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ABSTRACT
Th17 cells remain one of the most important subsets of T cells in numerous autoimmune and chronic 
inflammatory diseases. Posttranscriptional regulation (PTR), especially mRNA stability, has recently 
emerged as an important mechanism that controls the fate of Th17 cells. This review summarizes the 
current knowledge on RNA-binding proteins (RBPs), microRNAs (miRNAs) and long non-coding RNAs 
(lncRNAs) that induce mRNA stability changes and their roles in mediating the differentiation, prolifera-
tion, function, and migration of Th17 cells. In addition, we summarize the role of RNA modifications and 
nonsense-mediated mRNA decay (NMD) in Th17 cells. Ongoing research will help to identify practical 
applications for the regulation of mRNA stability and provide potential targets to prevent and treat 
Th17-related autoimmune diseases.
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Introduction

Interleukin (IL)-17-expressing T cells are now widely 
known as a third subset of effector T helper cells (Th17 
cells), which are closely related to host defence against 
extracellular fungi and bacteria, including Mycobacterium 
tuberculosis, and homoeostasis maintenance in mucosal 
tissue [1–5]. Differentiation factors (TGF-β plus IL-6 or 
IL-21), growth and stabilization factors (IL-23), and tran-
scription factors (signal transducer and activator of tran-
scription 3 (STAT3), retinoid-related orphan nuclear 
receptor γt (RORγt), and retinoid-related orphan nuclear 
receptor α (RORα)) are involved in the development of 
Th17 cells [6–9]. In addition, IL-17, IL-17 F, IL-21, IL-22 
and granulocyte-macrophage colony-stimulating factor 
(GM-CSF) are also secreted by Th17 cells, and these fac-
tors are mainly involved in tissue inflammation by coop-
erating with other immune cells, thus bridging the gap 
between innate and adaptive immunity [10–12]. Recently, 
an increasing number of studies have demonstrated that 
Th17 cells are important in numerous autoimmune and 
chronic inflammatory diseases in both humans and experi-
mental animals [5,13].

Accumulating studies have indicated that the regulation 
of key gene expression, including transcriptional and post-
transcriptional regulation (PTR), is crucial in the differ-
entiation, maturation, and function of Th17 cells [14–16]. 
Although transcriptional regulation has been widely char-
acterized in Th17 cell differentiation, PTR, especially RNA 

stability, has recently emerged as an important mechanism 
to control the fate of Th17 cells, and it provides rapid and 
flexible control of the maturation, destruction, and trans-
lation of mRNA [15,17–19]. mRNA decay is mainly 
caused by the interactions between RNA-binding proteins 
(RBPs) and RNA in the cytoplasm [14]. These regulatory 
RBPs bind to elements in the 3′ untranslated region 
(UTR), such as AU-rich elements (AREs) or constitutive 
decay elements (CDEs).

There are three mechanisms of mRNA decay [14]. The 
first mechanism of mRNA decay is exonucleolytic decay, 
which is mediated by RBPs binding to AREs or CDEs [14]. 
RBPs, such as Roquin, recruit exonucleases, such as poly-
(A)-specific ribonuclease (PARN) or CCR4-NOT complex, 
which remove the poly (A) tail from the target mRNA. 
Following the decapping, the mRNA can be degraded 
from the 3′ end or the 5′ end. The degradation from the 
3′ end is then initiated by the binding of exosomes con-
taining exonucleolytic enzymes, which leads to the degra-
dation of mRNA. The degradation from the 5′ end is 
initiated by the formation of a Lsm1–7 complex at the 3′ 
end. The complex recruits the decapping enzymes, such as 
Dcp1 and Dcp2, to remove the 5′ cap. The mRNA is then 
degraded by the 5′→3 exonuclease XRN1. The second 
mRNA decay pathway is endonucleolytic cleavage [14]. 
Site-specific RNases, such as Reganse-1, induce internal 
cleavage to produce RNA fragments, which are then 
degraded by exonucleases. The third mechanism is non-
sense-mediated mRNA decay (NMD), which degrades 
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abnormal mRNAs and thus prevents the production of 
abnormal proteins [14]. The presence of premature termi-
nation codons (PTCs), the improper recognition of the 5′ 
CAP by the cap-binding protein (CBP) complex (CBC), or 
the generation of the exon junction complex (EJC) initi-
ates the NMD pathway [20–22]. The up-frameshift pro-
teins 1, 2, and 3 (UPF1, UPF2, and UPF3) play a central 
role in NMD and enable exonuclease decay by XRN1-, 
SMG5/SMG7- or SMG6-mediated endonuclease 
decay [22].

Herein, we summarize and discuss the effects of RBPs on 
Th17 cell differentiation, function, proliferation and migration 
and focus on the underlying mechanisms involving RBP target 
mRNAs, including STAT3, OX40, c-Rel, IκBζ, IκBNS, 
Interferon-regulatory factor 4 (IRF4), IL-6, Inducible T Cell 
Costimulator (ICOS), cytotoxic T-lymphocyte-associated pro-
tein 4 (CTLA4), IL-17, cyclin A and cyclin B1, GM-CSF and 
chemokine receptor 6 (CCR6). In addition, the role of miRNAs 
and lncRNAs in mRNA stabilization is also discussed. Finally, 
we provide conclusions on the role of RNA modifications and 
NMD in the regulation of Th17 cells (Fig. 1). However, these 
detailed mechanisms require further investigation for clarifica-
tion, and such work might provide potential therapeutic appli-
cations to treat various immune-related diseases, such as allergic 
inflammation and autoimmune diseases.

1. Effects of Regnase and Roquin on mRNA stability 
in Th17 cells

Regnase-1 (also known as Zc3h12a and MCPIP1) is a kind of 
cytoplasmic protein encoded by Zc3h12 [23], and it contains a PilT 
N-terminus (PIN)-like RNase domain in the N-terminus followed 
by a CCCH-type zinc-finger domain [23,24]. The CCCH-type zinc 
finger domain of Regnase-1 is responsible for the recognition of 
the stem-loop structure [23,24]. Through the RNase domain, 
Reganse-1 induces internal cleavage to produce RNA fragments, 
which are then degraded by exonucleases, such as XRN1, and 
exosomes containing exonucleolytic enzymes [14,20,23]. 
Regnase-1 functions as an endonuclease that prevents immune 
disorders by directly controlling the stability of a set of mRNAs, 
including IL-2, c-Rel, OX40 and the p40 subunit of IL-12, by 
directing the cleavage of the 3′UTR of these mRNA transcripts 
in macrophages and various T helper cells [25].

Regnase-4 (also known as transformed follicular lym-
phoma (TFL) or ZC3H12D) contains a CCCH type zinc 
finger domain and PIN-like RNase domain [26,27]. 
However, the domain that is responsible for the recognition 
of target mRNA and the domain the mediates mRNA decay 
remain unknown. Further study is required to identify the 
mechanism underlying the Regnase-4-mRNA interaction.

The E3 ubiquitin ligase Roquin is encoded by the Rc3h1 
gene and contains a ROQ domain and an adjacent CCCH- 

Figure 1. Posttranscriptional regulation in Th17 cell. RBPs, miRNAs, lncRNAs, mRNA modification and NMD are shown in red, blue, yellow, green and brown, 
respectively. For a clear description, these posttranscriptional regulators are not necessarily placed in the correct cell site. Solid arrows indicate RBP-mediated mRNA 
stabilization, miRNA-mediated mRNA stabilization or the promoting effect of the target. Dashed arrows indicate RBP-mediated mRNA decay, miRNA-mediated mRNA 
decay or the inhibiting effect of the target. Solid double-arrows indicate the interaction between lncRNA and miRNA or the cooperation between transcriptional 
factors. Molecular interactions are explained in the text.
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type zinc-finger domain in the N-terminal region and 
a proline-rich domain in the C-terminal region [28–30]. 
Roquin specifically recognizes the stem-loop motifs in the 
CDE of the 3′UTR through the ROQ domain and adjacent 
CCCH zinc finger domain [31]. Subsequently, the C-terminal 
domain recruits a CCR4-NOT deadenylase complex that initi-
ates the degradation of mRNA transcripts [30,32]. The exo-
nuclease CCR4-NOT complex removes the poly (A) tail from 
the target mRNA at the 3′ end, and then the 3′ end is targeted 
by exosomes containing exonucleolytic enzymes, which leads 
to the degradation of mRNA [14,20].

Here, we provide a current overview of the immunoregu-
latory roles of Regnase-1, Regnase-4 and Roquin in Th17 cell 
differentiation and proliferation mediated by regulating the 
mRNA stability of target genes, including STAT3, OX40, IκBζ, 
IκBNS, c-Rel, IRF4, ICOS and IL-17 (Fig. 1).

1.1 STAT3

Studies have demonstrated that STAT3 activation is a key step 
in pathogenic Th17 cells, cancer and autoimmune diseases 
[33,34]. Hyperactive STAT3 protein in peripheral T cells has 
been shown to induce the accumulation of Th17 cells in the 
lung, which leads to thickened airway epithelium and 
increased mucus production [35].

Masuda et al. found that in Th17 cells, Regnase-1 selectively 
decreases the stability of STAT3, thus contributing to the inhibi-
tion of Th17 cell differentiation [36]. Moreover, it is physically 
bound to the stem-loop region in the STAT3 3′UTR (1738–1765), 
which competitively prevents the mRNA-stabilizing protein AT- 
rich interactive domain-containing 5a (Arid5a) from binding to 
the same region [36]. The authors further found that the level of 
STAT3 was dramatically decreased in Arid5a-deficient T cells in 
an IL-6-dependent manner, which drove an impairment in Th17 
cell differentiation [36].

Jeltsch et. al. further found that the cooperation of 
Regnase-1 and Roquin destabilized STAT3 mRNA in Th17 
cells, which suppressed the development of Th17 cells [37]. 
More importantly, compared with the wild type (WT) mice, 
Roquin-deficient mice exhibited an increased half-life of 
STAT3 mRNA, which promoted Th17 differentiation and 
caused more severe spontaneous lung inflammation and 
pathology [37]. However, whether Roquin and Arid5a com-
petitively bind to STAT3 mRNA in Th17 cells remains 
unknown and requires further research.

1.2 OX40

In addition to STAT3, OX40, a T cell costimulatory molecule 
belonging to the tumour necrosis factor receptor (TNFR) 
superfamily, has broad impacts on the fate and function of 
activated T cells [38–42]. Many studies have revealed that the 
OX40-OX40 ligand (OX40L) pathway plays a critical role in 
promoting the differentiation of Th17 cells, which may be 
partially dependent on local conditions [43]. A study on 
Th17 cells showed that Regnase-1 and Roquin destabilized 
OX40 mRNA through binding to the ADE-like stem-loop 
(GGUG sequence in the stem region and the GUU sequence 
in the loop region) of the OX40 3′UTR, which is the same 

region that is competitively recognized by Arid5a [44]. 
Moreover, Arid5a-deficient mice showed dramatically 
decreased mRNA expression of OX40 before experimental 
autoimmune encephalomyelitis (EAE) onset [44]. These 
results suggest that the Arid5a/OX40 axis in CD4+ T cells 
may have potential implications on the pathogenesis of auto-
immune diseases, which may be prevented by the induction of 
Regnase-1 and Roquin.

1.3 IκBζ and IκBNS

IκBζ is a member of the nuclear IκB protein family encoded by the 
Nfkbiz gene and harbours six ankyrin repeats at its carboxyl 
terminus [45]. It interacts with the NF-κB subunit p50 through 
the ankyrin repeat domain (ARD) and has an important role in 
Th17 cell development, functioning in a T cell-intrinsic manner 
[46,47]. Okamoto et al. demonstrated that IκBζ acts together with 
the transcription factors RORα and RORγt to enhance IL-17 
expression by binding directly to the regulatory region of the IL- 
17 gene [46]. Nfkbid mRNA encodes the nuclear NF-κB inhibitor 
IκBNS, which contains two CDEs in its 3′UTR [48]. Jeltsch et al. 
demonstrated that IκBNS is another transcriptional modulator, 
and its knockdown resulted in a remarkable decrease in IL-17 
production, suggesting that IκBNS is as important as IκBζ in Th17 
cell differentiation [37].

Jeltsch et al. demonstrated that Regnase-1 and Roquin 
destabilize the target mRNAs IκBζ and IκBNS. The expression 
of IκBζ and IκBNS was significantly increased in Roquin- and 
Regnase-1-deficient mouse embryonic fibroblasts (MEFs), 
with the 3′UTRs of these transcripts shown to be specifically 
targeted by Roquin or Regnase-1 in reporter assays [37]. 
Moreover, the increased differentiation of Th17 cells observed 
with Roquin-deficient T cells was at least partially mediated 
through the upregulation of IκBζ and IκBNS expression under 
Th17 cell-polarizing conditions [37]. Furthermore, knock-
down of Regnase-1 expression in Roquin-deficient T cells 
led to a greater abundance of IL-17-producing cells [37]. 
These phenomena suggest that low expression of both 
Roquin and Regnase-1 may result in increased Th17 cell 
differentiation by regulating IκBζ and IκBNS mRNA stability. 
However, the molecular responses of IκBNS modulated in 
Th17 cell differentiation are not fully understood and need 
to be further investigated.

1.4 c-Rel, IRF-4, IL-6

In addition to IκBζ and IκBNS, many other sets of mRNAs 
have also been reported to be regulated by Roquin and 
Regnase-1 in Th17 cells simultaneously, and these target 
mRNAs include IL-6, c-Rel, and IRF4, which are critical and 
necessary in the differentiation of Th17 cells [37,49]. Studies 
have suggested that Roquin and Regnase-1 target the 3′UTR 
of c-Rel, IRF-4, and IL-6 via ICOS reporter assays with 
a substituted 3′UTR, which could downregulate the stability 
of these mRNAs [37]. In addition, Minagawa et al. generated 
dual-luciferase reporter vectors with the 3′UTR of IL-6 mRNA 
and transfected them into T cells with Regnase-4, which led to 
destabilized IL-6 mRNA [26]. However, the detailed 
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mechanism of the Reganse-4-mediated mRNA decay needs to 
be further investigated.

1.5 ICOS

Although the differentiation of naive CD4+ T cells into Th17 
cells does not require ICOS, ICOS has a critical role in Th17 
cell proliferation and functions that are mediated by regulat-
ing the production of IL-21, which contributes to the expres-
sion and maintenance of the IL-23 receptor (IL-23 R) [50]. 
Studies have demonstrated that ICOS mRNA is one of the 
targets of Roquin and Regnase-1, which bind to the ICOS 3′ 
UTR, and that ICOS expression is dramatically increased in 
Roquin-deficient or Regnase-1-deficient mice under Th17 
cell-polarizing conditions [37].

1.6 CTLA-4

CTLA-4, also known as CD152, is a protein receptor that 
functions as an immune checkpoint and contributes to 
immune inhibitory functions [51,52]. It acts as an ‘off’ switch 
when bound to CD80 or CD86 on the surface of antigen- 
presenting cells, which results in protection against autoim-
mune disease-related deterioration [53,54]. A previous study 
showed that CTLA-4-B7 interaction inhibits Th17 cell differ-
entiation in vitro and in vivo and suppresses Th17-mediated 
autoimmunity [55]. Jeltsch et al. demonstrated that the 
expression of CTLA-4 was significantly increased in Roquin- 
deficient CD4+ T cells under Th17 cell-polarizing conditions 
[37] and showed that the CTLA-4 mRNA 3′UTR was specifi-
cally targeted by Roquin and Regnase-1 in their specifically 
deficient MEF model [37]. These phenomena suggest that 
increased CTLA-4 mRNA stability may play an inhibitory 
role in the differentiation of Th17 cells.

1.7 IL-17

IL-17 mRNA levels were markedly increased in Reganse-4 
conditional knockout cells [26]. Furthermore, Reganse-4-defi-
cient mice exhibited more severe EAE compared with WT 
mice [26]. These phenomena suggest that Regnase-4 may play 
an important role in attenuating local inflammation by med-
iating IL-17 mRNA decay.

2. Effects of HuR on mRNA stability in Th17 cells

HuR is a member of the Elav/Hu family and contains three 
RNA-recognition motifs (RRM) [56]. The two tandem 
N-terminal RRM domains (RRM1 and RRM2) can selectively 
bind to the ARE [57–59]. The third domain (RRM3) binds to 
the ARE and the poly(A) tail simultaneously, which protects the 
poly(A) tail from poly(A) exonuclease [60]. An increasing num-
ber of studies have reported that HuR is emerging as a pivotal 
regulator in cell proliferation, differentiation, and immune 
responses and functions by binding to AREs located in the 3′ 
UTR and mediating mRNA stabilization [61]. Herein, we sum-
marize the modulatory effects of HuR on Th17 cell differentia-
tion mediated by the regulation of mRNA stability (Fig. 1).

2.1 IL-17

Chen et al. demonstrated that HuR normally binds to the 3′ 
UTR of IL-17 and stabilizes IL-17 transcripts in CD4+ Th17 
cells [62]. HuR deficiency shortens the half-life of IL-17 
mRNA in Th17-polarized cells, which impairs Th17 cell dif-
ferentiation by activated T cells and delays disease onset, 
thereby reducing the severity of EAE in an adoptive transfer 
model [62]. These results suggest that HuR may play impor-
tant roles during the differentiation and immune function of 
Th17 cells via PTR and provide insights into the treatment of 
IL-17-mediated autoimmune diseases, such as EAE, by regu-
lating the differentiation of Th17 cells [62].

2.2 Cyclin A and cyclin B1

Previous studies demonstrated the involvement of the regula-
tion of cyclin A and cyclin B1 mRNA stability in the cell cycle 
[63–65]. Interestingly, Wang et al. reported that HuR- 
deficient mice exhibited decreased cyclin A and cyclin B1 
mRNA stability and diminished proliferation rates of human 
colon adenocarcinoma (RKO) cells [66]. Therefore, we 
hypothesized that HuR may regulate Th17 cell proliferation 
by specifically targeting cyclin A and cyclin B1 in 
a posttranscriptional manner. However, the detailed mechan-
ism needs to be further investigated.

2.3 GM-CSF

In addition to IL-17, GM-CSF is essential for Th17 cells to 
induce autoimmune neuroinflammation [67,68]. Increased 
levels of GM-CSF have been reported in the cerebrospinal 
fluid of patients with relapsing-remitting multiple sclerosis 
(MS) [69,70]. Some trials targeting GM-CSF are still in pro-
gress for treating MS patients [71]. A recent Phase I clinical 
trial showed that targeting human GM-CSF by MOR103 is 
safe for MS patients [72]. Surprisingly, Chen et al. showed that 
HuR genetic ablation resulted in significant decreases in 
steady-state GM-CSF mRNA levels in Th17 cells [73]. 
Further studies have indicated that HuR directly binds to 
the AREs in the 3′UTR of GM-CSF mRNA, suggesting 
a regulatory relationship. Thus, HuR binds to and stabilizes 
GM-CSF mRNA, which results in increased GM-CSF mRNA 
accumulation in Th17 cells [73]. Given the importance of 
Th17 cells in MS [74], the regulation of GM-CSF production 
requires further study to develop novel approaches for target-
ing this glycoprotein.

2.4 CCR6

CCR6 is a CC chemokine receptor protein that belongs to 
family A of the G protein-coupled receptor superfamily, and it 
is highly expressed in pathogenic Th17 cells [75,76]. Reboldi 
et al. revealed that CCR6 is necessary for the migration of 
pathogenic Th17 cells to sites of inflammation and that 
CCR6-deficient mice are resistant to the pathogenesis of 
EAE [77]. Further studies have demonstrated that HuR mod-
erately promotes CCR6 expression by binding to its mRNA 
transcript to prolong the transcript half-life [61]. Moreover, 
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HuR-deficient mice exhibited reduced expression of CCR6 in 
Th17 cells and impaired migration in response to the CCR6 
ligand chemokine ligand 20 (CCL20), thereby ameliorating 
EAE [27,61,77]. These results suggest that HuR plays an 
important role in the migration of Th17 cells via PTR, and 
it may represent a novel therapeutic intervention for autoim-
mune diseases.

3. Effects of tristetraprolin (TTP) on mRNA stability 
in Th17 cells

TTP (also known as TIS11, ZFP36, and Nup475) is a CCCH 
tandem zinc-finger protein (ZFP) coded by the gene Zfp36 
and regulates inflammatory responses at the post- 
transcriptional level [78]. The two zinc finger domains within 
TTP recognize specific ARE elements, such as 
UUAUUUAUU, in the 3′UTR of their target mRNA [79]. 
TTP binds to the AREs and recruits the deadenylation com-
plex CCR4-NOT via its C-terminal domain to remove the 
poly(A) tail at the 3′ end, which initiates mRNA decay 
[14,80]. Subsequently, TTP recruits decapping enzymes via 
its N-terminal domain, and they remove the cap at the 5′ 
end [14,81]. The 5′ end is then targeted by 5′→3′ exonuclease, 
such as XRN1, which leads to mRNA decay [14,20,79,82,83].

Previous study showed that TTP controls the function of 
Th17 cells via promoting IL-17 mRNA decay [81]. Peng’s 
group further found that TTP-KO mice showed more IL- 
17–producing effector T cells, which led to more severe colitis 
compared with WT mice. These phenomena support 
a pathogenic role for TTP in intestinal inflammation via 
destabilizing IL-17 mRNA in Th17 cells (Fig. 1) [84].

4. Effects of miRNAs and lncRNAs on mRNA stability 
in Th17 cells

In addition to RBPs, miRNAs also regulate gene expression in 
a sequence-specific manner, often through interplay with 
RBPs that associate with the same mRNAs [85]. miRNAs 
are a class of noncoding RNAs that are approximately 21 to 
24 nucleotides (nt) in length, and most miRNAs regulate the 
expression of numerous target genes by mediating mRNA 
decay and/or repressing translation [85–87]. miRNA- 
mediated mRNA decay requires the RNA-induced silencing 
complex (RISC). The function of the RISC in mRNA decay is 
determined by two components, Argonaute (Ago) proteins 
and miRNA. miRNA binds to the 3′UTR of target mRNA 
via central pairing, which guides the RISC to the target 
mRNA. Ago proteins then mediate mRNA decay through 
their intrinsic RNase H-like activity [14,88,89]. The mRNA 
decay process mediated by the RISC is determined by the 
subtype of Ago [14,89]. The RISC containing Ago1 recruit 
deadenylation complexes, such as CCR4-NOT and PARN, 
which remove the poly (A) tail from the target mRNA at the 
3′ end. The 3′ end is then targeted by exosomes containing 
exonucleolytic enzymes, which leads to the degradation of 
mRNA [14,89]. The RISC containing the translation initiation 
factor Ago2 induces endonucleolytic cleavage to produce 
RNA fragments, which are then degraded by exonuclease 
[14,89]. miRNAs are critical in the immune response, and 

their knock-out and silencing may lead to immune disorders, 
such as autoimmune diseases and cancers [85].

LncRNAs are non-coding RNAs that are more than 200 
nucleotides long, and they are involved in the development of 
multiple diseases, especially in asthma [90,91]. One of these 
mechanisms can be explained by the theory of competing 
endogenous RNA (ceRNA). The theory supposes that through 
base complementation, lncRNA adsorbs miRNAs and conse-
quently reduces the binding of these miRNAs to their target 
genes, which indirectly alters the expression of the target 
genes of these miRNAs [92].

Herein, we summarize the modulatory effects of miRNAs 
on Th17 cell differentiation mediated via regulation of mRNA 
stability and the function of lncRNAs in Th17-cells-related 
diseases via regulating miRNAs (Fig. 1).

4.1 COX-2

The activation of COX-2 induced the production of prosta-
glandin I2 (PGI2) and prostaglandin F2α (PGF2α) [93], which 
increased STAT3 phosphorylation in naive CD4+ T cells and 
thereby promoted Th17 differentiation [94]. Furthermore, 
Qiu et al. showed that miR-155 upregulated COX-2 mRNA 
stability by binding to the 3′UTR of COX-2 mRNA and that 
knocking out miR-155 resulted in significantly decreased pro-
duction of Th17 cytokines [95]. These results suggest that the 
modulation of COX-2 in Th17 cells can be mediated by miR- 
155 via PTR. However, the molecular mechanism underlying 
miR-155-mediated mRNA stabilization is not fully under-
stood, which requires further research.

4.2 GM-CSF and IL-17

Chen et al. demonstrated that miR-466i functions to mediate 
GM-CSF and IL-17 mRNA decay by binding to the 3′UTRs of 
these transcripts in Th17 cells [73]. Interestingly, they also 
demonstrated that knocking out HuR could increase the 
expression of miR-466i by downregulating the expression of 
Mxi1, an important repressor of a miRNA expression activa-
tor [73]. Therefore, in addition to HuR directly regulating 
GM-CSF and IL-17 mRNA stability via the previously 
described process, HuR can also work indirectly by down-
regulating the expression of certain miRNAs.

4.3 CCR6

Chen et al. demonstrated that the miR-335 and miR-409 levels 
were increased in HuR-KO Th17 cells, with these miRNAs 
degrading CCR6 mRNA by binding to the CCR6 3′UTR [61]. 
This phenomenon suggested that in addition to the direct 
regulation of CCR6 mRNA stability by HuR via the previously 
described process, indirect regulation also occurs through 
downregulation of the expression of certain miRNAs [96–98].

4.4 SMAD-7

miR-21 mediates SMAD-7 mRNA decay via binding to the 3′ 
UTR in CD4+ T cells [99]. After SMAD-7 mRNA decay, TGF- 
β production is increased, which limits the production of IL-2 
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[100,101]. IL-2 has been shown to inhibit Th17 differentiation 
via activating STAT5, and miR-21 promotes the differentia-
tion of Th17 cells. Further study found that miR-21-deficient 
mice showed a reduced clinical severity of EAE [99].

4.5 TRAF6 and IRAK1

Studies demonstrated that miR-146a represses TRAF6 and 
IRAK1 protein production, resulting in the blocking of IL-6 
and IL-21 signals in CD4+ T cells, which are important for 
Th17 cell differentiation [102–104]. However, whether miR- 
146a mediates TRAF6 and IRAK1 mRNA decay in CD4+ 

T cells remains unknown and requires further research.

4.6 MAP3K7

MAP3K7-deficient CD4+ T cells are defective in IL −17 pro-
duction when undergoing differentiation into Th17 cells 
[105]. Moreover, the over-expression of miR-10b causes 
decreased MAP3K7 gene expression, suggesting that miR- 
10b destabilizes MAP3K7 mRNA to inhibit the differentiation 
and function of Th17 cells [106].

4.7 RORγt

LncRNA-maternally expressed gene 3 (MEG3) is a tumour 
suppressor lncRNA that functions as a tumour suppressor 
gene in many different kinds of cancer, such as gastric cancer 
[107,108]. After transfection with the miR-17 mimic, RORγt 
mRNA is destabilized in CD4 + T cells from asthma patients, 
which inhibited the development of Th17 cells [92]. 
A bioinformatic analysis demonstrated that MEG3 regulates 
miR-17 through base complementation in CD4 + T cells [92]. 
Furthermore, the mRNA and protein levels of RORγt are 
decreased after the knockdown of MEG3 [92]. Taken together, 
MEG3 acts as a ceRNA to inhibit miR-17-mediated RORγt 
mRNA decay, which inhibits the development of Th17 cells 
and thereby influences the development of asthma.

Interestingly, a clear protein band of Ago2 was detected by 
Qiu et al. in biotin-labelled MEG3 [92], suggesting that an 
interaction occurs between the Ago2 and MEG. We suppose 
that MEG3 indirectly inhibits Ago2-mediated RORγt mRNA 
decay by competitively binding to miR-17 and preventing 
miR-17 from binding to RORγt mRNA in CD4+ T cells.

4.8 IER3

Immediate early response gene (IER3), also called IEX-1, is 
rapidly activated during inflammation and functions as an 
inhibitor in TNF-induced apoptosis [109,110]. A previous 
study showed that the lack of IER3 promotes Th17 differen-
tiation [111].

Liu et al. found that the mRNA stability of IER3 was 
downregulated by miR-342-3p [112]. LncRNA-H19 is one of 
the most widely studied lncRNAs in cancers, angiogenesis, 
diabetes mellitus, etc. [113,114]. A previous study revealed 
that H19 competitively binds to endogenous miR-342-3p in 
gallbladder cancer cells [115]. However, whether H19 regu-
lates IER3 expression by competitively binding to endogenous 

miR-342-3p in Th17 cells remains unknown and requires 
further research.

4.9 CXCL13

An imbalance of the Th17 cell ratio plays an important role in 
immune thrombocytopenic purpura (ITP) [116]. CXC chemokine 
ligand-13 (CXCL13) is a small cytokine belonging to the CXC 
chemokine family and functions as a chemoattractant and influ-
ences the Th17 cell ratio in multiple immunological diseases, 
including ITP [117–119].

A previous study discovered that miR-125a-5p mediates 
CXCL13 mRNA decay by targeting the 3′UTR and partici-
pates in the ITP process [120]. Furthermore, Li et al. reported 
that the overexpression of MEG3 upregulates CXCL13 mRNA 
[121]. However, whether MEG3 regulates CXCL13 expression 
by competitively binding to endogenous miR-125a-5p in Th17 
cells remains unknown and requires further research.

Interestingly, a clear protein band of Ago2 can be detected 
in biotin-labelled MEG3, suggesting that MEG3 interacts with 
Ago2 [121]. We suppose that MEG3 also indirectly inhibits 
Ago2-mediated CXCL13 mRNA decay by competitively bind-
ing to endogenous miR-125a-5p in CD4+ T cells and prevent-
ing miR-125a-5p from binding to CXCL13 mRNA.

5. Effects of RNA modification and NMD on mRNA 
stability in Th17 cells

PTR events include not only mRNA decay but also RNA 
splicing, mRNA export and RNA modifications [14]. 
However, except for RNA modifications, few studies have 
discussed these aspects in Th17 cells [122]. A previous study 
reported that STAT5 activation is crucial to suppressing the 
differentiation of Th17 cell [123]. Methyltransferase-like 3 
(Mettl3) is the ‘writer’ protein of N6-methyladenosine (m6A) 
modification, the knockout of which leads to the loss of 
the m6A modification [124]. Li et al. demonstrated that the 
loss of the m6A modification in Mettl3-KO naive T cells leads 
to increased mRNA stability of SOCS1, SOCS3 and CISH, 
which ultimately suppresses STAT5 signalling pathway, 
thereby promoting the differentiation of Th17 cells (Fig. 1) 
[122]. However, the underlying mechanism of decreased 
SOCS1, SOCS3 and CISH mRNA stability caused by m6A is 
not fully understood and requires further research.

In addition, the NMD caused by deleterious splicing is 
actively involved in the regulation of Th17 cells by mediating 
the decay of abnormal PKCα transcripts (Fig. 1) [125]. PKCα 
is a Th17-cell-selective kinase, and mice deficient in this 
kinase exhibit decreased mRNA expression levels of Th17- 
related transcription factors, such as RORγt, RUNX1, AHR, 
and IRF4, indicating that PKCα promotes Th17 differentia-
tion [125]. Further study is required to identify the degrada-
tion mechanism of abnormal PKCα transcripts through the 
NMD pathway in Th17 cells.

6. Conclusions and perspectives

In conclusion, we mainly reviewed the key roles of regulatory 
RBPs and miRNAs in the differentiation, function, proliferation 
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and migration of Th17 cells and focuses on the mechanism of 
miRNA-mRNA and RBP-mRNA interactions. We also sum-
marized the function of lncRNAs in Th17 cell-related diseases 
via regulating miRNAs. Finally, we provided conclusions on the 
role of modifications and NMD in the regulation of Th17 cells.

Interestingly, Th17 cells appear to be particularly suscep-
tible to alternations of RBPs. The RBPs discussed above are 
not expressed exclusively in Th17 cells; however, some target 
mRNAs of these RBPs are Th17-specific. For instance, RORγt 
is a Th17-specific transcription factor [5], which might be due 
to some unknown Th17-specific factors that mediate RBP 
regulation of RORγt mRNA stability.

In addition to mRNA stability, the role of other regulatory 
PTR events mediated by RBPs in Th17 cells are not fully 
understood. For example, HuR is reported to affect many 
other aspects of mRNA processing in addition to mRNA 
stability, such as splicing, translation, miRNA repression 
modulation, and intracellular mRNA trafficking [126]. 
However, recent studies have only shown that HuR could 
regulate mRNA stability in Th17 cells; thus, other post- 
transcriptional regulatory mechanisms mediated by HuR 
require further research.

Further investigations are required to identify other poten-
tial RBPs and miRNAs and their targets that are involved in 
the differentiation of Th17 cells. We suppose that other RBPs 
harbouring the same domain may also be involved in the 
regulation of Th17 cells. For example, Regnase-2 and 
Regnase-3 are reported to share the same CCCH-type zinc 
finger domain with Regnase-1; thus, they likely function in 
Th17 cells [127]. The RBP poly(C)-binding protein-1 (PCBP- 
1) has been reported to mediate the mRNA decay of forkhead 
box protein P3 (FoxP3), which inhibits Treg differentiation 
[128]. Since the expression of FoxP3 inhibits Th17 differentia-
tion by inhibiting RORγt transcriptional activity [129], PCBP- 
1 may regulate mRNA stability in Th17 cells, which may 
influence the development of Th17 cells.

Despite the important roles of RBPs and miRNAs in con-
trolling the fate of Th17 cells, direct evidence for a link 
between the regulation of mRNA stability and the develop-
ment of autoimmune disease must still be obtained in the 
future. For example, knocking out the binding site in the ARE 
or SL of the 3′UTR of a target mRNA could be performed.
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