or γkm = 1 for 1 ≤ k < m ≤ K. For the 25-node scenario, 

averaged MPPs for θk,m and their standard errors (SE) were

MPP(Θ) =

⋅ 0.9984(.0027) 0.9917(.00155) 0.9999(.0001)
⋅ 0.6496(.0646) 0.5830(.0468)

⋅ 0.5157(.0344)
⋅

.

For the 50-node scenario, averaged MPPs for θk,m and their standard errors (SE) were

MPP(Θ) =

⋅ 1.000(.0000) 0.9983(.0031) 1.000(.0000)
⋅ 0.6557(.0665) 0.4613(.0488)

⋅ 0.4618(.0656)
⋅

.

To emphasize scalability of our method, we expanded our simulation study to a 100 node 

scenario using the same data-generating mechanisms implemented in the smaller 

simulations. After running ten replicates of our method, averaged MPPs for θk,m and their 

standard errors (SE) were

MPP(Θ) =

⋅ 1.000(.0000) 0.9999(.0002) 1.000(.0000)
⋅ 0.6779(.0478) 0.4674(.0698)

⋅ 0.3785(.0547)
⋅

.

Increasing the network size had no impact on the overall expected false discovery rate for 

our method. While true positive rate decreases slightly, other measures of method 
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performance seem to remain about the same. Further results for the 100-node scenario are 

shown in Table 5.

We compared the performances of our approach with two alternative multiple network 

methods. First, using the R package JGL [8], we applied the fused and joint graphical lasso 

methods of [9]. Accuracy of structure learning is given in Tables 2, 4, and 6 for the 25-, 50-, 

and 100-node scenarios, in terms of TPR, FPR, MCC, and AUC. For the lasso methods, 

AUC estimates were obtained by varying the sparsity parameter, while the similarity 

parameter was fixed. Results reported are the maximum for the sequence of similarity 

parameter values tested. Results indicate that the fused and group graphical lasso methods 

are quite good at the identification of true edges and seem to perform better for larger 

networks, but generally have high false positive rates. Our proposed method on the other 

hand has much lower sensitivity and achieves the best overall performance as measured by 

the AUC for the 25- and 50-node settings. For the 100-node setting, using the optimal 

penalty parameters for each replicate of the lasso methods resulted in an AUC slightly 

higher than that of our proposed method for fused lasso; however, false positive rates are 

significantly greater than that for our method.

5 Case Study on Disease Severity in COPD

This section illustrates the application of our method to infer the evolution of gene pathways 

in COPD subjects as emphysema increases in severity. We applied the proposed joint 

graphical model estimation method using hyperparameters α = 4 and β = 5 for the slab 

portion of the mixture prior on θk,m which results in a prior with mean 0.4. Because we had 

no prior reference network or knowledge of graph structure, for our edge-specific prior we 

chose qi, j ~ Beta(1,9) for all edges (i, j). Other hyperparameters were set the same as in 

simulations. The MCMC sampler was run for 40,000 burn-in iterations followed by 80,000 

iterations used for inference. For posterior inference, we selected those edges with marginal 

posterior probability of inclusion greater than 0.5. To verify convergence of our chains, we 

compared correlations of resulting MPP from two chains with different starting points. 

Pearson correlations were in the range of .9971–.9989, and Spearman correlations were in 

the range of .9705–.9967. The inferred network structures are shown in Figs. 2, 3, 4 and 5 

for each of the four selected pathways, respectively. Network similarity across groups for 

each of the four pathways was estimated as

MPP(Θ)RegAuto =

⋅ .76 .81 .83
⋅ .73 .84

⋅ .77
⋅

, MPP(Θ)GPL =

⋅ .96 .94 .95
⋅ .89 .91

⋅ .96
⋅

MPP(Θ)OxPℎos =

⋅ 1.0 1.0 1.0
⋅ 1.0 1.0

⋅ 1.0
⋅

, MPP(Θ)FcyR =

⋅ 1.0 1.0 1.0
⋅ 1.0 1.0

⋅ 1.0
⋅
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For all final results, hub genes are defined as genes with at least four edges. Hub genes and 

edges were further examined for protein–protein interactions and disease-related gene 

annotation. protein–protein interactions were obtained from Biological General Repository 

for Interaction Datasets (BioGrids) v. 3.4.132 [5]. Disease annotation information was 

obtained from GeneCards [38] with the search term “lung” or “pulmonary” in the 

“Publications” search engine for GeneCards.

To further the comparison of our method with other methods, we also applied fused and joint 

graph lasso methods to the Reg Auto and GPL pathways from the ECLIPSE COPD dataset, 

using AIC to find optimal parameters. Overall, lasso methods seemed to have similar results 

to our proposed method with much denser networks due to higher false positive rates. This 

was expressed in particular by the Reg Auto pathway because every possible unique edge 

was selected by the lasso method. A detailed description of this comparison can be found in 

the Appendix.

5.1 Disrupted Interactions Due to Disease Severity

For each of the 4 pathways, we further examined all pairs of inferred gene interactions. 

Table 7 shows the total number of inferred pair interactions for each one of the 4 pathways, 

together with the number of those pairs that show evidence of disrupted interactions across 

disease severity. In the table, for each pathway, the four disease groups, ordered from least to 

most severe, are coded with 0’s and 1’s, with 1 indicating high MPP. For example, 1000 

indicates that a pair has a MPP ≥0.50 in the least severe emphysema group (first group is 

indicated by 1) but not the others (last three groups are indicated by 0), while 0011 indicates 

that a pair has a MPP ≥0.50 in the two most severe groups (last two groups are indicated by 

1), but not in the less severe disease cases (first two groups are indicated by 0).

For all 4 pathways, we see larger numbers of disrupted pairs in the most extreme case, where 

the interactions are strongest either for the controls or the most severe emphysema. That is, 

we find that a pair has a high MPP (≥0.50) in the no emphysema subjects but low MPP 

(<0.50) in the mild-to-severe emphysema subjects; or vice versa, a high MPP in the more 

severe disease subjects but not in the less severe emphysema and control subjects. This 

observation highlights two interesting sets of interactions for further investigation; 

interactions that are disrupted even with mild levels of emphysema and interactions that only 

develop for the most severe emphysema cases.

Interestingly, some of the pairs identified in Table 7 are known to have protein–protein 

interactions (PPI). In Table 7, we report the numbers of such pairs in parentheses and list the 

actual pairs in Table 8. One notable edge that changes based on disease severity is the gene 

pair ATG5-ATG3 in the RegAuto pathway. The MPP of this interaction is higher for the less 

severe COPD group (0.52–0.59) but then decreases for the most severe COPD group 

(0.476), indicating a disrupted interaction associated with disease severity. ATG5 

(autophagy-related gene 5) is also one of the top hub genes (discussed below) and is 

associated with the GO category of innate immune response.
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5.2 Hub Genes

Hub genes are highly connected genes and, as such, are expected to play an important role in 

biology. Here, we explored all genes in our inferred networks with at least 2 edges appearing 

in any of the disease groups [22]. Table 9 indicates the hub genes for each of the 4 pathways, 

together with the numbers of disrupted pairs and the number of known PPIs involving hub 

genes. For RegAuto, two of the hub genes have also been discussed above (ATG5-ATG3). 

For this pathway, increased autophagy has been observed in lung tissue from COPD patients 

with increased activation of autophagic proteins including protein products of hub genes 

found in ATG5 and ATG4B [6]. Another gene of interest is PIK3CD in the FcyR pathway. 

Expression and signaling of this gene is increased in the lungs of patients with COPD and is 

associated with reduced glucocorticoid responsiveness. Some authors have suggested that 

selective inhibition of the protein product PI3Kdelta might restore glucocorticoid function in 

patients with COPD, therefore representing a potential therapeutic target [24].

6 Conclusion

Motivated by the study of four critical pathways in COPD, we have proposed and 

implemented a novel approach to study how gene networks change with disease progression. 

We have introduced a novel Bayesian approach for multiple graphical models based on 

shrinkage and MRF priors. The combination of these two priors has allowed us to develop a 

computationally efficient algorithm and to perform a fully Bayesian analysis of the four 

targeted pathways. The proposed modeling approach allows to share information between 

sample groups, when appropriate, as well as to obtain a measure of relative network 

similarity across groups.

We have applied our approach to the ECLIPSE COPD dataset. Pathway enrichment of 

significant genes is often used in genomic research to identify candidate pathways but does 

not give additional information on how specific interactions within pathways are altered with 

disease severity. Using our Bayesian hierarchical approach, we were able to infer gene 

networks within 4 selected pathways. Our method has identified critical hub genes for all the 

four targeted pathways. Furthermore, several gene connections appeared to be disrupted with 

increased disease severity and constitute interesting candidates for further investigation, in 

an effort to characterize the disease evolution. Our analysis has clearly suggested that the 

autophagy-related gene ATG5 plays a critical role in COPD progression, highlighting 

critical interactions and highly connected genes that represent interesting targets for 

therapeutic targets. We also found several genes and gene interactions (ATG5, ATG3, and 

PIK3CD) that have already been associated with COPD. Further investigation of additional 

interactions such as UQCRC2-NDUFA1, which shows disruption based on disease severity, 

is the goal of future work. Using simulation studies, we have demonstrated the superior 

performance of our approach in comparison with competing methods.
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Appendix

Details on our MCMC Algorithm

In this section, we provide a detailed description of Step a and Step b of our MCMC 

algorithm.

Step a. By partitioning Ω into V = vi, j2 , a p × p symmetric matrix with zeroed diagonal 

entries and vi, j2
i < j in the upper diagonal entries and setting S = X′X, we can focus on the 

last column and row to acquire

Ω =
Ω1, 1 ω1, 2
ω1, 2′ ω2, 2

, S =
S1, 1 s1, 2
s1, 2′ s2, 2

, V =
V 1, 1 v1, 2
v1, 2′ 0 .

Changing variables from (ω1,2, ω2,2) to u = ω1, 2, v = ω2, 2 − ω1, 2′ Ω−1ω1, 2 , we have full 

conditionals

u | ⋅ N −Cs1, 2, C  and v | ⋅ Gamma n
2 + 1,

s2, 2 + λ
2 ,

where C = s2, 2 + λ Ω1, 1
−1 + diag v1, 2

−1 −1
. Using this method, we can permute any column to 

attain the full conditional used to generate Ω|G, X. Our full conditional on G is then an 

independent Bernoulli of the form

P gi, j = 1|Ω, X =
N ωi, j | 0, v1

2 π

N ωi, j | 0, v1
2 π + N ωi, j | 0, v0

2 (1 − π)
,

where the quantity π
1 − π  is determined by the MRF prior on the graph structure such that

π
1 − π =

p Gk′ |vi, j, Θ, Gm m ≠ k
p Gk |vi, j, Θ, Gm m ≠ k

= exp − vi, j + 2 ∑
m ≠ k

θk, mgm, i, j) ,

for proposed new graph Gk′  which differs from the current graph Gk only in that edge (i, j) is 

excluded from Gk′  and included in Gk.

Step b. In order to update θk,m and γk,m, we must consider the full conditional distribution. 

Considering only the terms of the joint prior for graphs G1, …, Gk which include θk,m, we 

can see that

p G1, …, G4 |v, Θ = ∏
i < j

C vi, j, Θ −1exp vi, j1Tgi, j + gi, jTΘgi, j

∝ ∏
i < j

C vi, j, Θ −1exp 2θk, mgk, i, jgm, i, j .
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The full conditional distribution of θk,m and γk,m can then be written as

p θk, m, γk, m | ⋅ = p G1, …, Gk |v, Θ p θk, m |γk, m p γk, m |w

α ∏
i < j

C vi, j, Θ −1exp 2θk, mgk, i, jgm, i, j

× 1 − γk, m δ0 + γk, m
βα

Γ(α)θk, m
α − 1e−βθk, m

× wγk, m(1 − w) 1 − γk, m .

Because the normalizing constant from the joint prior on the graphs is analytically 

intractable, we use Metropolis–Hastings step to sample from θk,m and γk,m for each pair of 

(k,m),1 ≤ k < m ≤ 4 from the joint full conditional distribution. Each iteration has two steps 

based on the approach described by [14] to sample from mutually singular distribution 

mixtures. First, we perform a between-model move. If the current state is γk,m = 1, we 

propose γk, m
⋆ = 0 and θk, m

⋆ = 0 resulting in the Metropolis–Hastings ratio

r =
p θk, m

⋆ , γk, m
⋆ | ⋅ × q θk, m

p θk, m, γk, m | ⋅ = Γ(α)
Γ α⋆

β⋆ α⋆

βα θk, m
α⋆ − αe β − β⋆ θk, m

× ∏
i < j

C vi, j, Θ exp −2θk, mgk, i, jgm, i, j
C vi, j, Θ⋆

1 − w
w ,

Where Θ⋆ represents the network similarity matrix Θ with entry θk, m = θk, m
⋆ . If moving 

instead from γk,m = 0 to γk, m
⋆ = 1, the ratio is

r =
p θk, m

⋆ , γk, m
⋆ | ⋅

p θk, m, γk, m | ⋅ × q θk, m
=

Γ α⋆
Γ(α)

βα

β⋆ α⋆ × θk, m
α − α⋆

e β⋆ − β θk, m

× ∏
i < j

C vi, j, Θ exp −2θk, m
⋆ gk, i, jgm, i, j

C vi, j, Θ⋆
w

1 − w .

Next, we perform the within-model move if the value of γk,m sampled from the between-

model move is 1. Here, we propose a new value using the same proposal density as before, 

for θk,m. Our Metropolis–Hastings ratio is

r =
p θk, m

⋆ , γk, m
⋆ | ⋅ ⋅ q θk, m

p θk, m, γk, m | ⋅ ⋅ q θk, m
⋆ =

θk, m
⋆

θk, m

α − α*
⋅ e β⋆ − β θk, m

⋆ − θk, m

× ∏
i < j

C vi, j, Θ exp 2 θk, m
⋆ − θk, m gk, i, jgm, i, j

C vi, j, Θ⋆ .

In our last step of the MCMC, we sample from the full conditional distribution of vi, j. The 

terms of the joint prior on the graphs including vi, j are
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p G1, …, Gk |v, Θ = ∏
i < j

C vi, j, Θ −1exp vi, j1Tgi, j + gi, jTΘgi, j

∝ C vi, j, Θ −1exp vi, j1Tgi, j .

Given the prior on vi, j, we can attain the posterior full conditional given the data and all 

remaining parameters

p vi, j | ⋅ ∝
exp avi, j

1 + evi, j a + bC vi, j, Θ −1exp vi, j1Tgi, j

=
exp vi, j a + 1Tgi, j

C vi, j, Θ ⋅ 1 + evi, j a + b .

We then propose a value q⋆ from the density Beta(2,4) for each pair (i, j) where 1 ≤ i < j ≤ p 
and set v⋆ = logit(q⋆). We can write our proposal density in terms of v⋆ as

q v⋆ = 1
B a⋆, b⋆

ea⋆v⋆

1 + eν⋆ a⋆ + b⋆ ,

with Metropolis–Hastings ratio

r =
p v⋆ | ⋅
p vi, j | ⋅

q vi, j
q v⋆

=
exp v⋆ − vi, j ⋅ a − a⋆ + 1Tgi, j ⋅ C vi, j, Θ ⋅ 1 + evi, j a + b − a⋆ − b⋆

C v⋆, Θ × 1 + ev⋆ a + b − a⋆ − bI⋆ .

Case Study: Comparison to the Fused and Joint Graphical Lasso

In this section, we compare the proposed Bayesian approach to the fused and joint graphical 

lasso in terms of the findings obtained from the analysis of the ECLIPSE dataset. 

Specifically, we focused on the Reg Auto and GPL pathways. For both the fused and joint 

graphical lasso, we selected the penalty parameters that minimized the AIC, as 

recommended by [9]. For the Reg Auto pathway, the fused graphical lasso penalty 

parameters were selected as λ1 = 0.015 and λ2 = 0.0001, and for the group lasso were 

selected as λ1 = 0.015 and λ2 = 0 (this value was selected after an extensive grid search with 

step size of .0000005). For the GPL pathway, penalty parameters were selected as λ1 = 0.02 

and λ2 = 0.0005 for the fused lasso, and λ1 = 0.02 and λ2 = 0.0 for the group lasso. Results 

are summarized in the two tables below.
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Reg auto: method edge count comparison

Proposed method Group fused lasso Joint group lasso

Group 1 edge count 98 159 159

Group 2 edge count 95 155 155

Group 3 edge count 89 155 155

Group 4 edge count 98 146 146

Unique edge count 153 190 190

GPL: method edge count comparison

Proposed method Group fused lasso Joint group lasso

Group 1 edge count 312 560 560

Group 2 edge count 255 553 553

Group 3 edge count 288 545 545

Group 4 edge count 314 536 536

Unique edge count 539 802 802

For the Reg Auto pathway, it can be seen that edge counts were equivalent for the fused 

lasso and the group lasso. Both lasso methods selected all the possible 190 edges; this 

illustrates the issue corresponding to high false positive rates for lasso methods and 

consequently hints at more difficult interpretation of results. Percentage overlap of unique 

edges for Reg Auto was computed as

 Unique Edges in Proposed and Lasso Method 
 Unique Lasso Edge Count  ,

and resulted in an overlap of 80 %. Lasso methods identified the same hub genes as the 

proposed Bayesian approach, plus ATG10 and ULK3.

Similar conclusions can be derived from the analysis of the GPL pathway. The same edges 

were selected by both the group and fused lasso for all disease groups; 802 out of 820 

possible unique edges were selected. Of the 18 edges remaining which were not selected by 

the lasso methods, five were selected by our proposed method. This resulted in a percentage 

eoverlap of unique edges for GPL 67%. The lasso methods identified the same hub genes as 

our proposed method in addition to DGKE, DGKQ, and MBOAT1. Overall, the lasso 

methods have similar results to our proposed approach, but result in much more dense 

networks due to their higher false positive rates. The proposed Bayesian approach provides 

sparser solutions that can be more easily interpreted.
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Fig. 1. 
Simulation study: true graph networks for the 25-node setting
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Fig. 2. 
Case study on COPD: estimated networks for the Reg Auto pathway: red zig-zag edges 

denote known protein–protein interactions (PPI)
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Fig. 3. 
Case study on COPD: estimated networks for the GPL pathway: red zig-zag edges denote 

known protein–protein interactions (PPI).eps
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Fig. 4. 
Case study on COPD: estimated networks for the OxPhos pathway: red zig-zag edges denote 

known protein–protein interactions (PPI)
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Fig. 5. 
Case study on COPD: estimated networks for the FcyR pathway: red zig-zag edges denote 

known protein–protein interactions (PPI)
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Table 1

Simulation study: results of our method for the 25-node setting across 25 simulated datasets

TPR (SE) FPR (SE) MCC (SE) AUC (SE)

Group 1 1.000 (.0000) 0.0038 (.0045) 0.9883 (.0137) 1.0000 (.0000)

Group 2 0.4967 (.0966) 0.0168 (.0064) 0.5990 (.0798) 0.9272 (.0236)

Group 3 0.3838 (.0531) 0.0165 (.0558) 0.5133 (.0558) 0.8841 (.0259)

Group 4 1.000 (.0000) 0.0010 (.0017) 0.9941 (.0097) 1.0000 (.0000)

We report averaged true positive rate (TPR), false positive rate (FPR), Matthews correlation coefficient and area under curve (AUC), with 
associated standard error (SE)
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Table 2

Simulation study: results from competing methods for the 25-node setting across 25 simulated datasets

TPR (SE) FPR (SE) MCC (SE) AUC (SE)

Fused graphical lasso 0.96 (.0149) 0.4737 (.0433) 0.3386 (.0256) 0.8993 (.0065)

Group graphical lasso 0.9598 (.0152) 0.4749 (.0498) 0.3378 (.0282) 0.8489 (.0101)

Proposed method 0.5806 (.4264) 0.0006 (.0008) 0.6760 (.3354) 0.9528 (.0527)

We report averaged true positive rate (TPR), false positive rate (FPR), Matthews correlation coefficient (MCC), and area under curve (AUC) with 
standard errors (SE)
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Table 3

Simulation study: results of our method for the 50-node setting across 25 simulated datasets

TPR (SE) FPR (SE) MCC (SE) AUC (SE)

Group 1 1.000 (.0000) 0.0029 (.0019) 0.9823 (.0115) 1.000 (.0000)

Group 2 0.5276 (.0416) 0.0091 (.0031) 0.6379 (.0418) 0.9297 (.0145)

Group 3 0.3843 (.0481) 0.0091 (.0036) 0.5268 (.0467) 0.8967 (.0229)

Group 4 1.000 (.0000) 0.0007 (.0007) 0.9915 (.0089) 1.000 (.0000)

We report averaged true positive rate (TPR), false positive rate (FPR), Matthews correlation coefficient, and area under curve (AUC), with 
associated standard error (SE)
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Table 4

Results from competing methods for the 50-node setting across 25 simulated datasets

TPR (SE) FPR (SE) MCC (SE) AUC (SE)

Fused graphical lasso 0.9289 (.0154) 0.3301 (.0338) 0.3150 (.0181) 0.9462 (.0033)

Group graphical lasso 0.9285 (.0156) 0.3279 (.0339) 0.3163 (.0179) 0.8834 (.0071)

Proposed method 0.7280 (.2798) 0.0055 (.0045) 0.7846 (.2095) 0.9566 (.0471)

We report averaged true positive rate (TPR), false positive rate (FPR), Matthews correlation coefficient (MCC), and area under the curve (AUC), 
with standard errors (SE)
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Table 5

Simulation study: results of our method for the 100-node setting across 10 simulated datasets

TPR (SE) FPR (SE) MCC (SE) AUC (SE)

Group 1 1.000 (.0000) 0.0031 (.0008) 0.9630 (.0091) 1.000 (.0000)

Group 2 0.4553 (.0280) 0.0088 (.0013) 0.5344 (.0179) 0.9182 (.0117)

Group 3 0.4020 (.0357) 0.0082 (.0011) 0.5059 (.0302) 0.9131 (.0107)

Group 4 1.000 (.0000) 0.0007 (.0003) 0.9836 (.0068) 1.000 (.0000)

We report averaged true positive rate (TPR), false positive rate (FPR), Matthews correlation coefficient, and area under curve (AUC), with 
associated standard error (SE)
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Table 6

Results from competing methods for the 100-node setting across 10 simulated datasets

TPR (SE) FPR (SE) MCC (SE) AUC (SE)

Fused graphical lasso 0.8658 (.0479) 0.2620 (.2632) 0.2775 (.0940) 0.9688 (.0016)

Group graphical lasso 0.8496 (.0095) 0.1739 (.0028) 0.3089 (.0042) 0.8982 (.0048)

Proposed method 0.7135 (.2929) 0.0053 (.0037) 0.7453 (.2334) 0.9578 (.0434)

We report averaged true positive rate (TPR), false positive rate (FPR), Matthews correlation coefficient (MCC) and area under the curve (AUC), 
with standard errors (SE)
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Table 7

Case study on COPD: numbers of total pairs of unique gene interactions and numbers of disease-disrupted 

pairs based on disease severity, for each one of the 4 selected pathways

Total pairs 1000 1100 1110 0111 0011 0001 Total disrupted

GPL 539 (1) 58 26 28 21 40 (1) 59 232 (1)

FcyR 892 (50) 102 (8) 34 (3) 30 (1) 31 40 (1) 125 (9) 362 (22)

OxPhos 1072 (275) 127 (27) 37 (7) 25 (6) 23 (6) 62 (17) 120 (25) 394 (88)

RegAuto 153 (9) 13 2 11 (1) 8 4 11 (1) 49 (2)

There are four emphysema classes ordered by severity, with the first group being the no emphysema group and the last one the most severe 
emphysema group. For each pathway, the 4 groups are coded with 0’s and 1’s, with 1 indicating high MPP. For example, 1000 indicates that a pair 
has a MPP≥ 0.50 in the least severe emphysema group (first group is indicated by 1) but not the others (last three groups are indicated by 0), while 
0011 indicates that a pair has a MPP≥ 0.50 in the two most severe groups (last two groups are indicated by 1), but not in the less severe disease 
cases (first two groups are indicated by 0). The number of pairs with known protein–protein interactions (PPI) is indicated in parentheses and listed 
further in Table 7
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Table 8

Case study on COPD: subset of the disease-disrupted pairs in Table 7 with known protein–protein interactions

Interaction in control (1000, 1100, 1110) Interaction in disease (0111, 0011, 0001)

OxPhos ATP6V0E1-ATP6V0A2,ATP6V1A-ATP6V0D1, ATP6V1A-
ATP6V1E1, ATP6V1A-ATP6V1H, ATP6V1F-ATP6V1A, 
NDUFA1-NDUFS6, NDUFA10-NDUFA11, NDUFA10-
NDUFB11, NDUFA4-NDUFB10, NDUFA4-NDUFB4, 
NDUFB1-NDUFA9, NDUFB3-NDUFA12, NDUFB3-
NDUFA4,NDUFB5-NDUFA11, NDUFB5-NDUFB9, 
NDUFB7-NDUFA8, NDUFB8-NDUFV1, NDUFS1-
NDUFA4, NDUFS1-NDUFA9, NDUFS2-NDUFB11, 
NDUFS2-NDUFS4, NDUFS2-NDUFS7, NDUFS3-NDUFB5, 
NDUFS4-NDUFA8, NDUFS4-NDUFB10, NDUFS4-
NDUFB11, NDUFS4-NDUFB4, NDUFS4-NDUFS7, 
NDUFS6-NDUFA13, NDUFS6-NDUFA4, NDUFS6-
NDUFS7, TCIRG1-ATP6V1E1, UQCRB-NDUFA11, 
UQCRB-NDUFB11, UQCRC2-NDUFA9, UQCRC2-
UQCRQ, UQCRFS1-NDUFA11, UQCRFS1-NDUFA13, 
UQCRFS1-NDUFA4, UQCRQ-NDUFA2

ATP6AP1-ATP6V0A2, ATP6V0A1-ATP6V0A2, ATP6V1F-
ATP6V1D,NDUFA2-NDUFB9, NDUFA3-NDUFA13, NDUFA5-
NDUFA11, NDUFA6-NDUFA11,NDUFA6-NDUFA12, 
NDUFA8-NDUFB4, NDUFA8-NDUFB9, NDUFA9-NDUFA2, 
NDUFA9-NDUFA4, NDUFA9-NDUFB11, NDUFA9-NDUFB4, 
NDUFA9-NDUFB9, NDUFB5-NDUFA8, NDUFB6-NDUFA11, 
NDUFB7-NDUFA9, NDUFB8-NDUFS7, NDUFS1-NDUFB10, 
NDUFS1-NDUFS7, NDUFS2-NDUFA8, NDUFS2-NDUFA9, 
NDUFS3-NDUFA10, NDUFS3-NDUFS2, NDUFS3-NDUFV1, 
NDUFS5-NDUFA11, NDUFS5-NDUFA2, NDUFS5-NDUFA4, 
NDUFS5-NDUFA7, NDUFS5-NDUFB10, NDUFS5-NDUFB4, 
NDUFS5-NDUFB7, NDUFS5-NDUFS2, NDUFS5-NDUFS6, 
NDUFS5-NDUFV2, NDUFS5-UQCRFS1, NDUFS6-NDUFA8, 
NDUFS6-NDUFS4, NDUFV1-NDUFA4, NDUFV1-NDUFS4, 
NDUFV2-NDUFA13, NDUFV2-NDUFB4, NDUFV2-NDUFS4, 
UQCRB-NDUFA4, UQCRC2-NDUFB5, UQCRQ-NDUFA10, 
UQCRQ-NDUFB7

FcyR ARPC1A-ARPC5L, CFL1-LIMK2, CRK-PIK3R1, GSN-
PIK3CA, HCK-PIK3CB, PIK3CA-AKT1, PIK3CB-AKT2, 
PLCG2-VAV1, PRKCD-PIK3CB, RAF1-MAP2K1, 
RPS6KB1-SYK, VAV1-CDC42

AKT1-AKT3, ARPC4-WAS, CRK-PIK3CA, CRKL-DOCK2, 
CRKL-PIK3R1, FCGR2A-SYK, INPP5D-PIK3R1, LYN-PAK1, 
PIK3CD-AKT2, PIK3R5-PIK3CG

RegAuto ATG5-ATG3 ATG4B-ATG12

GPL LPGAT1-MBOAT1
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Table 9

Case study on COPD: summary of top hub genes. Disrupted pairs which are also known PPI are listed in Table 

8

Pathway Hub genes Disrupted 
pairs with 
hub gene

PPI 
with 
hub 
gene

Disrupted 
pairs and PPI 
with hub gene

GPL ADPRM, AGPAT1, AGPAT3, CDIPT, CDS2, CEPT1, CHKB, CHPT1, CRLS1, 
DGKA, DGKD, DGKZ, ETNK1, GNPAT, GPCPD1, GPD1L, GPD2, LCLAT1, 
LPCAT1,LPCAT2, LPGAT1, LPIN1, LPIN2, LYPLA1, LYPLA2, MBOAT7, 
PCYT1A, PEMT, PGS1, PISD, PLA2G6, PLD3, PNPLA6, PTDSS1

226 1 1

FcyR AKT1, AKT3, ARF6, ARPC1A, ARPC1B, ARPC3, ARPC4, ARPC5, BIN1, 
CDC42, CFL1, CRK, CRKL, DOCK2, FCGR2A, GSN, HCK, INPP5D, LAT, 
LIMK1, LIMK2 LYN, MAP2K1, MAPK1, MARCKS, MARCKSL1, PIK3CA, 
PIK3CB, PIK3CD, PIK3R1, PIK3R5, PIP5K1A, PIP5K1B, PIP5K1C, 
PLA2G6,PLCG2, PRKCA, PRKCB, PRKCD, PTPRC, RAC1, RAF1, 
FPS6KB1,,SYK, VASP, VAV1, VAV3

354 50 22

OxPhos ATP6AP1, ATP6V0A1, ATP6V0B, ATP6V0D1, ATP6V0E2, ATP6V1A, 
ATP6V1B2, ATP6V1C1, ATP6V1D, ATP6V1E1, ATP6V1F, ATP6V1G1, COX17, 
ND6, NDUFA1, NDUFA10, NDUFA13, NDUFA2, NDUFA3, NDUFA4, 
NDUFA5, NDUFA6, NDUFA7, NDUFA8, NDUFA9, NDUFAB1, NDUFB1, 
NDUFB11 NDUFB3, NDUFB4, NDUFB5, NDUFB6, NDUFB7, NDUFB8, 
NDUFC1, NDUFS1, NDUFS2, NDUFS3, NDUFS4, NDUFS5, NDUFS6, 
NDUFS7, NDUFV1, NDUFV2, SDHC, TCIRG1, UQCR10, UQCRB, UQCRC1, 
UQCRC2, UQCRFS1, UQCRQ

384 270 88

RegAuto ATG101, ATG12, ATG13, ATG14, ATG3, ATG4A, ATG4B, ATG5, ATG9A, 
BECN1, DRAM1, DRAM2, ULK2

43 8 2
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