Skip to main content
. 2021 Apr 26;23(4):e27468. doi: 10.2196/27468

Table 4.

Comparison of the performance of different models for detecting COVID-19 using various evaluation metrics.

Model Evaluation Metrics

Accuracy Precision Recall F1 score
SqueezeNet 95.1 94.2 96.2 95.2
ShuffleNet 97.5 96.1 99.0 97.5
GoogleNet 91.7 90.2 93.5 91.8
VGG-16 94.9 94.0 95.4 94.9
AlexNet 93.7 94.9 92.2 93.6
ResNet50 94.9 93.0 97.1 95.0
Xception 98.8 99.0 98.6 98.8
AdaBoost 95.1 93.6 96.7 95.1
Decision Tree 79.4 76.8 83.1 79.8
Explainable deep learning [30] 97.3 99.1 95.5 97.3
DenseNet201 [31] 96.2 96.2 96.2 96.2
Modied VGG19 [32] 95.0 95.3 94.0 94.3
COVID CT-Net [33] 90.7 88.5 85.0 90.0
Contrastive Learning [35] 90.8 95.7 85.8 90.8
Proposed 99.4 99.6 99.8 99.5