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Abstract

The ketone metabolic pathway is a principle procedure in physiological homeostasis and induces 

cancer cells to switch between glycolysis and oxidative phosphorylation as their main energy 

production. We conducted a two-phase analysis for associations between genetic variants in the 

ketone metabolism pathway genes and survival of non-small cell lung cancer (NSCLC) by using 

genotyping data from published genome-wide association studies (GWASs). The discovery used 

genotyping dataset from the Prostate, Lung, Colorectal and Ovarian Cancer Screening Trial in the 

multivariate Cox proportional hazards regression analysis with Bayesian false discovery 

probability (≤0.80) for multiple testing correction to evaluate associations between 27,322 (2,176 

genotyped and 25,146 imputed) single-nucleotide polymorphisms (SNPs) in 162 genes and 

survival of 1,185 NSCLC patients. Subsequently, significant SNPs were further validated with 984 
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NSCLC patients in another dataset from the Harvard Lung Cancer Susceptibility GWAS study. 

Finally, three independent and potentially functional SNPs in three different genes (i.e., PLIN2 
rs7867814 G>A, SULT2A1 rs2547235 C>T and UGT1A9 rs2011404 C>T and) were 

independently associated with NSCLC overall survival, with a combined hazards ratio of 1.22 

[95% confidence interval = 1.09–1.36 and P=0.0003], 0.82 (0.74–0.91 and P=0.0002) and 1.21 

(1.10–1.33 and P=0.0001), respectively. Additional expression quantitative trait loci analysis found 

that the survival-associated PLIN2 rs7867814 GA+AA genotypes, but not UGT1A9 rs2011404 

CT+TT genotypes and SULT2A1 rs2547235 CT+TT genotypes, were significantly associated with 

increased mRNA expression levels in 373 lymphoblastoid cell lines. These results indicated that 

PLIN2 variants may be potential predictors of NSCLC survival through regulating the PLIN2 
expression.
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Introduction

Lung cancer ranked the top for cancer-related mortality, with over a million deaths each year 

worldwide [1]. Non-small-cell lung cancer (NSCLC) is the most common histological type, 

accounting for approximately 85% of lung cancer patients [2]. Although about 80% of lung 

cancer cases are attributable to smoking, lung cancer patients accounts for about only 15% 

of smokers [3]. Chemo-radiotherapy has long been a standard treatment for unresectable 

advanced NSCLC; however, median survival of NSCLC patients remained only 15–20% [4]. 

Recent consolidative immunotherapy for stage III lung cancer has improved the survival, but 

the impact on the long-term outcomes remain unknown [5]. Studies have shown that genetic 

variants are responsible for individual variation in response to treatment outcomes [6]. Thus, 

it is important to identify genetic factors in pivotal genes and pathways that may influence 

progression, metastasis and outcomes of NSCLC.

A number of genome-wide association studies (GWASs) on susceptibility to lung cancer 

have identified multiple genetic loci at chromosomal regions of 3q28, 5p15.33, 6p21.33, 

6p22.1, 13q13.1, 15q25.1 and 22q12.1 in European populations [7–12], but few GWASs on 

clinical outcome of lung cancer were reported. However, most of the published GWASs had 

mainly focused on single nucleotide polymorphism (SNPs), few of which reached the 

genome-wide significance and often did not have a clear biological function [13]. In the 

post-GWAS era, identification of genetic variants with moderate but detectable effects and 

potential biological functions may provide additional insights into the complex mechanisms 

of cancer development and tumor progression [13].

The difference in energy production between normal tissue and cancer cells has long been 

considered one of the available targets in the therapy of cancer [14]. For example, the 

efficacy of many current chemotherapeutic agents and radiation is at least partially 

dependent on the production of reactive oxygen species (ROS) [15]. Studies have indicated 

that ketone bodies and medium-chain fatty acids (MCFAs) may be used as a tool to induce 
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cancer cells to switch between glycolysis and oxidative phosphorylation during energy 

production, indicating that ketogenic and MCFA-enriched diets may be beneficial to cancer 

patients who received chemoradiotherapies [16]. Ketogenic diets rich in medium-chain 

triglycerides have demonstrated its inhibitory effects on cancer growth. For example, it was 

observed that prostate cancer cells had a lower ability to utilize dietary fatty acids, compared 

to normal cells, indicating possible therapeutic potential [16].

To date, the roles of SNPs in the ketone metabolism pathway genes in cancer development 

and their functionality related to tumor progression and metastasis are still unknown. In the 

present study, by using publicly available GWAS datasets, we performed a ketone 

metabolism pathway gene-set analysis to evaluate the associations between genetic variants 

in this gene-set and survival of NSCLC patients.

Materials and Methods

Study populations

In the present study, as shown in the study flowchart (Figure 1), the discovery phase used the 

dataset from the GWAS of 1,185 NSCLC patients from the Prostate, Lung, Colorectal and 

Ovarian (PLCO) Cancer Screening Trial, with the approval from Duke Internal Review 

Board (#Pro00054575) and data access approval of the dbGAP database (#6404) from the 

National Center for Biotechnology Information (NCBI). The PLCO is an NCI funded 

multicenter randomized trial of screening for cancer from ten medical centers in the United 

States between 1993 and 2011 [17]. The screening trial enrolled 77,500 men and 77,500 

women aged 55–74. All individuals were randomized to either the intervention arm with 

screening or the control arm with standard care [17]. The PLCO trial collected blood 

specimens from the first screening visit and gathered extensive information about each 

individual, including smoking history, family history of cancer and demographic information 

[18]. All participants were followed-up for at least 13 years after the enrollment. Genomic 

DNA extracted from the blood samples was genotyped in a genome-wide association study 

(GWAS) with Illumina HumanHap240Sv1.0, HumanHap300v1.1 and HumanHap550v3.0 

(dbGaP accession: phs000093.v2.p2 and phs000336.v1.p1) [19, 20]. In 1,187 Caucasian 

NSCLC patients from the PLCO trial, two with missing follow-up information were 

excluded. Therefore, the eligible subsets of the PLCO lung cancer dataset for survival 

analysis included 1,185 NSCLC patients, whose clinicopathological variables and genotype 

data were available. Tumor staging was determined according to the fifth edition American 

Joint Committee on Cancer staging system. The institutional review boards of each 

participating institution approved the PLCO trial and all subjects signed a written informed 

consent permitting the use of biospecimens for further research [17].

The validation phase used the dataset from the Harvard Lung Cancer Susceptibility (HLCS) 

GWAS study with 984 Caucasian patients with histology-confirmed NSCLC. The 

histological classification of the tumors was recorded by two staff pulmonary pathologists at 

the Massachusetts General Hospital. The time of blood collection was within 1–4 weeks of 

the diagnosis for each patient, and DNA was extracted from the blood samples by using the 

Auto Pure Large Sample Nucleic Acid Purification System (QIAGEN Company, Venlo, 

Limburg, Netherlands). Genotype data were obtained by using Illumina Humanhap610-
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Quad arrays, and imputation was performed by using MaCH based on the 1,000 Genomes 

project [21]. Details of the participants in the HLCS study were described previously [22]. 

The comparison of the characteristics between the PLCO trial and the HLCS study is 

presented in Supplemental Table 1.

Gene and SNP selection

We selected the genes or a gene-set involved in the ketone metabolism pathway through the 

Molecular Signatures Database (http://software.broadinstitute.org/gsea/msigdb/index.jsp), 

by the keyword “Ketone” and “Metabolism”. After removal of duplicated genes and 

exclusion of genes in the X chromosome, 162 genes remained as candidate genes for further 

analysis (Supplemental Table 2). We first performed imputation for the 162 genes plus the 

500-kb flanking buffer regions by using IMPUTE2 and the 1,000 Genomes Project data 

(phase 3) [21]. After imputation, we extracted all the SNPs in these genes and within their 

±2 kb flanking regions according to the following criteria: a minor allele frequency ≥ 0.05, a 

genotyping rate ≥ 95%, and a Hardy-Weinberg equilibrium P value ≥ 1×10−5. As a result, 

2,176 genotyped SNPs were chosen from the PLCO GWAS dataset with an additional 

25,146 SNPs.

Statistical analysis

The follow-up time in both PLCO and HLCS datasets were from the diagnosis of lung 

cancer to the last follow-up time or time of death. Overall survival (OS) of lung cancer was 

the primary endpoint, and the disease-specific survival (DSS) was also examined. In the 

single-locus analysis, multivariate Cox proportional hazards regression analysis was used to 

evaluate the association between each of the SNPs and OS (in an additive genetic model) 

with adjustment for age, sex, smoking status, histology, tumor stage, chemotherapy, 

radiotherapy, surgery and the top four principal components of the PLCO genotyping dataset 

using the GenABEL package of R software [23]. Since the majority of SNPs were imputed 

by using a high level of linkage disequilibrium (LD), we used the Bayesian false discovery 

probability (BFDP) with a cutoff value of 0.80 for multiple test corrections as recommended 

[24]. We assigned a prior probability of 0.10 to detect an HR of 3.0 for an association with 

variant genotypes or minor alleles of the SNPs with P < 0.05. These significant SNPs 

identified in the single-locus analysis were summarized in a Manhattan plot. Then, we 

validated the remaining significant SNPs by using the HLCS dataset with the following 

criteria: SNPs passed the threshold of BFDP ≤ 0.8, potentially functional SNPs predicted by 

HaploReg [25], SNPinfo [26] and RegulomeDB [27], and tagging SNPs based on the LD 

analysis. To identify independent SNPs, we included the validated SNPs in a multivariate 

stepwise Cox model with adjustment for demographic characteristics,, clinical variables and 

the top four principal components of the genotyping data in the PLCO dataset as well as 

previously published SNPs from the same PLCO dataset. The combined analysis of 

discovery and validation datasets was also performed to provide a summary of the results. 

The fixed-effects model was applied, if the Cochran’s Q-test P value > 0.100 and the 

heterogeneity statistic (I2) < 50%; otherwise, the random-effects model was employed. The 

detailed LD information with independent SNPs were shown in regional association plots. 

The combination of unfavorable genotypes was also used to estimate the cumulative effects 
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of the identified SNPs in survival. Kaplan-Meier survival curves were used to visualized the 

survival associated with the genotypes.

Expression quantitative trait loci (eQTL) analysis was further performed to assess 

correlations between SNPs and mRNA expression levels of their associated genes by using 

linear regression analysis with the R (version 3.5.0) software. The mRNA expression data 

were obtained from lymphoblastoid cell lines derived from the 373 European descendants 

included in the 1,000 Genomes Project [21] in addition to the whole blood and normal lung 

tissues in the genotype-tissue expression (GTEx) project [28]. Additional data from the 

Cancer Genome Atlas (TCGA) database (dbGaP Study Accession: phs000178.v9.p8) were 

also used to assess the differences in mRNA expression levels between paired tumor tissues 

and adjacent normal tissues by the paired t test [29] as well as the association between 

mRNA expression levels and OS through the Kaplan-Meier (KM) analysis (n=1926) (http://

kmplot.com/analysis/index.php?p=service&cancer=lung). Finally, we constructed receiver 

operating characteristic (ROC) curves and performed time-dependent ROC analysis to assess 

prediction accuracy of models integrating both clinical and genetic variables on NSCLC 

survival with the “timeROC” package in R (version 3.5.0) [30]. Unless specified otherwise, 

all statistical analyses were performed using the SAS software (version 9.4; SAS Institute, 

Cary, NC, USA).

Results

Associations between SNPs in the Ketone metabolism pathway gene-set and NSCLC OS in 
both PLCO and HLCS datasets

The discovery phase used the data from 1,185 NSCLC patients whose basic characteristics 

of have been described previously [31] (Supplemental Table 1, also see Supplemental Table 

3). In the PLCO discovery dataset with an additive genetic model, the single-locus 

multivariate Cox models with adjustment for age, sex, smoking status, histology, tumor 

stage, chemotherapy, radiotherapy, surgery and first four of the 10 principal components 

(Supplemental Table 4), 673 SNPs were significantly associated with NSCLC OS after 

multiple test correction by BFDP of ≤ 0.8, which were summarized in a Manhattan plot 

(Figure 2A), which were further validated by the HLCS dataset. As a result, we identified 

ten potentially functional SNPs. Further combined analysis showed that these ten SNPs of 

the two datasets were all associated with OS (P ≤ 0.001 for all), and no heterogeneity 

between the two studies was observed (Table 1).

Identification of independent SNPs associated with OS of NSCLC in the PLCO dataset

Because the HLCS study only provided the summary data without detailed genotyping data, 

we had to use the PLCO dataset to identify independent SNPs with adjustment for other co-

variables. In a multivariate stepwise Cox model with adjustment for available demographics 

and clinical variables and the first four principal components as well as previously published 

SNPs from the PLCO GWAS dataset, three imputed SNPs in three different genes (i.e., 

rs7867814 in PLIN2, rs2547235 in SULT2A1 and rs2011404 in UGT1A9 with a p value of 

0.003, 0.004 and 0.025, respectively) remained independently associated with NSCLC OS. 

Regional association plots for these three SNPs are shown in Supplemental Figure 1. To 
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identify potentially functional SNPs associated with NSCLC OS, we used three online 

bioinformatics tools (i.e., SNPinfo [26], RegulomeDB [27] and HaploReg [25]). According 

to RegulomeDB [27], rs7867814 had a score of 4 and rs73158145 had a score of 6, 

indicating minimal binding evidence (Supplemental Table 5). In HaploReg [25], these SNPs 

were predicted to cause either three or more motifs changed: rs7867814 had enhancer 

histone marks and rs2011404 had promoter histone marks; however, all SNPs did not had 

obvious functions based on SNPinfo [26].

As shown in Table 3, patients with PLIN2 rs7867814 A and SULT2A1 rs2547235 T alleles 

had a worse OS (Ptrend = 0.002 or 0.0008) and DSS (Ptrend = 0.003 or 0.002), while patients 

with UGT1A9 rs2011404 T alleles had a better OS (Ptrend = 0.005) and DSS (Ptrend = 

0.006). In comparison with the reference genotype in a dominant genetic model, PLIN2 
rs7867814 GA+AA and SULT2A1 rs2547235 CT+TT were associated with a significantly 

worse OS (HR=1.30, 95% CI=1.10–1.53 and P=0.003 for rs7867814 GA+AA; and 

HR=1.22, 95% CI=1.05–1.42 and P=0.011 for rs2547235 CT+TT) and DSS (HR=1.28, 95% 

CI=1.07–1.53 and P=0.006 for rs7867814 GA+AA; and HR=1.20, 95% CI=1.02–1.41 and 

P=0.025 for rs73158145 CT+TT), whereas UGT1A9 rs2011404 CT+TT were associated 

with a better OS (HR=0.82, 95% CI=0.70–0.96 and P=0.015 for rs2011404 CT+TT) and 

DSS (HR=0. 82, 95% CI=0.69–0.96 and P=0.016 for rs2011404 CT+TT).

Combined and stratified analysis of the three independent SNPs in the PLCO dataset

To provide a better accumulative effect of the three SNPs on survival, we combined their 

unfavorable genotypes (i.e., rs7867814 GA+AA, rs2547235 CT+TT and rs2011404 CC

+CT) into a genetic score to divide all NSCLC patients into four groups. As shown in Table 

3, in the multivariate analysis, an increased genetic score was associated with a worse 

survival (trend test: P<0.001 for both OS and DSS). After dichotomizing the genetic score, 

we re-grouped all the patients into a low-risk group (0– 1 risk score) and a high-risk group 

(2– 3 risk scores). Patients in the high-risk group had both poorer OS (HR=1.32, 95% 

CI=1.13–1.53 and P=0.0003) and DSS (1.32, 1.13–1.54 and 0.0006), compared with those 

in the low-risk group. Kaplan-Meier survival curves were presented to depict the 

associations between unfavorable genotypes and NSCLC OS and DSS (Figure 2B).

To assess the ability of the unfavorable genotypes to predict NSCLC OS and DSS, we 

compared the area under the receiver operating characteristic curve (AUC) from the model 

for clinical variables and previously published SNPs with or without unfavorable genotypes. 

The addition of unfavorable genotypes to the prediction model (not including published 

SNPs) of five-year survival rate non-significantly increased the AUC from 87.97% to 

88.30% (P=0.160, Supplemental Figure 2a); similarly, the addition of unfavorable genotypes 

to the prediction model of five-year disease-specific survival non-significantly increased the 

AUC from 88.13% to 88.54% (P=0.275, Supplemental Figure 2b). The time-dependent AUC 

curve was provided to quantify the ability of unfavorable genotypes to predict NSCLC 

survival through the entire follow-up period (Supplemental Figure 2c and 2d). We then 

performed stratified analysis to evaluate whether the effects of combined unfavorable 

genotypes on NSCLC OS and DSS was modified by age, sex, smoking status, histology, 

tumor stage, chemotherapy, radiotherapy and surgery (Supplemental Table 6 and 
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Supplemental Table 7). The results showed that no significant interactions were found 

(P>0.05).

in silico functional validation

Experimental data from the ENCODE project [27] (Supplemental Figure 3) showed that the 

PLIN2 rs7867814 to be located in a DNase I hypersensitive site, where the DNase 

hypersensitivity and histone modification H3K4Me1 acetylation indicated strong signals for 

active enhancer and promoter functions. To further explore potential functions of these 

SNPs, we performed the eQTL analysis and found that only the PLIN2 rs7867814 A allele 

showed a significant correlation with increased mRNA expression levels of the gene in both 

additive (P=0.003, Figure 2C–a) and dominant (P=0.005, Figure 2C–b) models. 

Furthermore, the PLIN2 rs7867814 A allele also showed a significant correlation with 

increased mRNA expression levels of the gene in additive model (P=0.01, Supplemental 

Figure 4a) and recessive model (P=3.31E-05, Figure 4c) in lung adenocarcinoma tissues in 

the TCGA dataset. Taken together, these findings suggest that the PLIN2 rs7867814 A, but 

not the UGT1A9 rs2011404 T and SULT2A1 rs2547235 T alleles, may influence its gene 

expression at the transcriptional level.

Additionally, in 111 paired NSCLC tumor and adjacent normal tissue samples obtained from 

the TCGA database, we found that expression levels of PLIN2 were higher in the adjacent 

normal tissues than in the tumor tissues (P<0.001, Figure 3a, 3b and 3c), while the higher 

expression levels were not associated with a better NSCLC OS (Supplemental Figure 5a). 

On the other hand, the expression levels of UGT1A9 were also higher in the adjacent normal 

tissues than in the tumor tissues (P<0.001, Figure 3d, 3e and 3f), while the higher expression 

levels were associated with a worse NSCLC OS, and lower expression of SULT2A was 

associated with a better NSCLC OS [32] (Supplemental Figure 5b).

Mutation analysis

It is likely that the effects of gene mutations in the tumor tissues may overwhelmed the 

effects of germline SNPs. Therefore, we investigated the mutation status of PLIN2, 

UGT1A9 and SULT2A1 in lung tumor tissues by using the public database of the cBioPortal 

for Cancer Genomics. As shown in Supplemental Figure 6a, PLIN2 had a low somatic 

mutation rate in NSCLC (0.79% 9/1,144) in the TCGA 2016 study [33], LUAD (2.19% 

4/183 and 0.88% 5/566) in the Broad [34] and TCGA PanCan studies [29], respectively; and 

LUSC (1.12% 2/178 and 0.21% 1/487) in the TCGA pub and TCGA PanCan studies, 

respectively. These results suggest that the functional SNPs in PLIN2 may play a rather 

important role in the dysregulation of mRNA expression in tumor tissues, considering a low 

mutation rate of the PLIN2 gene in tumor tissues.

Additionally, UGT1A9 also had a low somatic mutation rate in NSCLC (0.96% 11/1,144) in 

the TCGA 2016 study [33] (Supplemental Figure 6b); a relatively higher mutation rate in 

LUAD (2.19% 4/183 and 1.06% 4/566), in the Broad [34] and TCGA PanCan studies [29], 

respectively; and LUSC (2.25% 4/178 and 0.62% 3/487) in the TCGA pub and TCGA 

PanCan studies, respectively. Finally, SULT2A1 also had a low somatic mutation rate in 

NSCLC (1.14% 13/1,144) in the TCGA 2016 study [33] (Supplemental Figure 6c), LUAD 
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(1.74% 4/230 and 1.06% 6/566), in the TCGA Pub [34] and TCGA PanCan studies [29], 

respectively; and LUSC (1.69% 3/178 and 1.03% 5/487) in the TCGA pub and TCGA 

PanCan studies, respectively. Therefore, the roles of SNPs in UGT1A9 and SULT2A1 in 

regulating gene expression and NSCLC survival remain to be investigated.

Discussion

In the present study, we identified three novel genetic variants in the ketone metabolism 

gene-set (i.e., PLIN2 rs7867814 G>A, UGT1A9 rs2011404 C>T and SULT2A1 rs2547235 

C>T) that were significantly associated with NSCLC survival. Additionally, PLIN2 
rs7867814 G>A appeared to have an effect on PLIN2 mRNA expression, which makes this 

SNP-associated risk of death biologically plausible.

The ketone metabolism is one of the central nodes in physiological homeostasis, because 

ketone bodies are regarded as vital metabolic mediators, when carbohydrates are abundant 

[35]. Studies have implicated ketone formation in the biological function of cancer cells. For 

instance, treatment of pancreatic cancer cells with ketone bodies could effectively inhibit 

cancer cell growth, proliferation and the cells’ glycolysis pathway [36]; furthermore, 

ketogenic diet may reduce tumor weight and glycemia in the animals with implanted cancer 

[37]. Another study found that the splice variants might block two main enzymes (HMGCS2 
and HMGCL) for ketone-body synthesis in specific human tissues, such as lung and thymus 

[38]. Taken together, the ketone metabolism is one critical physiological pathway that has 

been considered an available target for cancer treatment, but the role of SNPs in the ketone 

metabolism gene-set in tumorigenesis was not fully understood.

The PAT family members, including PLIN1 and PLIN2/ADRP, played an essential role in 

the formation or degradation of lipid droplets. PLIN2 was originally found in fat and steroid-

generated cells, and lipid droplets were the major consumables during the ketone 

metabolism [39]. The expression of PLIN2 showed an increasing trend during embryo 

development, suggesting its involvement in the maintenance of lipid stocks in cells [39]. For 

example, it has been shown that that PLIN2 might play an important role in lipid formation 

3T3-L1 murine adipocytes [40], but few studies of the effect of PLIN2 on cancer cells have 

been reported. One study reported that higher expression of PLIN2 was an independent 

prognostic factor of clear cell renal cell carcinoma and that knockdown of PLIN2 could 

promote the proliferation of carcinoma cells and enhance cell invasion and migration [41]. 

These indicated that PLIN2 could act as a suppressor gene in cancer biology, consistent with 

our finding that the expression of PLIN2 was elevated in normal tissues than in lung cancer 

tissues in the TCGA dataset. Another study found that the minor allele of the missense 

polymorphism Ser251Pro in PLIN2 disrupted lipolysis and was associated with reduced 

plasma triglyceride concentration, suggesting an effect on the metabolic progress [42]. We 

also showed that the PLIN2 rs7867814 A allele was correlated with an increased mRNA 

expression of PLIN2 and thus likely plays a role in the lipid metabolism of NSCLC, which 

was associated with a poorer survival of NSCLC; furthermore, PLIN2 rs7867814 is 

predicted to be located in DNase I hypersensitive site with considerable levels of DNase 

hypersensitivity and histone modification H3K4Me1 acetylation. Considering the lower 
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somatic mutation rate of PLIN2 in NSCLC, therefore, we believed that the rs7867814 A 

allele may also lead to an enhanced transcriptional activity in the tumors.

Human cytosolic sulfotransferase (SULT) 2A1 catalyzed dehydroepiandrosterone (DHEA) 

sulfation in the adrenal cortex. One study found that three SULT2A1 nonsynonymous 

coding SNPs were associated with decreased levels of both expression and activity, 

compared to the wild-type cDNA, when expressed in COS cells (one prostates cancer cell-

line), but no significant associations of various SULT2A1 alleles with prostates cancer risk 

[43]. In the present study, we showed that the SULT2A1 rs2547235 T allele was associated 

with a poorer survival of NSCLC, but we did not find any evidence for the SULT2A1 
rs2547235 T allele to have an effect on mRNA expression levels in the tissues tested in 

public databases, although higher expression levels in the NSCLC were shown to be 

associated with a poorer NSCLC survival; therefore, it is possible that other molecular 

mechanisms may be involved in the abnormal expression levels of SULT2A1 in the tumors 

and need to be further investigated.

Glucuronidation by the UDP-glucuronosyltransferase enzymes (UGTs) was one of the 

primary detoxification pathways of dietary heterocyclic amines (HCAs) and polycyclic 

aromatic hydrocarbons (PAHs) [44]. UGT1A9 was one of the most active UGT towards the 

hydroxy metabolites of benzo(a)pyrene (BaP) [45,46] and also has the capacity to conjugate 

N-OH-PhIP particularly at the N3-position [47,48]. This suggests that any genetic alterations 

reducing the UGT1A9 activity or expression could influence the elimination of HCAs or 

PAHs. Previous studies have shown that the UGT1A9-275 AT genotype were associated 

with a higher expression level of UGT1A9 in vitro [49, 50]. In the present study, we did not 

find evidence for an effect of the UGT1A9 rs2011404 T allele on mRNA expression levels, 

although this allele was associated with a better survival in NSCLC; Additionally, UGT1A9 
mRNA expression levels were higher in normal tissues than in tumor tissues in the TCGA 

dataset, but higher expression levels in NSCLC were associated with a poorer survival; 

therefore, we could not determine whether UGT1A9 was an oncogene or a suppressor in 

NSCLC. Because the mutation analysis showed a relatively higher mutation rate of 

UGT1A9 in both LUAD and LUSC, we speculated that the possible reason for the observed 

abnormal expression levels of UGT1A9 in tumors may be affected by the somatic mutations.

In conclusion, we demonstrated that three independent functional SNPs (i.e., PLIN2 
rs7867814 G>A, UGT1A9 rs2011404 C>T and SULT2A1 rs2547235 C>T) were 

significantly associated with NSCLC survival in both the PLCO trial and HLCS GWAS 

datasets. The eQTL analysis found that the survival-associated PLIN2 rs7867814 GA+AA 

genotypes were correlated with significantly increased mRNA expression levels of PLIN2, 

but such a correlation was not seen for UGT1A9 rs2011404 CT+TT and SULT2A1 
rs2547235 CT+TTT genotypes. Our findings provide some new clues for further functional 

studies of these three genes to understand the molecular mechanisms underlying the 

observed associations with outcomes the patients with NSCLC.
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Figure 1. 
Study workflow chart

Abbreviations: SNP, single nucleotide polymorphism; PLCO, Prostate, Lung, Colorectal and 

Ovarian Cancer Screening Trial; BFDP, Bayesian false discovery probability; eQTL, 

expression quantitative trait loci; ROC, receiver operating characteristic.
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Figure 2. 
Functional and survival-associated SNPs. A. Manhattan plot of 27,322 SNPs of the Ketone 

metabolism Pathway genes in the PLCO trial. The statistical values across the autosomes for 

associations between 27,322 SNPs and overall survival of patients with NSCLC are plotted 

as −log10 P values. The blue horizontal line indicates P = 0.05 and the red line indicates 

BFDP = 0.8. B. Kaplan-Meier (KM) survival curves for NSCLC patients of three validated 

SNPs. (a) OS analysis of combined risk genotypes in the PLCO trial by 0, 1, 2 and 3 

unfavorable genotypes (log-rank test for trend: P), and (b) by 0–1 and 2–3 unfavorable 

genotypes (Log-rank test and multivariate analysis: P) in the PLCO trial; (c) DSS analysis of 

combined protective genotypes in the PLCO trial by 0, 1, 2 and 3 unfavorable genotypes 

(log-rank test for trend: P), and (d) by 0–1 and 2–3 unfavorable genotypes (Log-rank test 

and multivariate analysis: P) in the PLCO trial. C. eQTL analyses of PLIN2 rs7867814 

genotype and corresponding gene mRNA expression (n=373). All the data were from the 
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1,000 Genomes Project dataset. (a) rs7867814 additive model (P=0.003); (b) rs7867814 

dominant model (P=0.005); and (c) rs7867814 recessive model (P=0.105.

Abbreviations: BFDP, Bayesian false-discovery probability; NSCLC, non-small cell lung 

cancer; PLCO, Prostate, Lung, Colorectal and Ovarian cancer screening trial.
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Figure 3. 
Comparison of mRNA expression levels of PLIN2 and UGT1A9 between lung cancer tissue 

and adjacent normal lung tissues in the TCGA dataset 1

.a. The PLIN2 mRNA expression levels in lung cancer tissues were significantly higher than 

that in normal lung tissues (P<0.001); b. The PLIN2 mRNA expression levels in lung 

adenocarcinoma tissues were significantly higher than that in normal lung tissues (P<0.001); 

c. The PLIN2 mRNA expression levels in lung squamous tissues were significantly higher 

than that in normal lung tissues (P<0.001); d. The UGT1A9 mRNA expression levels in lung 

cancer tissues were significantly lower than that in normal lung tissues (P=0.0001); e. The 

UGT1A9 mRNA expression levels in lung adenocarcinoma tissues were not higher than that 

in normal lung tissues (P=0.130); f. The UGT1A9 mRNA expression levels in lung 

squamous tissues were significantly lower than that in normal lung tissues (P<0.001); 

PLIN2_t= lung cancer tissues; PLIN2_n= adjacent normal lung tissues; UGT1A9_t= lung 
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cancer tissues; UGT1A9_n= adjacent normal lung tissues. 1 Including 51 pairs of lung 

adenocarcinoma tissues and 60 pairs of lung squamous tissues; in total, there were 111 pairs 

of tissues in the analysis.
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Table 1.

Combined analysis of the ten significant SNPs in both PLCO and HLCS datasets

SNP Allele
a Gene

PLCO (n=1,185) HLCS (n=984) Combined analysis

EAF BFDP FDR
HR 

(95% 

CI)
b P

b EAF
HR(95% 

CI)
c P

c HR(95% 

CI)
d P

d Phet
e I 

2

rs786781 G>A PLIN2 0.12 0.31 0.24
1.27 

(1.09–
1.47)

0.002 0.16
1.17 

(1.00–
1.36)

0.048
1.22 

(1.09–
1.36)

0.0003 0.439 0

rs731581 C>G PRKAG2 0.12 0.58 0.48
1.23 

(1.06–
1.42)

0.006 0.12
1.27 

(1.06–
1.52)

0.008
1.25 

(1.11–
1.40)

0.0001 0.775 0

rs254723 C>T SULT2A1 0.18 0.29 0.19
1.25 

(1.10–
1.43)

0.0008 0.20
1.17 

(1.01–
1.35)

0.036
1.21 

(1.10–
1.33)

0.0001 0.486 0

rs201140 C>T UGT1A9 0.17 0.57 0.37
0.82 

(0.71–
0.94)

0.003 0.17
0.82 

(0.70–
0.96)

0.011
0.82 

(0.74–
0.91)

0.0002 0.979 0

rs780232 T>A RORA 0.15 0.67 0.51
0.83 

(0.72–
0.95)

0.009 0.13
0.81 

(0.68–
0.96)

0.016
0.82 

(0.74–
0.92)

0.0004 0.821 0

rs763828 G>A RORA 0.15 0.67 0.51
0.83 

(0.72–
0.95)

0.009 0.13
0.81 

(0.68–
0.96)

0.017
0.82 

(0.74–
0.92)

0.0004 0.831 0

rs697066 A>C PRKAG2 0.20 0.77 0.54
1.17 

(1.03–
1.32)

0.016 0.21
1.16 

(1.01–
1.33)

0.037
1.16 

(1.06–
1.28)

0.001 0.908 0

rs697072 G>C PRKAG2 0.20 0.77 0.54
1.17 

(1.03–
1.32)

0.016 0.21
1.16 

(1.01–
1.33)

0.040
1.16 

(1.06–
1.28)

0.001 0.895 0

rs697036 A>G PRKAG2 0.20 0.77 0.54
1.17 

(1.03–
1.32)

0.016 0.21
1.15 

(1.00–
1.33)

0.043
1.16 

(1.06–
1.27)

0.001 0.876 0

rs102778 T>C PRKAG2 0.19 0.77 0.54
1.17 

(1.03–
1.32)

0.017 0.20
1.15 

(1.00–
1.32)

0.046
1.16 

(1.06–
1.27)

0.001 0.848 0

a
Effect/reference allele;

b
Adjusted for age, sex, stage, histology, smoking status, chemotherapy, radiotherapy, surgery, PC1, PC2, PC3 and PC4;

c
Adjusted for age, sex, stage, histology, smoking status, chemotherapy, radiotherapy, surgery, PC1, PC2 and PC3;

d
in an additive model;

e
P value for heterogeneity by Cochrane’s Q test.

Abbreviations: PLCO = Prostate, Lung, Colorectal and Ovarian Cancer Screening Trial; HLCS = Harvard Lung Cancer Susceptibility study; SNPs 
= Single nucleotide polymorphisms; EAF = Effect allele frequency; HR = Hazards ratio; CI = Confidence interval.
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Table 2.

Predictors of OS obtained from the final Cox hazards regression analysis in the PLCO dataset

Variables Category Frequency HR (95% CI)
a

P
a

HR (95% CI)
b

P
b

Age Continuous 1185 1.03 (1.02–1.05) <0.0001 1.04 (1.02–1.05) <0.0001

Sex Male 698 1.00 1.00

Female 487 0.79 (0.68–0.93) 0.003 0.77 (0.66–0.91) 0.002

Smoking status Never 115 1.00 1.00

Current 423 1.75 (1.30–2.35) 0.0002 1.93 (1.43–2.61) <0.0001

Former 647 1.77 (1.34–2.34) <0.0001 1.94 (1.46–2.59) <0.0001

Histology AD 577 1.00 1.00

SC 285 1.25 (1.03–1.51) 0.023 1.28 (1.05–1.56) 0.013

Others 323 1.31 (1.10–1.56) 0.002 1.38 (1.15–1.66) 0.0005

Stage I-IIIA 655 1.00 1.00

IIIB-IV 528 3.21 (2.62–3.91) <0.0001 3.29 (2.68–4.03) <0.0001

Chemotherapy No 639 1.00 1.00

Yes 538 0.54 (0.45–0.65) <0.0001 0.56 (0.46–0.67) <0.0001

Radiotherapy No 762 1.00 1.00

Yes 415 0.99 (0.84–1.16) 0.871 0.99 (0.83–1.17) 0.889

Surgery No 637 1.00 1.00

Yes 540 0.22 (0.17–0.28) <0.0001 0.20 (0.16–0.27) <0.0001

PLIN2 rs7867814 G>A GG/GA/AA 916/248/21 1.24 (1.07–1.44) 0.005 1.27 (1.09–1.48) 0.003

SULT2A1 rs2547235 C>T CC/CT/TT 805/338/42 1.23 (1.07–1.40) 0.003 1.22 (1.07–1.40) 0.004

UGT1A9 rs2011404 C>T CC/CT/TT 793/332/29 0.83 (0.73–0.96) 0.010 0.85 (0.73–0.98) 0.025

a
The final analysis included age, sex, smoking status, tumor stage, tumor histology, chemotherapy, radiotherapy, surgery, top four principal 

components and three new validated SNPs (SULT2A1 rs2547235, UGT1A9 rs2011404 and PLIN2 rs7867814 in an additive model);

b
Fifteen published SNPs were used for post-stepwise adjustment. Five SNPs were reported in previous publication (PMID: 27557513); One SNP 

was reported in the previous publication (PMID: 29978465); Two SNPs were reported in the previous publication (PMID: 30259978); Two SNPs 
were reported in the previous publication (PMID: 26757251); Three SNPs were reported in the previous publication (PMID: 30650190); Two SNPs 
were reported in the previous publication (PMID: 30989732);

Abbreviations: OS = Overall survival; PLCO = Prostate, Lung, Colorectal and Ovarian cancer trial; HR = Hazards ratio; CI = Confidence interval.
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Table 3.

Associations of the three independent and validated SNPs in the Ketone metabolism pathway genes with OS 

and DSS of NSCLC in the PLCO dataset

OS Multivariate analysis
a

DSS Multivariable analysis
a

Genotype
Frequency 
(n=1,144) Death (%) HR (95% CI) P

Frequency 
(n=1,144) Death (%) HR (95% CI) P

PLIN2 rs7867814 G>A

 GG 908 604 (66.5) 1.00 908 544 (59.9) 1.00

 GA 246 168 (68.3) 1.27 (1.07–1.52) 0.006 246 148 (60.2) 1.25 (1.04–1.51) 0.017

 AA 21 17 (81.0) 1.58 (0.97–2.59) 0.069 21 17 (81.0) 1.65 (1.01–2.72) 0.048

 Trend test 0.002 0.003

 GA+AA 267 185 (69.3) 1.30 (1.10–1.53) 0.003 267 165 (61.8) 1.28 (1.07–1.53) 0.006

SULT2A1 rs2547235 C>T

 CC 795 530 (66.7) 1.00 795 474 (59.6) 1.00

 CT 338 226 (66.9) 1.15 (0.98–1.35) 0.084 338 204 (64.0) 1.13 (0.96–1.34) 0.152

 TT 42 33 (78.6) 2.03 (1.42–2.92) 0.0001 42 31 (73.8) 2.06 (1.42–2.99) 0.0001

 Trend test 0.0008 0.002

 CT+TT 380 259 (68.2) 1.22 (1.05–1.42) 0.011 380 235 (61.8) 1.20(1.02–1.41) 0.025

UGT1A9 rs2011404 C>T

 CC 783 533 (68.1) 1.00 783 479 (61.2) 1.00

 CT 332 218 (65.7) 0.85 (0.73–1.00) 0.049 332 194 (58.4) 0.84 (0.71–1.00) 0.048

 TT 29 18 (62.1) 0.57 (0.35–0.92) 0.022 29 16 (55.2) 0.57 (0.34–0.94) 0.029

 Trend test 0.005 0.006

 CT+TT 361 236 (65.4) 0.82 (0.70–0.96) 0.015 361 210 (58.2) 0.82 (0.69–0.96) 0.016

NUG
b

 0 197 129 (65.5) 1.00 197 113 (57.4) 1.00

 1 544 357 (65.6) 1.26 (1.02–1.55) 0.029 544 319 (58.6) 1.27 (1.02–1.58) 0.035

 2 339 236 (69.6) 1.51 (1.21–1.88) 0.0003 339 218 (64.3) 1.54 (1.22–1.94) 0.0003

 3 64 47 (73.4) 1.86 (1.32–2.63) 0.0004 64 39 (60.9) 1.76 (1.21–2.55) 0.003

 Trend test <0.001 <0.001

NUG
b

 0–1 741 486 (65.6) 741 432 (58.3)

 2–3 403 283 (70.2) 1.32 (1.13–1.53) 0.0003 403 257 (63.8) 1.32 (1.13–1.54) 0.0006

a
Multivariate Cox hazards regression analyses were adjusted for age, sex, smoking, stage, histology, chemotherapy, radiotherapy, surgery, and top 

four principal components in the PLCO dataset; there were 31 subjects with missing information for genotype and 10 with missing phenotype data.

b
NUG=number of unfavorable genotypes; NUG were PLIN2 rs7867814 GA+AA, SULT2A1 rs2547235 CT+TT and UGT1A9 rs2011404 CC+CT;

c
Two observations missing for tumor stage and eight observations missing for chemotherapy/radiotherapy/surgery in the PLCO dataset.

Abbreviations: SNPs = Single nucleotide polymorphisms; OS = Overall survival; NSCLC = Non-small cell lung cancer; PLCO = Prostate, Lung, 
Colorectal and Ovarian cancer trial; NPG = Number of protective genotypes; HR = Hazards ratio; CI = Confidence interval; N/A = Not applicable

Int J Cancer. Author manuscript; available in PMC 2021 April 27.


	Abstract
	Introduction
	Materials and Methods
	Study populations
	Gene and SNP selection
	Statistical analysis

	Results
	Associations between SNPs in the Ketone metabolism pathway gene-set and NSCLC OS in both PLCO and HLCS datasets
	Identification of independent SNPs associated with OS of NSCLC in the PLCO dataset
	Combined and stratified analysis of the three independent SNPs in the PLCO dataset
	in silico functional validation
	Mutation analysis

	Discussion
	References
	Figure 1.
	Figure 2.
	Figure 3.
	Table 1.
	Table 2.
	Table 3.

