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Inoculation with arbuscular mycorrhizal fungus modulates defense-related genes 
expression in banana seedlings susceptible to wilt disease
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ABSTRACT
Banana as an important economic crop worldwide, often suffers from serious damage caused by Fusarium 
oxysporum f. sp. Cubense. Arbuscular mycorrhizal (AM) fungi have been considered as one of the promising 
plant biocontrol agents in preventing from root pathogens. This study examined the effect of AM fungal 
inoculation on plant growth and differential expressions of growth- and defense-related genes in banana 
seedlings. Tissue-cultured seedlings of Brazilian banana (Musa acuminate Cavendish cv. Brail) were inocu
lated with AM fungus (Rhizophagus irregularis, Ri), and developed good mycorrhizal symbiosis from 4 to 11 
weeks after inoculation with an infection rate up to 71.7% of the roots system. Microbial abundance revealed 
that Ri abundance in banana roots was 1.85×106 copies/ml at 11 weeks after inoculaiton. Inoculation 
improved plant dry weights by 47.5, 124, and 129% for stem, leaf, and the whole plant, respectively, during 
phosphate depletion. Among a total of 1411 differentially expressed genes (DEGs) obtained from the 
transcriptome data analysis, genes related to plant resistance (e.g. POD, PAL, PYR, and HBP-1b) and those 
related to plant growth (e.g. IAA, GH3, SAUR, and ARR8) were up-regulated in AM plants. This study 
demonstrates that AM fungus effectively promoted the growth of banana plants and induced defense- 
related genes which could help suppress wilt disease. The outcomes of this study form a basis for further 
study on the mechanism of banana disease resistance induced by AM fungi.
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Introduction

Bananas are the most high-yield fruit and provide staple food for 
around 400 million people worldwide.1 Currently, its production 
is damaged destructively by the soil-born disease induced by 
Fusarium oxysporum f. sp. Cubense, especially the tropical race 4 
(Foc TR4), which resulted in economic, environmental, and 
safety threat due to excessive fungicide input.2 To respond to 
the ecological principles of sustainable development, biological 
control has gained interest in the research of disease resistance 
mechanism. Studies have shown some microorganisms effec
tively suppress the pathogen Foc TR4. The endophytic bacterial 
strain ITBB B5-1 isolated from the rubber tree suppressed the 
mycelial growth of the pathogenic fungus Foc TR4.4 Application 
of a bioorganic fertilizer formulated by combining Bacillus amy
loliquefaciens NJN-6 with compost significantly decreased Foc 
TR4 disease incidence by 68.5%6. The glasshouse trial showed 
that the consortium of Pseudomonas aeruginosa DRB1 and 
Trichoderma harzianum CBF2 with the bioformulation in 
pasta granules reduced disease severity (DS) by more than 50 
center dot against Foc TR4.5 Our laboratory research found 
Burkholderia sp. HQB-1 efficiently controlled banana wilt 
through phenazine-1-carboxylic acid secretion.7 Those discov
eries enhance our understanding of biocontrol practices for 
plant defense.2–4

Arbuscular mycorrhizal (AM) fungi, widely distributed in 
terrestrial ecosystems, not only improve plant mineral nutri
tion but also play an important role in controlling soil-borne 
diseases and regulating soil structur.7, 8 It has been reported 
that the induction of defense responses was much higher and 
more rapid in the AM inoculated potatoes than in the un- 
inoculated treatments in the presence of pathogen infection.9 

Besides, a significant reduction of the mosaic disease severity 
and incidence was observed as a response to the mycorrhizal 
colonization of the infected tomato.10 AM colonization alle
viates F. oxysporum wilt in plants such as asparagus and 
tomato.11–12 Glomus applied significantly improved banana 
seedling growth, and offered 100% protection to the ‘Lakatan’ 
seedlings against Foc TR4, indicating that AM fungi coloni
zation resulted in weak but distinctly enhanced plant resis
tance to pathogens. However, the underlying mechanism of 
AMF-induced disease resistance remains elusive.

Previsous studies focus on the analysis of plant physiology 
and biochemistry following AM fungi inoculation. AM fungi 
inoculated Medicago sativa plants had higher biomass and 
nitrogen (N), phosphorus (P) and potassium (K) contents13. 
Study have found banana roots are also colonized and mount 
plant vigour which enhances water absorption and mineral 
nutrient uptake.14 Under natural conditions, AM fungi had a 
positive effect on banana plant height, chlorophyll content, and 
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leaf N, P, K concentrations.15 However, there are few studies on 
the molecular mechanism of AM fungi in banana.

In this study, we examined mycorrhizal colonization and 
abundance in banana roots and analyzed alterations in gene 
expression following AM fungi inoculation. We hypothesized 
that AM fungi could induce the defense systems in banana by 
regulating gene-related expression. To address this, the tran
scriptome sequencing technique was used to identify differen
tially expressed genes related to defense and plant growth in 
mycorrhizal banana plants, and to analyze the disease-related 
pathways.

Material and methods

Materials

The tissue-cultured seedling with 5 leaf-age in the consistent 
growth of Brazilian banana (Musa acuminate Cavendish cv. 
Brail), were provided by Zhangzhou Weitian Biotechnology 
Co., Ltd. China.

The AM inoculum of Rhizophagus irregularis (Ri) was pur
chased from Premier Tech Biotechnologies, Riviere-Du-Loup, 
QC, Canada (https://www.ptagtiv.com/en/products/zone/uni 
ted-states/). The inoculum contains 4000 spores per ml. It was 
stored at 4 °C till use.

The substrate was amixture of river sand and soil (v/v, 2:1). 
The soil was from Huaqiao University campus (Xiamen 
Campus), and the river sand was purchased from the local 
market. The sand was washed several times with tap water. 
The mixed substrate was autoclaved at 121°C for 30 min, then 
cooled at room temperature prior to potting.

Experimental design

The pot experiment with banana was conducted in aglasshouse 
of Huaqiao University, China. Acomplete randomized block 
design was used consisting of two inoculation treatments (with 
AM fungi inoculaiton, AMF; and without AM fungi inoculai
ton, CK), four sampling times (5, 7, 9 and 11 weeks after 
inoculation) with four replications (pots) per treatment of 
each harvest.

The inoculum of Rhizophagus irregularis (Ri) was activated 
in the dark at 25 °C incubators for 30 min. Tissue-cultured 
banana seedlings were washed with distilled water to remove 
all medium attached to roots. About 5 ml of Ri solution and 
45 ml aseptic water were mixed in a100 ml beaker. The seedling 
was soaked in the 50 ml suspension for 30 min at room 
temperature, and the CK was treated by distilled water. The 
banana seedlings were planted in plastic pots (7cm in width, 
7cm in height) filled with 350 g substrates. Each pot contained 
one seedling. The remaining solution containing AM fungi 
spores was evenly irrigated into all pots of AM fungi treatment 
(each pot inoculated with around 1000 spores). The average 
temperature was 25/15 °C (d/N), with 80% relative humidity in 
the glasshouse. The seedlings were irrigated with a25 ml phos
phorus-free Hoagland solution every two weeks. Eleven weeks 
later after transplanting, all banana seedlings were harvested 
for assessments. Seedlings were removed from the soil and 
divided into above-ground and roots. About 100 fragments of 

fresh roots were selected for the mycorrhizal infection, and the 
left was quickly conserved in liquid nitrogen. The dry weights 
of the above-ground and roots were determined by the con
ventional method.

Microscopic observation of AM fungi colonization

Banana seedlings were sampled for assessing AM fungal colo
nization at 5, 7, 9, 11 weeks after inoculation. After washing, 
root samples were cut into about 1cm in length, and placed in 
50 ml centrifuge tubes with FAA (formaldehyde, acetic acid, 
and 50% ethanol, 13:5:200, v/v/v) for at least 24 h. Then, the 
roots were cleaned in 20% KOH solution, 90 °C water bath for 
1 h. After rinsing with water 3―5 times, the roots were deco
lorized in alkaline H2O2 (ammonia, 10% H2O2 and water, 
1:10:200, v/v/v) for 1.5 h at room temperature. The root sec
tions were rinsed into 5% acetic acid and acidify for 5 min. 
Afterward, the roots were stained with 5% acetic acid-ink, 66 ° 
C water bath for 30 min. The section covered with alayer of 
PVLG and used magnified intersections method observation 
count under amicroscope.

The mycorrhizal colonization rate was calculated as the 
percentage of infected root sections over the total number of 
root sections. The infection rate was calculated as follows:

Mycorrhiza colonization rate(%) = number of root seg
ments infected by AM fungi/the total number of root segments 
× 100%.

Real-time quantitative PCR to detect AM fungi abundance

To isolate high-quality AM fungus DNA, about 1200 spores 
were selected from the liquid Ri inoculum. The sample was 
fully ground with mortar and pestle in the presence of liquid 
nitrogen and the AM fungi DNA was extracted according to 
fungal genomes DNA instructions. The AM fungal specificity 
primer references were designed by16, in Table 1.

PCR amplification, the primer specificity was tested in 3% 
agarose gel. After the target fragment was obtained and pur
ified by gel cutting, and the specificity fragment AMF250 was 
cloned into the pMD-18-T Vector carrier using Takara pMD- 
18-T Clone Kit (Takara, Japan]. The Ecoli DH5α was con
firmed through Blue-White Screening and PCR to confirm 
AMF250 expression transformants.

The standard recombinant plasmids carrying AMF250 
were extracted, and the plasmid concentration was deter
mined by Implen Ultramicro-spectrophotometer. The 
SYBR Green for qPCR was used by setting 10Xgradients 
with the range from 10−1–10−7 copies/mL. The total 
volume of the system was 25 μl. The AM fungal reaction 
program was as follows: 30 sdenaturation at 95 °C, fol
lowed by 40 cycles at 95 °C 15 sec, 58 °C 90 sec, 72 °C 
60 sec, and 72 °C 10 min. The production was dissolved 

Table 1. Two primers used in this experiment.

Sample
Primer 
name Primer sequence (5ʹ-3ʹ)

Tm 
(°C)

Product 
size(bp)

AMF Intra 1 GGTGCGATTCTGTGGAGTGTGAGG 58 250
Intra 2 CAAGCTTTCGGCACCAGAGCAACG
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analysis at 95 °C 15 sec, 60 °C 30 sec, 95 °C 15 sec, and 
each treatment was repeated three times. Based on the 
standard curve of qPCR, the number of AM fungi was 
calculated in the tested samples. We tested AM fungi 
abundance in the banana roots sampled at 5, 7, 9, 
11 weeks after inoculation, respectively, and fungal DNA 
was isolated using the plant DNA extraction kit 
(Shenggong, Shanghai).

RNA extraction and the library construction for RNA-Seq

The total RNA was extracted from banana roots by RNA 
Purification Kit (Tiangen Biochemical Technology Co., Ltd.) 
method. The extent of RNA degradation and pollution was 
analyzed with agarose gel electrophoresis. The OD 260/280 
ratio of the total RNA was checked with Nanodrop to ensure 
purity. The RNA concentration and integrity were evaluated 
using Qubit and Agilent 2100, respectively.

The sequencing libraries were constructed after aquali
fied RNA sample test, and Eukaryotic mRNA was enriched 
from total RNA using poly-T oligo attached magnetic beads 
through A-Tcomplementary pairing and mRNA poly-A tail 
combined way. Soon afterward, the fragmentation buffer 
was added to interrupt mRNA into short fragments. The 
first-strand cDNA was synthesized using random hexamers, 
mRNA as template, and reverse transcriptase, followed by 
thesecond strand cDNA synthesis using abuffer, dNTPs, 
DNA polymerase I.The double-stranded cDNA was purified 
by AMPure XP beads, and then subjected to terminal repair 
and poly-A tail was extended, and connected with sequen
cing adapters, choosing suitable fragments. Finally, the PCR 
amplification was performed, and the final library was 
obtained.

While the library construction was completed, the RNA 
concentration of the library was assessed with Qubit 2.0 to 
preliminary quantify. The insert size was detected using 
Agilent 2100 and qualified insert size was accurate quanti
fication for effective concentration using the Q-PCR 
method.

RNA-Seq data analysis

To identify the differential genes induced by AM fungi, the 
cDNA library was constructed, and the Illumina HiSeqTM 
2500 transcriptome analysis was carried out by the plat
form. The banana genomes were compared with the geno
mic data of wild banana. Clean Data was mapped to the 
reference genome using HISAT. The expression level of the 
gene in each sample was analyzed by HTSeq software using 
the union model and was estimated as Fragments Per 
Kilobase of transcript sequence per Millon’s base pairs 
sequenced (FPKM). Differential expression genes (DEGs) 
between each chosen sample pairs were detected by DEseq 
software, and were obtained by screening standard of the 
gene with |log2 (Fold Change)| > 1 and p-value < 0.05. The 
identified DEGs were subjected to GO and KEGG enrich
ment analyses. The KOBAS 2.0 software was used to calcu
late pathway enrichment of DEGs, we used an FDR ≤ 0.05 
to define significantly enriched KEGG pathways and GO 
terms.

Statistical analysis

Statistical analysis was conducted by the software SPSS 18.0 
(IBM, USA). And multiplicity analysis of variance and one- 
way ANOVA were used to determine the significant differ
ences.

Results

Mycorrhizal colonization

Banana roots of inoculated seedlings were colonized by Ri at 5 
to 11 weeks after inoculation (Figure 1). AM fungal sporophyte 
and mycelium (Figure 1a), the full shape, relatively smooth 
spores attached the surface of the root, and the hyphal growth 
along the cell wall (Figure 1b) was observed in root samples of 
inoculated seedlings under microscope. Moreover, the mycor
rhizal infection rates were increased gradually with the culture 
time, and the maximum infection rate was up to 71.7% after 

Figure 1. Morphological structure of Brazilian banana roots colonized by AM fungus Rhizophagus irregularis. AM fungal sporophyte and mycelium (a), the full shape, 
relatively smooth spores attached the surface of the root, and the hyphal growth along the cell wall (b) was observed in root samples of inoculated seedlings under 
microscope.
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11 weeks’ pot culture (Figure 2a), indicating Ri and Brazilian 
banana developed good symbioses. No AM structures were 
observed in the non-inoculated plants.

AM fungal abundance in banana roots

The standard recombinant plasmid was diluted 10-fold gradi
ent ranging from 10−1 ~ 10−7 copies/mL (Fig. S1). The ampli
fication standard curve equation of AM fungi was Y= −3.14 X 
+ 36, R2 = 0.999, E% = 108.4. The amplification curve of the 
standard fragment of the recombinant plasmid was smooth 
and atypical S-shaped curve was present, and the interval of 
each cycle threshold was uniform.

The qPCR results showed that the Ri abundance in banana 
root was detected effectively at 5 weeks after inoculation, and it 
increased following the culture time. It was the highest 
(1.85 × 106 copies/mL) at the 11 weeks, about 7.4 times more 
than that at 5 weeks (Figure 2b).

Effect of AM inoculation on plant growth

Compared with CK, the growth (the above-ground parts 
weight, whole plant weight, plant height and maximum root 

length) of inoculated seedlings was increased significantly 
(P< .05; Figure 3), and the increments of stem, leaf, and the 
whole plants were 47.5%, 123.5% and 128.9% respectively 
(Figure 3a). The average stem diameter of inoculated seedlings 
was significantly higher than that of CK. Besides, the plant 
height and the maximum root length were improved by 
6.76% and 12.8% in relative to CK (Figure 3b). Dry weight of 
AM roots was decreased by 55.3% over that of CK (Figure 3a) 
in that the roots system of CK is more developed than that of 
AM. The results showed that AM fungi could promote the 
growth of the above-ground parts in the bananas seedling. 

Transcriptome analysis

A total of 69,232,109 and 79,591,958 raw reads for the CK and 
AMF samples were obtained, respectively (Table 2). After 
removing the low-quality reads, 64,738,040 and 71,307,217 
clean reads from the mapped wild banana genome were 
acquired. The average value of GC content was 50.2%. The 
percentage of Q20 and Q30 was more than 97 and 92, respec
tively. The percentage of total mapped reads to total reads was 
between 76.9 and 85.4, while the multiple mapped reads were 
ranged from 1.15 to 1.44%.

Figure 2. Mycorrhizal infection rates (a) and abundance abundance of Rhizophagus irregularis (b) in Brazilian banana roots at 5, 7, 9 and 11 weeks after inoculation with 
AM fungus. Error bars represent standard error of the mean. The average expression of four biological replicates is shown in the same time. The t-test was used to 
calculate significance (*p< .05).

Figure 3. The effect of AM inoculation with Rhizophagus irregularis on biomass accumulations (dry weights) of the root, stem, leave and the whole plant (a) and plant 
height, maximum root length and stem diameter (b) of Brazilian banana seedlings at 11 weeks after inoculation. Error bars represent standard error of the mean. Per 
treatment the average expression of four biological replicates is shown. The t-test was used to calculate significance (*p< .05).
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A total of 1411 DEGs were obtained, of which 76.25% DEGs 
were up-regulated and 32.75% were down-regulated (Figure 4, 
Table S1), emphasizing the complex transcription process of 
banana roots in response to Ri inoculation.

A total of 1101 DEGs (78% of all 1411 DEGs) were 
annotated to three principal GO categories separately, 
including biological process (BP), cellular component 
(CC), and molecular function (MF) (Figure 5). In GO 
terms that are significantly enriched up-regulated expres
sion genes, among BP, “biological process”, “phosphorus 

metabolic process” and “cellular protein modification pro
cess” were the dominant terms. The top three significantly 
enriched terms in MF were “small molecule binding”, 
“iron-binding” and “catalytic activity”. No DEGs were sig
nificantly enriched in CC (Fig S2).

A total of eight significantly enriched KEGG pathways in 
AM plants (Corrected P< .05) (Figure 6a), of which three 
pathways, namely Plant hormone signal transduction, 
Flavonoid biosynthesis, and Phenylpropanoid biosynthesis 
are normally regarded as disease resistance-related events.

Signal transduction

A total of 29 significant DEGs were involved in plant hormone 
signal transduction (Figure 6b). The eight genes were enriched in 
the ABA pathway, including five genes encoding ABA receptor 
PYR/PYL family (Ma04_g 19650, Ma06_g 34440, Ma11_g 22080, 
Ma05_g 31850, Ma10_g 27910), and one gene encoding protein 
phosphatase 2 C (PP2C, Ma11_g22370) were up-regulated rapidly 
in banana response to the Ri infection. In auxin pathway, four 
genes respectively encoding auxin-responsive SAUR gene family 
member (Ma07_g20210), auxin-responsive protein IAA 
(Ma09_g02940), indole-3-acetic acid-amido synthetase GH3.1 
(Ma05_g01450), indole-3-acetic acid-induced protein ARG7 
(Ma01_g21160), and two genes encoding auxin-induced protein 
(Ma05_g24370, Ma09_g14850) were found up-regulated in 
banana during the Ri infection process (Figure 6b). For the JA 
pathway, two genes respectively encoding protein TIFY 10B 
(TIFY10b, Ma03_g09980) and transcription factor 
(Ma10_g02950) were up-regulated to ahigh level (Figure 6b). 
Two ET-signaling genes respectively encoding Protein EIN4 
(ETR, Ma08_g12900) and Ethylene-responsive transcription fac
tor 1 (ERF1, Ma09_g20250) had high expression levels in banana. 

Table 2. The summary of sequence analysis of transcriptome.

Sample Raw reads
Clean 
reads

Total 
mapped

Multiple 
mapped

Q20 
(%)

Q30 
(%)

GC 
(%)

CK1 72,029,856 68,963,152 53,007,409 792,530 97.17 92.46 50.85
CK2 57,703,178 55,302,364 47,027,339 726,840 97.44 93.12 50.43
CK3 77,963,292 69,948,604 59,737,534 1006,595 97.85 94.17 50.28
AMF1 81,741,046 73,378,282 59,520,784 973,058 97.77 93.99 50.06
AMF2 77,138,272 68,955,004 55,999,100 916,177 97.88 94.29 48.71
AMF3 79,896,556 71,588,366 58,093,959 942,135 97.80 94.05 49.28

949

462

up regulated
down regulated

Figure 4. The differentially expressed genes in the root samples between AM 
colonization and CK.

Figure 5. GO classification for the DEGs with inoculation of AM fungi in banana. BP: biological process, CC: cellular component, MF: molecular function.
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In the SA signaling pathway, one gene encoding transcription 
factor HBP-1b (HBP-1b, Ma03_g10890) was induce higher in the 
banana stage of Ri infection. Other genes associated with 

Cytokinine and Gibberellin acid (GA) also responded to Ri. 
Down-stream in the Cytokinine-signaling pathway was found 
up-regulated ARR8 gene (Ma03_g08570). For GA signaling, one 
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Figure 6. Significantly enriched KEGG pathways of DEGs (a) and three heatmaps of disease resistance-related pathways (b). Clustered heatmaps of log2 fold change 
values of DEGs.
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DELLA protein RGA2 (Ma08_g01100) gene was expressed higher 
in banana infected by Ri (Figure 6b).

Secondary metabolism

Phenylpropanoid biosynthesis was ametabolic pathway with 
ahigher number of DEGs including 17 up-regulated genes, and 
six down-regulated genes. Among the up-regulated genes, four 
trans-cinnamate 4-monooxygenase genes (Ma05_g15710, 
Ma03_g05400, Ma09_g04770, Ma09_g13580), three phenylala
nine ammonia-lyase genes (PAL, Ma05_g03720, Ma11_g21180, 
Ma09_g15390), two β-glucosidase genes (Ma04_g01380, 
Ma09_g06900), one 4–coumarate-CoA ligase 3 gene (4CL, 
Ma04_g05890), one cytochrome P450 CYP73A (CYP450 73A, 
Ma03_g05380) gene and one aldehyde dehydrogenase family 2 
members (ALDH, Ma05_g27170), were involved in lignin 
synthesis, indicating plant’s defense ability at cellular level 
through cell wall reinforce (Figure 6b). Nine genes were found 
to encode of Peroxidase (POD) family members, of which five 
genes are up-regulated (Ma08_g10630, Ma07_g09220, 
Ma01_g21520, Ma11_g04630, Ma10_g27820) in AM plants 
(Figure 6b). In the flavonoid biosynthesis pathway, eight genes 
were accumulated abundantly in AM plants, including one of 
each chalcone synthase (CHS, Mao6_g09780) gene, flavonoid 
3ʹ5’-hydroxylase (F3ʹ5 H, Ma02_g00550) gene, curcumin 
synthase (CURS, Ma10_g20590) gene, and phenylpropanoyla
cetyl-CoA synthase (Ma10_g20560) gene (Figure 6b).

Discussion

In the present study, AM fungi have ahigher infection rate in 
banana roots compared to rice, which used the same AM fungi,17 

and promoted the above-ground biomass accumulation under 
phosphate-deficient conditions. These results corroborate pre
vious studies reporting positive effects of plant growth in the 
presence of AM fungi.15,18 The biocontrol mechanism of AM 
fungi has been reported in different plant systems (e.g. improved 
plant nutrition and competition for food). Mycorrhizal coloniza
tion increases nutrient absorption and promotes plant growth, 
both under unstressed conditions or biological and abiotic stress, 
leading to greater resistance to root-infecting fungi.15,19,20

Identifying key components of transcriptome response to 
AM fungi using RNA-Seq may stimulate the discovery and 
annotation of important genes in the plant’s defense response. 
In this study, we performed acomprehensive transcriptome 
analysis against AM fungi on the susceptible cultivars 
Brazilian banana. Compared with the control, 1411 differen
tially expressed genes (DEGs) were found in the banana roots 
(Figure 4, Table S1). Eight significantly enriched KEGG path
ways (Figure 6), including three disease resistance-related 
pathways, were identified.

Phenylpropanoid biosynthesis and flavonoid biosynthesis, 
belonging to secondary metabolism, have been proved to be 
involved in plant defense response through reinforcement of 
plant cell walls and phytoalexins synthesis.21 Here, 17 DEGs 
were identified to involve in the phenylpropanoid pathway. 
Among them, the PAL gene encodes akey enzyme in this pathway. 
The isolated PAL from higher plants has been reported to be 
closely related to the plant resistance.22 Other genes are also related 

to lignin synthesis. The 4CL is the key rate-limiting enzyme to 
regulate lignin biosynthesis, which is located in the downstream 
branch pathway.23 CYP73A24 played acontrolling quantity role in 
the lignin synthesis pathway.24 POD was mainly distributed in the 
downstream of the phenylpropanoid biosynthesis pathway, and 
the corresponding lignin can be synthesized by using the corre
sponding single-chain alcohols. Thereby the production p- 
Hydroxyphenyl lignin, Guaiacyl lignin, 5-Hydroxygualacyl lignin, 
and syring lignin of this pathway increased (Figure 7). 
Interestingly, the genes including PAL, 4CL, POD, CYP450 
showed increased transcript levels and increase accumulation of 
phenolic compounds in Foc-TR4 treated roots of the resistant and 
susceptible banana.25,26 ACHS gene and an F3ʹ5’H gene involved 
in flavonoids biosynthesis accumulated in the roots of Brazilian 
banana during banana-AM fungi interaction. Taken together, our 
results suggest that AM fungi can promote the biosynthesis of 
secondary metabolites to boost plant defense.

Plant hormones such as salicylic acid (SA), jasmonic acid (JA), 
ethylene (ET), abscisic acid (ABA), and auxin are regarded as 
playing important roles in mediating plant growth and defense 
response against biotic stress. The disease resistance and adapt
ability of plants were enhanced by hormone interactions . In the 
ABA signaling pathway, we found that five ABA receptor PYR 
genes were induced higher, and one PP2C gene was up-regulated 
and two PP2C genes down-regulated. The ABA receptor protein 
PYR/PYL is normally anegative control type of protein phospha
tase 2 C (PP2C).30,31 Some studies reported that ABA and PP2C 
were involved in the regulation of plant K+ channel, in which 
PP2C could activate the K+ channel through phosphorylation, 
resulting in K+ external flow from guard cells and obvious 
shrinkage of cells, resulting in stomatal closure (Figure 7).32 

While PP2C dephosphorylation negatively regulate downstream 
the SnRk2 gene, also resulting in stomatal closure. 
Demonstrating that after AM fungus colonization, the host 
plants activate the host immune system by elicitation of 
defense-responsive genes. In the auxin signaling pathway, GH3, 
SAUR and AUX/IAA gene families belong to plant auxin pri
mary reaction genes. Some GH3s can combine with various acyl 
substrates, such as salicylic acid, jasmonic acid.33,34 Therefore, 
GH3 protein can maintain the dynamic balance of auxin con
tents in plants to acertain extent.35,27–29

JA signaling plays regulatory roles in plant development and 
responses to fungal infection. We observed that TIFY10b was 
up-regulated, which is JASMONATE-ZIM DOMAIN (JAZ) 
proteins, as negative regulators of JA signaling. JAZ proteins 
are repressors of diverse transcription factor (TF) families, 
including basic helix–loop–helix (bHLH), MYB, ethylene 
insensitive (EIN), WRKY and so on.36–38 The COI1–JAZ com
plex also serves as areceptor for the bacterial phytotoxin cor
onatine (COR), which is ubiquitinated, MYC2 is then released 
and transcription is activated (Figure 7).39 Upon pathogen 
attack, mycorrhizal colonization initiates SA signaling path
ways. HBP-1b gene belongs to the HBP subfamily of the bZIP 
transcription factor family, which is the histone gene binding 
protein. Several studies have shown that the plant histone 
genes may take part in various stress responses.40 In the ET 
signaling pathway, ERF transcription factors can bind to the 
GCC-box cis-acting elements in the promoters of biotic stress- 
related genes, and mediate these genes to play arole in the 
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response of plants to biotic stress (Figure 7).41,42 Overall, we 
speculate that the protective effect of the AM symbiosis in 
banana plants is similar to that of rice and tomato, both are 
relies on the systemic activation of defense regulatory genes in 
the absence of pathogen challenge.9,17 The resistance mechan
ism of mycorrhizal symbiosis-induced defense genes in the 
process of banana fusarium wilt resistance will be verified in 
our next experiments.

Our results suggest that the Brazilian banana produced 
more lignin through the phenylpropanoid biosynthesis 
induced by AM inoculation, to strengthen the cell wall and 
resist the invasion of root pathogens. Meanwhile, the banana 
resistance might indirectly enhanced by the improved plant 
growth, and the risk of infection was reduced through the plant 
hormone signal transduction pathway. Follow-up studies will 
investigate the role of AM in enhancing banana’s resistance to 
Fusarium oxysporum f.sp. Cubense under controlled environ
ments and in the field.

Conclusion

The present study describes the production of abiological 
defense mechanism in banana seedlings induced by AM 
inoculation. The results exhibited that the resistance of 
Brazilian banana could be enhanced by inducing resis
tance-related genes under AM treatment. Most importantly, 
the above genes were closely related to plant hormone 
signal transduction, flavonoid biosynthesis, and phenylala
nine biosynthesis pathway, which were identified to effec
tively defend the infection of plant pathogen. It provides 
insights into the host-AM fungi interactions and uncover
ing mechanisms of AM fungi to increase banana resistance.
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