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ABSTRACT
Beyond their high clinical relevance worldwide, flaviviruses (comprising dengue and Zika viruses) are of 
particular interest to understand the spatiotemporal control of RNA metabolism. Indeed, their positive 
single-stranded viral RNA genome (vRNA) undergoes in the cytoplasm replication, translation and 
encapsidation, three steps of the flavivirus life cycle that are coordinated through a fine-tuned equili-
brium. Over the last years, RNA methylation has emerged as a powerful mechanism to regulate 
messenger RNA metabolism at the posttranscriptional level. Not surprisingly, flaviviruses exploit RNA 
epigenetic strategies to control crucial steps of their replication cycle as well as to evade sensing by the 
innate immune system. This review summarizes the current knowledge about vRNA methylation events 
and their impacts on flavivirus replication and pathogenesis. We also address the important challenges 
that the field of epitranscriptomics faces in reliably and accurately identifying RNA methylation sites, 
which should be considered in future studies on viral RNA modifications.
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Introduction

Flaviviruses comprise more than 70 known viruses includ-
ing several that are clinically relevant worldwide such as 
dengue virus (DENV), Zika virus (ZIKV), West Nile virus 
(WNV) and yellow fever virus (YFV). Belonging to the 
Flavivirus genus within the Flaviviridae virus family, these 
pathogens are enveloped positive strand RNA viruses. 
Following receptor-mediated endocytosis and envelop 
fusion, the non-segmented viral RNA genome (vRNA) is 
released into the cytosol. It is then translated in a cap- 
dependent manner into a unique large transmembrane 
polyprotein at the endoplasmic reticulum (ER), which is 
further cleaved by cellular and viral proteases. This gen-
erates ten mature viral proteins: 1- seven nonstructural 
(NS) proteins, namely NS1, NS2A, NS2B, NS3, NS4A, 
NS4B and NS5 which are responsible for vRNA synthesis 
and amplification, and 2- Capsid (C), Envelop (E) and 
pre-membrane (prM) structural proteins which drive 
with vRNA the assembly of new virions at the ER. Viral 
particles egress through the secretory pathway and become 
infectious following cleavage of prM by cellular furin in 
the Golgi apparatus. Infectious particles are then released 
in the extracellular space and may infect other target 
cells [1].

Beyond the clinical relevance of flaviviruses due to the 
unavailability of vaccines or therapeutics for most of them, 
these pathogens are fascinating from a fundamental RNA 
biology perspective. With only one open reading frame in 
vRNA, the flavivirus replication cycle is relatively simple 

and occurs exclusively in the cytoplasm without any DNA 
intermediate. Yet, flavivirus replication is generally very 
efficient in cell culture, highlighting that all the genetic 
information required to fulfill a complete life cycle is con-
densed within one single cistron. More specifically, vRNA 
undergoes multiple fates in the cytoplasm, which cannot 
occur simultaneously and involve separate machineries. 
Indeed, vRNA can be: 1- translated by the ribosomes, 2- 
replicated by the viral RNA-dependent RNA polymerase 
(RdRp) NS5, and 3- selectively packaged into newly 
assembled virus particles (Fig. 1). These processes must be 
regulated in time and space to achieve an efficient viral life 
cycle. The equilibrium between those key steps is likely 
orchestrated by the viral replication factories, which derive 
from the remodelling of the ER and allow spatial segrega-
tion of the vRNA in the cytoplasm. In addition, flaviviruses 
have developed strategies to dampen sensing of vRNA by 
the pattern recognition receptors (PRR) of the innate 
immune system [2]. Finally, through XRN1 exonuclease- 
dependent 5ʹ-3ʹ degradation of vRNA and partial resistance 
of its 3ʹ untranslated region (UTR), flaviviruses generate 
a non-coding RNA named subgenomic flaviviral RNA 
(sfRNA), which is involved in viral pathogenicity, antagon-
ism of host innate immune and stress responses [3–7]. 
Hence, vRNA is an interesting tool to gain a better under-
standing of the fundamental aspects of the spatiotemporal 
regulation of RNA metabolism.

Such dynamic control involves RNA modifications. First, 
the 5ʹ end of the genome is methylated by NS5 during the 
capping process, which is required for translation initiation. 
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Second, despite well characterized for several decades in the 
case of transfer RNAs (tRNA) and ribosomal RNAs 
(rRNA), RNA internal modification has emerged in the 
recent years as an important process for the posttranscrip-
tional regulation of messenger RNA (mRNA). Notably, 
mRNA methylation can regulate RNA translation, stability 
and interactions with proteins sometimes by conferring 
specific structural conformations [8–10]. Not so surpris-
ingly, vRNA internal methylation has been described for 
viruses from different families and reported to regulate 
specific steps of their life cycle as well as to mimic cellular 
RNA to avoid sensing as non-self RNA by the innate 
immune system [11–21]. Flaviviruses make no exception 
and this review explores the current understanding of 
how flaviviral RNA methylation affects vRNA cytoplasmic 
fate, life cycle and pathogenesis. We also elaborate on the 
technical challenges related to confidently identifying and 
precisely mapping methylation sites in RNAs to consider in 
future studies.

Methylations of the flavivirus capped vRNA

Capping is likely the first RNA modification event for flavi-
viral vRNA since it occurs during genome replication. First 
evidence was obtained in the late 1970s by Wengler et al. who 
reported the presence of a 2ʹ-O methylated cap1 structure on 
WNV vRNA molecules purified from hamster and mosquito 
cells [22]. Similar cap structures were thereafter identified on 

DENV2 vRNA [23]. One notable feature, however, distin-
guished flaviviral RNAs from cellular mRNAs, namely the 
absence of cap2 structures [24].

NS5 MTase, the swiss army knife of flavivirus genome 
capping

Due to their entirely cytoplasmic life cycle, flaviviruses did not 
evolve to co-opt the canonical cellular capping machinery of 
the nucleus but rather incorporated the necessary enzymatic 
activities into their own replication enzymes. While in eukar-
yotes cap methylation reactions involve at least five sequential 
steps and are usually carried out by multiple cellular enzymes 
[25], vRNA capping is achieved exclusively in the cytoplasm 
by only two viral proteins, namely NS5 and NS3, reflecting 
their optimized enzymatic capability. Thus, in addition to its 
protease activity, NS3 encodes both RNA helicase and RNA 5ʹ 
triphosphatase (RTPase) activities, first identified in WNV 
and DENV [26,27]. The former is responsible for unwinding 
the viral double-stranded RNA involving the neo-synthesized 
vRNA and the negative strand RNA template, while the latter 
removes vRNA 5ʹ phosphates. Both activities are required for 
subsequent cap addition by the RdRp NS5, which remarkably 
combines three capping enzymatic activities: an atypical RNA 
guanylyltransferase (GTase) [28–31] and a dual N7- and 2ʹ- 
O methyltransferase (MTase) [32–34] responsible for the for-
mation of the cap1 structure (Fig. 1, Fig. 2A).

Figure 1. The fates of methylated and non-methylated vRNA species during flavivirus life cycle.
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Flaviviral NS5 MTases specifically methylate RNAs of viral 
origin. This selectivity occurs through the recognition of both 
distinct nucleotides and structural elements in the 5ʹ UTR 
[32,35]. Thus, the first two transcribed nucleotides after the cap 
structure are conserved among flaviviruses and consist in an 
adenine in position +1 and a guanine in position +2 [36,37]. 
Critical for the N7-methylation and formation of the cap0 struc-
ture (m7GpppApGpUp) are the guanine at position +2, the 
uracil at position +3 as well as the presence of a stem loop 
structure whose sequence is not relevant for this activity. 
Subsequently, NS5 modifies vRNA cap0 structure by methyla-
tion at the 2ʹ-O position of the ribose of the first adenosine of 
vRNA to produce the cap1 structure (m7GpppAm2ʹOpGp) (Fig. 
2A). This 2ʹ-O-methylation activity requires, in addition to the 
first adenine and guanine nucleotides, the vRNA to be at least 20 
nucleotides long [35]. On the structural level, NS5 substrate 
preference for flaviviral RNAs is determined by a pocket (con-
stituted by residues I147, G148, E149, and S150), which opti-
mally accommodates the adenine at position +1, and by the 
presence of a glutamate residue E111, which creates an essential 
polar interaction with the guanine at position +2 [38]. This 
nucleotide specificity also influences the subsequent methylations 
steps [30,32,35,39,40].

Similarly to other viral and cellular RNA MTases [41,42], 
flaviviral MTases exhibit a conserved, highly positively charged, 
groove constituted by a K-D-K-E tetrad motif (K61-D146-K182 
-E218 for WNV and K61-D146-K181-E217 for DENV2) that 
sequentially orchestrates the cap methylation events [30,32]. 
Within the tetrad, and likely because of its proximity to the 
S-adenosylmethionine (SAM) donor site, the aspartate residue 
D146 is essential to N7-methylation and therefore to virus 
growth. All other residues of the tetrad are involved in the 2ʹ- 
O-methylation process and substitutions attenuate or delay 
viral replication to varying degrees, as measured by the forma-
tion of smaller plaques and lower viral titres [30,43].

2ʹ-O-methylation of the flaviviral cap, a mimicry to 
escape innate immune recognition by IFIT1

Cap1 structures, commonly found in mRNAs, play a crucial 
role in discerning self from non-self RNAs and preventing the 
undesired activation the innate immune system. RNAs termi-
nated by a 5ʹ triphosphate usually carry the molecular signa-
ture of viral RNAs whose translation is driven by an internal 
ribosome entry site. These are therefore specifically and effi-
ciently recognized by cytosolic sentinels such as retinoic acid 
inducible gene I (RIG-I) that initiates the antiviral signalling 
cascade leading to interferon (IFN) production [44–46]. RIG-I 
preference for uncapped RNAs is provided by the presence of 
a histidine residue at position 830 in the triphosphate-RNA- 
binding pocket, which contributes to the weak binding affinity 
of methylated RNAs, notably cap1 mRNAs, thereby ensuring 
tolerance to self-RNAs [47,48].

Flaviviruses have developed a mechanism of 2ʹ- 
O-methylation of the cap as a strategy to camouflage their 
genome among cellular mRNAs and escape host antiviral 
responses. The work of several independent groups confirmed 
the key function of the 2ʹ-O-methylation on flaviviral cap 
structures in this regard by characterizing 2ʹ-O-MTase mutant 
viruses e.g. WNV E218A, WNV K182A, DENV E217A and 
JEV K61A viruses. In immune-deficient cells such as Vero 
and BHK-21 cells, the replication competence of the 2ʹ- 
O mutant viruses is almost similar to that of wild type virus, 
yet delayed of several hours in some cases [30,49–53]. In 
contrast, their replication is attenuated in immune- 
competent cell lines such as A549 cells, primary cells (e.g. 
mouse embryonic fibroblasts (MEFs), neurons, dendritic cells 
and macrophages) [50,52–56] and insect cells [30,43,49]. 
Interestingly, 2ʹ-O-MTase mutant viruses retain their ability 
to induce an IFN response at levels similar to those of the wild 
type viruses, however, earlier after infection [52–54]. In vivo, 
the attenuation of replication [30,50,51,54] correlates with the 
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Figure 2. Schematic representation of (A) the flavivirus cap1 structure, (B) N6-methyladenosine (m6A) and (C) 5-methylcytosine (m5C).
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absence of the virulence and pathogenicity normally observed 
for wild type viruses, both being restored in the context of 
IFN-deficient mice lacking the type I IFN receptor (Ifnar1-/-) 
[49–51,54,55]. Interestingly, 2ʹ-O-MTase mutant viruses 
showed an increased sensitivity to IFN pretreatment in mice 
suggesting that non-methylated vRNAs are targeted by IFN- 
induced effectors [49,50,54].

The IFN-induced protein with tetratricopeptide repeats 1 
(IFIT1) [57], also known as p56 and ISG56, is one of the effectors 
most highly induced in response to IFN and virus infections 
[57–60]. In their study, Daffis et al. elucidated the role of IFIT 
proteins in restricting 2ʹ-O-MTase mutant viruses in vivo and 
showed that ectopic expression of IFIT1 and IFIT2 (ISG54) in 
MEFs reduced the replication of wild type WNV and abrogated 
that of WNV E218A mutant virus [54]. While it is clear that 
IFIT1 senses vRNAs lacking 2ʹ-O-methyls, its restriction 
mechanism is yet unclear and may involve interactions at two 
different steps of the translation initiation process. First, IFIT1 
and IFIT2 directly interact with the eukaryotic translation initia-
tion factors eIF3E and eIF3C, thereby affecting the stability of the 
ternary pre-initiation complex and inhibiting cap-dependent 
translation [61–64]. Second, IFIT1 binds with high affinity to 
cap0 and 5ʹ triphosphate-terminated RNAs in vitro while this 
interaction is abrogated by the presence of the cap1 structure. 
Thus, IFIT1 substrate recognition sorts out uncapped and cap0 
RNAs thereby sustaining cap1 RNA translation. In addition, 
IFIT1 inhibits translation initiation of cap0 RNAs by efficiently 
outcompeting eIF4E and the cap binding complex eIF4F [65–68] 
(Fig. 1). Using mobility-shift assays, Kimura et al. confirmed that 
IFIT1 binds preferentially to uncapped full-length JEV vRNA 
and selectively inhibits the translation of 2ʹ-O non-methylated 
(cap0) JEV vRNA [56].

Internal 2ʹ-O-methylation: an additional role for NS5?

Whilst its ability to methylate the cap is more effective, flaviviral 
NS5 is able to specifically methylate vRNA internal adenosines, in 
a sequence-unspecific manner [69]. Indeed, in vitro WNV and 
DENV4 MTases indiscriminately methylate RNAs exclusively 
composed of adenosines as well as host ribosomal RNAs. With 
regard to the life cycle, in vitro 2ʹ-O-methylation of internal 
adenosines does not affect vRNA stability but rather attenuates 
its translation efficiency and reduces the capacity of the RdRp to 
elongate vRNA during replication. Liquid chromatography-mass 
spectrometry (LC-MS) analyses confirmed the existence of inter-
nal 2ʹ-O-methyladenosine on genomes purified from DENV1 
virions, despite a very low frequency. Most importantly, these 
internal modifications were not detected in genomes purified 
from 2ʹ-O-MTase mutant viruses confirming the involvement of 
NS5 methylation activity [69]. Recently, a large-scale epigenetic 
analysis by McIntyre et al. reported consistent results for DENV2 
and ZIVK genomes [18].

Therapeutic and prophylactic strategies around vRNA cap 
methylation

NS5 GTase and MTase activities have been the scope of 
several antiviral therapeutics approaches during the last dec-
ades, as well as more recently because of the ZIKV outbreak in 

the Americas. Compounds developed to block these enzy-
matic activities include (i) GTP analogues such as BG-323, 
a thioxothiazolidin-derived inhibitor [70,71], as well as riba-
virin 5ʹ triphosphate whose impact on replication [33,72] 
might rather result from its ability to induce RdRp errors 
[73–76], (ii) SAM analogues such as sinefungin [31,77–79] 
and the compounds NSC 12,155 and NSC 12,590 [80], F3043- 
0013 and F0922-0796 [81], and (iii) non-nucleoside inhibitors 
[82,83]. However, although the ‘straightforward’ aspect of this 
therapeutic approach is very appealing, the development of 
effective and selective methylation inhibitors seems to be very 
challenging since most of these compounds exhibit half max-
imal inhibitory concentration (IC50) values in the micromolar 
range and a relatively low impact on viral replication, notably 
when replication is already established.

2ʹ-O-MTase mutant viruses have emerged as promising 
candidates for the development of live-attenuated vaccines 
with several advantages over conventional live-attenuated 
viruses, which exhibit reduced replication without fully pre-
cluding pathogenic effects (e.g. YFV-17D vaccine [84,85]). 
This idea emerged from the work by Zhou and colleagues 
who demonstrated that the WNV E218A 2ʹ-O-MTase mutant 
virus is attenuated in mice and protects animals from 
a subsequent challenge with pathogenic wild type WNV 
[30]. This concept was subsequently applied to the design of 
JEV, DENV1 and DENV2 live-attenuated vaccines [49,50] 
and extended more recently to the design of a tetravalent non- 
chimeric vaccine against all four DENV serotypes [51]. For all 
approaches, a single dose of 2ʹ-O-MTase mutant viruses 
induced a protective IFN-based immune response and elicited 
a CD8+ T cell-specific response against peptides of the non- 
structural protein that protected both mice and non-human 
primates from a challenge with the wild type virus [49–51]. 
With regard to pathogenic effects, JEV 2ʹ-O-MTase mutant 
virus exhibited a reduced neuroinvasiveness and did not 
induce any neurological symptoms [49]. Whether these live- 
attenuated vaccines provide protection in humans without 
a risk of antibody-dependent enhancement is yet to be 
addressed.

N6-adenosine methylation of flavivirus vRNA

A methyl group can be added to the nitrogen linked to the 
position 6 of adenosines (N6) within mRNA (Fig. 2B, m6A), 
hence conferring several new properties to the modified 
RNA. This reversible N6-adenosine methylation is the most 
prevalent internal RNA modification in the cell [86,87]. It 
primarily occurs in the nucleus within DRAmCH consensus 
motifs (where D = G, A or U; R = G or A; Am is the 
methylated adenosine; and H = U, A or C) and is mediated 
by the MTase-like (METTL) 3 and METTL14, generically 
called ‘writers’, with the contribution of the cofactors 
Wilms tumour 1-associated protein (WTAP) and 
KIAA1429 [88–93]. To a lesser extent, MGAmCK (where 
M = A or C and K = G or U) and UGAmC sequences are 
also methylated. The presence m6A in mRNAs confers 
increased affinity to several cellular RNA-binding proteins 
referred to as ‘readers’ that regulate the fate of the methy-
lated mRNA [10]. For instance, the most characterized 
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‘readers’, YTH Domain Family 1 (YTHDF1) and YTHDF2, 
regulate translation and stability of m6A-containing mRNAs, 
respectively [94,95]. m6A modification is reversible and can 
be removed by ‘erasers’, namely demethylases of the AlkB 
homologues family FTO (ALKBH9) and ALKBH5 [96,97]. 
Such dynamics suggests the existence of a fine-tuned equili-
brium between methylation and demethylation, which may 
allow a quick and local posttranscriptional response of the 
cell to environmental and/or metabolic changes. Changes in 
the m6A-containg mRNA profiles are associated with dis-
eases such as obesity, cancer, neurodevelopment defects and 
plasticity in brain development [98–104].

Impact of m6A modification on flavivirus life cycle

Taking advantage of m6A-specific antibody-based purification 
and next-generation RNA sequencing methods (MeRIP-Seq) 
[86,105], two groups have independently reported the pre-
sence of m6A in ZIKV vRNA [14,21]. This observation was 
expanded to other flaviviruses (DENV, YFV and WNV) as 
well as to hepatitis C virus (HCV), another Flaviviridae 
belonging to the Hepacivirus genus [14], suggesting 
a conserved mechanism across this virus family. The existence 
of m6A in DENV and ZIKV vRNAs was recently confirmed 
by oligonucleotide-based purification of vRNA combined 
with LC-MS-based m6A detection [18].

METTL3/14 knockdown reduced the level of ZIKV vRNA 
immunopurified with anti-m6A antibodies while the opposite 
phenotype was observed when the expression of the demethy-
lases was decreased [21]. This demonstrated 
that m6A modification of ZIKV vRNA is mediated at least 
partly by cellular proteins in contrast to NS5-mediated 2ʹ- 
O-methylation. Importantly, the ‘readers’ YTHDF1, YTHDF2 
and YTHDF3 are all associated with ZIKV vRNA in a m-
6A-dependent manner (Fig. 1). Nevertheless, none of these 
studies mapped the precise methylation sites. Indeed, MeRIP- 
Seq approaches identify rather large regions of vRNA that are 
modified (˃ 100 nucleotides) and potential vRNA methylation 
sites are inferred by the presence of DRACH consensus motifs. 
Noteworthy, the regions identified in different flaviviruses or in 
different strains of the same flavivirus do not always fully 
overlap. For example, regions differ between ZIKV Dakar 
41525-DAK strain (African lineage) and Puerto Rican 
PRVABC59 strain (Asian lineage) [14], the latter being asso-
ciated with severe symptoms (e.g. neonate microcephaly) 
observed during the 2015 pandemic. It is thus tempting to 
hypothesize a link between vRNA N6A methylomic profile 
and pathogenic features. In contrast, the methylated regions 
of DENV and YFV vRNAs overlap relatively well suggesting 
some conservation of methylated regions. Further studies using 
techniques that allow accurately mapping m6A modifications in 
vRNA at the single nucleotide resolution will determine in 
which extent these are conserved across the Flavivirus genus.

In terms of impact on the viral cycle, N6A methylation of 
ZIKV vRNA limits the production of infectious particles. 
Indeed, the knockdown of METLL3/14 ‘writers’ as well as 
YTHDF1-3 ‘readers’ increased extracellular infectious titres 
[21]. In contrast, decreasing demethylases expression or over-
expressing YTHDF proteins altered virus production. Whether 

the presence of m6A in ZIKV vRNA restricts replication or 
particle assembly and release is yet unknown. Interestingly, 
N6A methylation similarly affects HCV production [14]. In 
contrast to known functions for mRNAs [94,95], m-
95], m6A modification does not regulate HCV vRNA translation 
or stability, nor its synthesis but rather acts on virus particle 
assembly together with YTHDF proteins. Consistently, in HCV- 
infected cells, YTHDF proteins relocalized around the lipid 
droplets, where virus assembly takes place [14]. The combined 
introduction of synonymous mutations into four high confi-
dence DRACH motifs identified in HCV envelope E1 coding 
sequence increased virus production without altering RNA 
replication and correlated with a significant enrichment of 
vRNA in complexes containing HCV structural protein core 
[14]. Altogether, this suggests that the methylation of this region 
acts as a negative regulator that is important for genome packa-
ging into assembling virions (Fig. 1). Further studies will have to 
demonstrate how conserved is this function across the 
Flaviviridae family and whether it applies to flaviviruses as 
well. It is though tantalizing to speculate that alterations of 
vRNA m6A modification profile could influence the equilibrium 
between the synthesis of vRNA and its packaging into assem-
bling virus particles. Flaviviral vRNA is likely replicated insides 
vesicular substructure of replication factories, which originate 
from ER invaginations [106–110]. These so-called vesicle pack-
ets (VPs) exhibit an opening that would allow neosynthesized 
vRNAs to exit and to be targeted either to ribosomes for 
translation or to assembly complexes for encapsidation. 3D 
reconstruction of DENV and ZIKV replication factories has 
revealed that virus particle budding events are juxtaposed to 
VP pores [106,108]. This suggested that vRNAs exiting VPs 
might be directly targeted to budding viruses. It will be inter-
esting to assess whether m6A-containing vRNAs are enriched in 
VPs and whether their demethylation or YTHDF loss-of- 
binding contribute to the selective packaging of vRNA into 
assembling particles (Fig. 1). m6A moieties might ‘flag’ vRNAs 
and contribute to the spatial segregation of the different steps of 
the life cycle in the cytoplasm.

Several studies have revealed other m6A readers as regulators 
of flavivirus replication. These include candidates identified in 
a large-scale analysis of ZIKV and DENV vRNA riboproteomic 
e.g. IGF2BP1-3, FMR1, hnRNPC, hnRNPG and hnRNPA2/B1 
that associate with the vRNA and in some cases modulate viral 
replication [111–114]. It will be relevant to evaluate whether the 
regulation of flavivirus replication by these m6A readers occurs 
in a methylation-dependent manner.

m6A, a possible structural switch regulator?

While these discoveries have broadened our perspective on the 
regulation of flavivirus life cycle by vRNA m6A modifications, 
much remains to be explored and understood about the mole-
cular mechanisms involved. Internal N6A methylation alters 
RNA duplexes with impacts on molecular switches [115–117]. 
The NH2 group linked to position 6 of adenosine is engaged in 
pairwise interactions through a hydrogen bond with the neigh-
bouring uridine. Thus, the addition of a methyl to this nitrogen 
may influence adenosine-uridine base pairing, disturb the 
hybridization of two strands and hence, local secondary or 
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tertiary structures of the RNA. Alternatively, the secondary 
structure of the RNA might govern the accessibility of specific 
regions to ‘writer’, ‘eraser’ and/or ‘reader’ proteins, thus indir-
ectly influencing their posttranscriptional actions. Such altera-
tions are highly relevant for flaviviruses whose vRNA forms 
long distance intramolecular interactions for its circularization, 
which is essential for RNA synthesis, and undergoes important 
structural switches that regulate the equilibrium between the 
different steps of the life cycle [2,118–120]. While much focus 
has been paid to vRNA UTRs, there is since recently strong 
evidence that secondary and tertiary structures (including novel 
long-range interactions) in the coding region also play impor-
tant roles in the life cycle of DENV and ZIKV both in cells or 
in the virions [121–123].

With this in mind, we have compared for the purpose of 
this review these published structural models with the corre-
sponding epitranscriptomic data described above in order to 
highlight possible structure/m6A relationships (Fig. 3). The 
three examples highlighted below reveal interesting features 
that may merit further investigation. In their MeRIP-Seq 
analysis mentioned above, Lichinchi et al. identified two 
contiguous m6A-containing regions in the NS5 coding 
sequence of ZIKV African strain MR766 vRNA purified 
from virions (Fig. 3A, nt 8651–8800 in yellow and nt 
8904–9073 in light pink) [21]. According to the structural 
map of the full-length ZIKV MR766 vRNA in cellulo reported 

by Li et al., these regions are partly located in a highly 
structured region of the genome with a ,90 nucleotide- 
long imperfect stem (Fig. 3A, upper part of the structure) 
[123]. Most notably, one strand of this stem (highlighted in 
grey), which is located right before an unstructured region, 
makes a long distance interaction with a sequence located 
,8,000 nucleotides upstream, in the prM coding sequence. 
Closer analysis of the sequence of the whole region identified 
seven m6A consensus motifs. This includes two DRACH 
motifs in the long stem mentioned above (nucleotides circled 
in red). In addition, one MGACK motif (circled in black) was 
identified in the unstructured region directly upstream the 
strand, which hybridizes with the region involved in the NS5/ 
prM RNA interaction. If one considers that the presence 
of m6A influences local hybridization properties, this sug-
gests that the methylation status of this region influences 
whether or not this strand makes the stem in NS5 depicted 
in Fig. 3A or is rather engaged in NS5/prM long-range 
interaction.

The comparison between the m6A-methylome and the 
structure of DENV2 vRNA from two independent studies 
also revealed interesting features [14,121]. Indeed, 
a methylated region in NS3 coding sequence of the New 
Guinea C strain partially overlaps with a structured region 
identified in the genome of the closely related S16803 strain 
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of ZIKV MR766 genome (yellow and light pink circles) were identified in the reported secondary structure [14,21,121,123]. The nucleosides in predicted DRACH and 
MGACK m6A consensus motifs are circled in red and black, respectively. The RNA strand making intramolecular long-range interaction with prM coding region is 
indicated in grey. (B, C) Two different methylated regions of DENV2 NGC strain (yellow circles) were mapped within two independent reported structures in the NS3 
coding sequence of the closely related strain DENV2 S16803 [14,21,121,123]. The nucleosides in predicted DRACH m6A consensus motifs are circled in red. In B, the 
DRACH motif is located in a 14 nucleotide-long stem flanked by unstructured regions whose SHAPE reactivity (indicated in grey) changed if vRNA was gently 
extracted from virions.
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(element 10 in [121]; Fig. 3B, nt 4650–4682 in yellow). This 
shared region contains a 14 nucleotide-long stem, which 
includes a consensus DRACH motif, and is flanked by three 
unstructured sequences whose reactivity changes depending 
on whether the vRNA structure is analysed in authentic vir-
ions (i.e. capsid associated) or following gentle extraction (i.e. 
protein-free). These differences might reflect a structural 
switch of this region that would occur during vRNA uncoat-
ing following virus entry or during genome encapsidation into 
assembling particles. In cells, methylation of this stem may 
affect its stability hence, structurally rearranging the whole 
region, modifying its interactome and targeting the RNA to 
specific steps of the life cycle.

Finally, another methylated region is found in a structural 
element located in NS3 coding sequence (element 14 in [121]; 
Fig. 3C, nt 5825–5932) and contains 4 DRACH motifs, which 
all completely or partially overlap with loops of bulges. 
Another motif is located right downstream this element in 
an unstructured sequence. Despite still unclear, this suggests 
that m6A modifications primarily occur in unstructured 
regions or destabilize neighbouring base pairing. In the case 
of HCV described above, the four predicted m6A sites in E1 
coding sequence which regulates virus production, are located 
in rather unstructured regions [14,124]. If N6A methylation of 
vRNA indeed influences its structure, it is conceivable that 
this will result in direct impacts on structural switches as well 
as long-range interactions. Whether the three selected exam-
ples of a hypothetical methylation/structure relationship for 
flaviviruses actually exist as m6A switches and are functionally 
relevant to viral replication needs to be addressed experimen-
tally. It is noteworthy that this comparative exercise did not 
take into consideration that the reference studies used differ-
ent cell lines (e.g. Vero vs. Huh7 cells) and vRNAs of different 
origins (intracellular vRNA vs virion vRNA).

Possible additional functions of flavivirus vRNA 
N6A methylation

N6A methylation of vRNA may also allow flaviviruses to 
escape the sensing by the innate immune system. Indeed, for 
HCV (as well as for human metapneumovirus, a negative 
strand RNA virus), the presence of internal m6A in vRNA 
was recently reported to decrease the production of type I IFN 
in infected cells [17,125]. This correlated with a decreased 
binding efficiency of the vRNA to RIG-I. While the molecular 
mechanisms behind this interference remain to be fully elu-
cidated, internal m6A seems to constitute an additional strat-
egy to the cap 2ʹ-O methylation to ‘disguise’ vRNAs as self- 
RNAs (Fig. 1). Future studies will have to confirm or invali-
date this hypothesis.

The fact that flavivirus vRNA does not transit through the 
nucleus during its life cycle implies that m6A modifications 
occur in the cytoplasm, in contrast to the co-transcriptional 
methylation of host mRNAs. While some studies have 
reported this methylation activity in the cytoplasm, it will be 
interesting to determine how flaviviruses hijack this cellular 
activity in the vicinity of replication factories. Interestingly, 
besides exploiting the N6A-methylation-related machinery to 

regulate their own genomes, DENV and ZIKV also alter the 
host N6A methylome [21,126,127]. Notably, infection 
increased and reduced m6A content in RIO Kinase 3 
(RIOK3) and Cold Inducible RNA Binding Protein (CIRBP) 
mRNAs, respectively, changing the expression profile of the 
corresponding proteins, which were shown to regulate repli-
cation efficiency [126]. These changes in the mRNA methyla-
tion profile, likely occurring in the nucleus, were indirect 
since attributed to the virus-induced ER stress or immune 
response. Nevertheless, this suggests that flaviviruses hijack 
the m6A machinery to generate a cellular environment 
favourable to viral replication.

Other types of RNA methylations potentially 
involved in flavivirus life cycle

A recent epitranscriptome analysis of affinity-purified 
vRNAs from several positive strand RNA viruses (including 
DENV and ZIKV) opened the possibility that flaviviral 
RNA might actually be decorated by modifications with 
over 40 types of methylation (including m6A and A2ʹOm) 
detected by mass spectrometry [18]. While this study made 
clear that vRNA is modified, the fact that so many types of 
methylations were detected does not make them directly 
relevant for replication. Indeed, some were found at very 
low stoichiometry, and it is conceptually challenging to 
envision how the viral genome would have evolved to co- 
opt in the cytoplasm all the cellular machineries required to 
fulfill this massive epigenetic task, especially considering 
that vRNA is mostly confined in membranous replication 
factories. To reconcile this, further accurate mapping and 
functional studies for each type of nucleoside methylation 
are needed. Very interestingly, the presence of some methy-
lated nucleotides was specific to either flavivirus. For 
instance, methylated uridines m3Um and m5Um were 
detected in DENV vRNA but not in ZIKV vRNA. In con-
trast, dimethylcytosines m5Cm and m4

4C were present only 
within ZIKV vRNA inside virions. This suggests that this 
modification is not only ZIKV-specific but may also be 
a marker of encapsidated vRNA since it was absent in 
genomes purified from infected cells. Whether the methyla-
tion landscape of flavivirus influence the different steps of 
the life cycle or specific aspects of ZIKV pathogenesis need 
to be fully explored. Furthermore, the authors identified in 
this study DEAD box protein 6 (DDX6) as a host factor 
modulating the abundance of m5Cm and m4

4C as well as 
ZIKV replication. Future studies will have to evaluate the 
contribution of m5Cm and m4

4C to the ZIKV life cycle and 
whether DDX6 role in viral replication is related to these 
modifications or rather to its implication in decapping 
activity, RNA stability in P-bodies and sfRNA metabolism 
[128,129]. Finally, since m5C (Fig. 2C) was shown to play 
important roles in viral RNAs of murine leukaemia virus 
(MLV), human immunodeficiency virus (HIV-1) and 
Epstein-Barr virus (EBV) [12,15,130,131] and was detected 
in DENV and ZIKV vRNAs, it will be interesting to further 
investigate the potential function of this modification in the 
flavivirus replication cycle.
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Technical challenges in flaviviral RNA epigenetics

In relation to the recent attention received by RNA modifica-
tions in the RNA field, molecular virology on RNA modifica-
tions is still relatively sparse. This is likely due to a number of 
important technical limitations concerning analytics of RNA 
modifications and the isolation of pure vRNA in high 
amounts that we will address in this section. We also highlight 
additional approaches that have not yet been applied and 
could be considered for flaviviral RNAs.

Analytical techniques of RNA modifications can be 
roughly divided into two categories [132,133]. In brief, bio-
physical methods for the characterization of modified nucleo-
sides such as chromatography, mass spectrometry, or 
combinations thereof, can identify and quantify RNA mod-
ifications in small samples only at the expense of sequence 
information. A combination of modification and sequence 
information, commonly obtained from proteomics 
approaches, is available only for samples of double-digit 
microgram amounts, i.e. typically for tRNA and rRNA 
[134,135]. Moreover, as described below, sample purity must 
be considered in the analysis in order to reliably assign 
a proper modification to the RNA of interest.

In contrast, there exists an ever-growing array of RNAseq- 
derived methods that make use of various chemical or bio-
chemical properties of RNA modifications to place them in 
a sequence context [132]. Results from this so-called ‘modifi-
cation mapping’, or ‘modification calling’ form the basis for 
the vast majority of reported viral RNA modification sites. 
However, these approaches come with their own set of experi-
mental problems. The large diversity of mapping methods 
makes discussions about advantages and drawbacks imprac-
tical at this point. It should be made clear, though, that the 
different methods result in modification calling data of var-
iegated quality, and that it is typically at the authors’ discre-
tion to set an arbitrary threshold above which a signal is 
‘called’ a modification.

Antibody-based detection of viral RNA modifications

Among the various reagents used in modification mapping, 
antibodies hold a special place, given that the 
first m6A mapping was performed using antibody affinity 
enrichment in the 1980s [13,136] before the current surge 
was triggered by combination with RNAseq [86,87]. 
However, antibodies recently emerged as problematic 
[137,138]. Similar to applications in epigenetics, where e.g. 
single methylations on either nucleobases or amino acids 
must be discriminated, certain commercial antibodies were 
found to have been insufficiently validated [139,140]. Most 
antibody-based mapping reports employ modification calling 
based on simple enrichment calculations, which identify 
regions or sequence stretches (generally hundreds nucleotide- 
long) rather than single nucleotides as mapping data [127]. 
Hence, the modification calling is necessarily vague. Authors 
generally look afterwards for consensus methylation motifs to 
identify putative modified sites and to elaborate validating 
directed mutagenesis-based experiments. More advanced 
techniques include a crosslinking step that allows more 

stringent washing conditions to remove non-specific bin-
ders [141].

In the particular case of m6A, it is often assumed (tacitly or 
explicitly) that signals only originate from activity of the 
METTL3/14 complex, which is known to depose methylation 
marks at the DRACH consensus motif, and other potential 
sites could be ignored. A smart method to validate such 
presumed m6A sites has been developed already in the 1980s 
[142]. Within the central consensus, Kane and Beemon 
mutated the pyrimidine downstream of the methylation target 
adenosine to a uridine, and found that a DRAUH was no 
longer methylated. This ‘silent’ mutagenesis approach has 
been used in several more recent publications on m6A in 
vRNAs, including Flaviviridae vRNAs [12,14,21] as described 
above.

Identification of viral RNA modifications from 
cDNA-affinity purified samples

Sample purity is an often-overlooked problem for such ana-
lyses. Indeed, LC-MS-based analyses of mRNA populations 
purified by oligo-dT affinity frequently pick up marker mod-
ifications of contaminating rRNA [143]. Given that viral par-
ticles of any kind typically package other host RNAs in 
a rather unspecific manner [144], an LC-MS analysis of total 
RNA isolates of viral particles can be expected to contain 
standard modifications encountered in host tRNA and 
rRNA fragments [145]. Hence, further highly specific purifi-
cation approaches e.g. by RNA size fractionation [12] or 
cDNA affinity are required to reduce non-specific signals 
[15]. Early work in the 1980s on the detection of modifica-
tions in coding sequences relied on in vivo labelling of RNA 
with 32P and/or L-[methyl-3H]-methionine, respectively. 
Thus, labelled RNA was affinity-purified e.g. using oligo-dT 
or cDNA, digested to nucleotides and separated by multi-
dimensional chromatography after which autoradiography of 
the label allowed quantification [136,146,147]. Many of the 
RNAs thus investigated were indeed viral coding RNA con-
taining mainly m6A in viruses replicating in the nucleus, e.g. 
in simian virus 40 [148], adenoviruses [149], herpes virus 
[150], influenza virus [151] and Rous sarcoma virus [147]. 
For the latter retrovirus, 13 sites have been individually 
mapped, constituting a major early contribution to the estab-
lishment of the DRACH consensus [146,147]. Other modifi-
cations detected in viral RNA using radioactive label included 
cap structures, ribose methylations, and m5C in low quantities 
[22,23,152,153].

More examples of cDNA purification-based analysis 
include the above-mentioned LC-MS analysis of various 
viral RNAs, including those of ZIKV and DENV [18] and 
more recently, EBV. Two small RNAs from EBV, namely 
EBER1 and EBER2, were isolated by cDNA affinity, 
and m5C was detected by LC-MS in EBER1 at near quantita-
tive stoichiometry [15]. As mentioned above, special attention 
must be given to the purity of the analysed samples as well as 
to subsequent validation since heavily modified rRNAs and/or 
tRNAs, which may be unspecifically co-purified are expected 
to introduce undesired methylation signals during the detec-
tion. In case of EBER1, the presence of m5C was confirmed by 
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bisulfite-seq, which allowed to place the modification at posi-
tion C145 in this small structured RNA. Of note, the presence 
of m5C 145 was contingent upon the expression of NSUN2, 
a tRNA m5C MTase known to act on highly structured 
tRNA [15].

Other approaches for the identification of viral RNA 
modifications

The following methods have not yet been applied to study 
flavivirus epitranscriptomics: (i) Ribomethseq is a mapping 
method based on protection against alkaline degradation 
conferred by ribose methylation [154]. Using this approach 
Ringeard et al. identified 17 distinct 2ʹ-O-methylated resi-
dues in the HIV RNA genome and showed that HIV recruits 
the host methyltransferase FTSJ3, via a complex including 
the TAR RNA-binding protein to execute internal ribose 
methylations [155]. Interestingly, absence of ribose methyla-
tion resulted in recognition by the PRR melanoma differen-
tiation-associated protein 5 (MDA5) and subsequent 
induction of IFNs. (ii) Direct RNA sequencing using the 
nanopore technology was applied to unravel the epitran-
scriptome of severe acute respiratory syndrome corona-
viruses SARS-CoV and most recently SARS-CoV-2 
allowing the detection of 41 potential modification sites in 
the latter [156,157]. (iii) Other methods for modification 
mapping that yield single nucleotide resolution frequently 
rely on chemical treatment that achieves a certain discrimi-
nation in its reaction with a modified versus unmodified 
nucleoside [132,133,158,159]. Fortunately for the field of 
viral RNA modification, these methods perform better on 
short transcriptomes such as viral RNA genomes than they 
do on cellular transcriptomes of a complexity in the order of 
107. Thus, while many transcriptome-wide studies on mod-
ification mapping are subject to controversial findings 
because the large sequence space gives rise to signal-to- 
noise problems, short viral RNA genomes can be expected 
to be suitable and it will be interesting to explore such 
approach in the case of flaviviral RNA.

Perspectives and conclusions

In addition to being critical for initiating the cap-dependent 
translation, vRNA methylation has emerged during the last 
years as a mechanism exploited by flaviviruses to control their 
life cycle as well as to evade sensing as non-self by the cellular 
antiviral machinery. While much progress was recently made, 
several important hypotheses will be scientifically very exciting 
to address thanks to the advent of new technologies and/or 
approaches. Regions of the genomes with m6A have been iden-
tified but they are generally over 100 nucleotide-long and con-
tain several consensus methylation motifs. Moreover, 
determination of the m6A methylome mostly relied on the 
binding of vRNA to anti-m6A antibodies, which may not be 
completely specific to this modification. Hence, even if func-
tional validation must be made by directed mutagenesis of the 
consensus motifs, it is not indicative that these sites are actually 
methylated and it will be critical to accurately identify the 
modified positions at the single nucleotide resolution. This 

also applies to 2ʹ-O-methylated internal adenosines as well as 
to any other modifications for which no role was described at all 
for flaviviruses although their presence was experimentally evi-
denced. Deeper characterization of these newly identified mod-
ified sites is expected to reveal specific roles in vRNA structure 
dynamics, notably in riboswitches regulating transitions 
between vRNA translation, replication and packaging. In the 
case of m6A in flavivirus vRNA, the step(s) of the life cycle 
impacted by this modification is unknown. By analogy with 
HCV, one should anticipate that it is important for the produc-
tion of virus particles. Future studies will need to address 
whether unmethylated vRNA is specifically selected for packa-
ging into assembling virions and whether this is related to the 
architecture of the viral replication compartment or involves 
specific RNA packaging signals. It will be interesting to also 
evaluate the regulation by cellular ‘readers’ of methylated vRNA. 
It is noteworthy that the notion of a ‘reader’ function, seeped 
into the field from the epigenetic DNA methylation field, 
implies that the principle function of a modification lies within 
the selective interaction with a dedicated binding protein. While 
this has turned out to be a guiding principle in m6A research, 
the situation is very different for other modifications. Indeed, 
the examples of tRNA and EBV EBER1/2 modifications [15] 
pinpoint that given ‘readers’ and ‘writers’ recognize aspects of 
RNA secondary and/or tertiary structure rather than a sequence 
motif per se.

Interestingly, methylation of specific vRNA regions may 
contribute to the evasion of the innate immune response 
synergistically with the cap1 structure. It will be essential to 
address whether such molecular mechanisms are conserved 
across the Flavivirus genus. Alternatively, some structure/ 
activity relationships specific to a given flavivirus may 
hypothetically contribute to unique aspects of viral tropism 
and/or pathogenesis (e.g. neurovirulence in ZIKV-infected 
foetuses). Finally, the methylation status of the noncoding 
sfRNA, which is abundantly produced in the course of 
flavivirus infection is completely unknown. Since fragments 
corresponding to vRNA 3ʹ UTR contained m6A, it is tempt-
ing to speculate that the sfRNA is differentially modified as 
compared to the flaviviral genome. If that is the case, it 
could be envisioned that specific sfRNA modifications con-
tribute to its biogenesis and/or stability as well as to its 
functions in virus-induced cell death and antiviral response. 
Overall, a complete and highly resolved functional land-
scape of flavivirus RNA methylome, which may be 
extended to other epigenetic modifications, will hopefully 
unveil novel molecular mechanisms governing the viral 
replication cycle and pathogenesis.
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