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Abstract

Interaction plots are used frequently in psychology research to make inferences about moderation 

hypotheses. A common method of analyzing and displaying interactions is to create simple-slopes 

or marginal-effects plots using standard software programs. However, these plots omit features 

that are essential to both graphic integrity and statistical inference. For example, they often do not 

display all quantities of interest, omit information about uncertainty, or do not show the observed 

data underlying an interaction, and failure to include these features undermines the strength of the 

inferences that may be drawn from such displays. Here, we review the strengths and limitations of 

present practices in analyzing and visualizing interaction effects in psychology. We provide 

simulated examples of the conditions under which visual displays may lead to inappropriate 

inferences and introduce open-source software that provides optimized utilities for analyzing and 

visualizing interactions.
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Moderation hypotheses are common in psychological research. For instance, researchers 

often test whether a given effect differs across groups, such as gender or racial groups, or 

examine how environmental or individual difference factors such as adversity or biological 

traits modify risk indicators of psychopathology (e.g., Luthar, Cicchetti, & Becker, 2000). In 

ordinary least squares (OLS) regression, moderation is tested by including a linear 

interaction term (e.g., XZ) with its constituent first-order terms (X and Z). The magnitude of 

the interaction coefficient provides the estimated change in the effect of the focal predictor X 
on the outcome Y for a 1-unit change in the moderator Z (or, equivalently, the estimated 

change in Z for a 1-unit change in X). The significance value and confidence interval for the 

interaction coefficient are then typically used to determine the degree of support for the 

moderation hypothesis.

To date, considerable work has offered guidelines on statistical improvements for testing and 

interpreting interactions (e.g., Brambor, Clark, & Golder, 2006). For instance, it is now 

common practice for researchers to mean-center continuous X and Z variables when testing 

interactions, in order to facilitate the interpretation of intercepts and conditional effects 

(Dalal & Zickar, 2012). Researchers also regularly conduct simple-slopes analyses to test the 

conditional effect of X at multiple levels of Z (Aiken & West, 1991), or use the Johnson-

Neyman (J-N) technique (Johnson & Neyman, 1936) to assess the conditional effect of X on 

Y across a range of values of Z. These approaches have been extended to multiple analytic 

frameworks, such as hierarchical linear modeling and structural equation modeling 

(Preacher, Curran, & Bauer, 2006). Researchers have also identified a number of factors that 

substantially reduce power to detect interaction effects (for reviews, see Aguinis, 1995, and 

Frazier, Tix, & Barron, 2004). These include poor reliability of and range restriction in the 

predictor variables (Aguinis, 1995), substantial between-groups disparities in sample size 

and variance when the potential moderation is a categorical variable (Aguinis, 1995; Stone-

Romero, Alliger, & Aguinis, 1994), reduced variability in a continuous moderator as a result 

of artificially dichotomizing the moderator (e.g., by a median split) prior to analysis (which 

can also increase risk for detecting spurious effects; Bissonnette, Ickes, Bernstein, & 

Knowles, 1990; MacCallum, Browne, & Sugawara, 1996), and testing the statistical 

significance of a categorical-variable interaction by analyzing the focal predictor’s effect on 

the dependent variable separately for each category (i.e., subgroup analysis; Stone-Romero 

& Anderson, 1994).

However, considerably less attention has been devoted to providing recommendations for the 

substantive evaluation of interactions, which may have implications for conclusions 

regarding competing theoretical claims (see, e.g., Berry, Golder, & Milton, 2012; Roisman et 

al., 2012). For instance, in developmental psychopathology, some researchers have proposed 

a diathesis-stress model (Monroe & Simons, 1991). This model posits that individuals with a 

vulnerability (e.g., difficult temperament) fare worse than those without the vulnerability 

when exposed to environmental stressors (such as poor parenting), but may look no different 

from their nonvulnerable peers in low-stress conditions. An alternative theory proposes that 

these same vulnerabilities can also help children thrive in protective environments (Ellis & 

Boyce, 2008). These theories imply two different forms of an interaction, and determining 

whether the data support one theory or the other depends on how researchers evaluate the 

nature of the interaction. Roisman et al. (2012) highlighted analytic and visual approaches 
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that can help determine which hypothesis is better supported by the data, such as visual 

inspection of interaction plots, regions-of-significance analyses, and tests of nonlinear (e.g., 

quadratic) effects, among others. In this article, we aim to provide similar recommendations 

for social science more generally, to improve scientific inference for evaluating moderated 

effects.

The goal of this article is to demonstrate how theoretical inference in tests of moderation can 

be improved by improving visual displays. A major aim in the social sciences is to increase 

transparency of the scientific process to ensure rigor and replicability (Cumming, 2014). 

Visual displays can substantially aid in attaining this goal. Displays provide efficient and 

nuanced information about univariate and multivariate relations in data that may not be 

readily apparent from tables or text descriptions of results. They also help identify 

misspecified models and influential data points (e.g., outliers) and facilitate how key analytic 

findings are communicated between researchers and their audiences (Tay, Parrigon, Huang, 

& LeBreton, 2016). Optimizing the visual display of interactions can thus improve the 

scientific rigor of moderation tests.

The Utility of Interaction Displays

Why are visual displays important for evaluating moderated effects? First, interpreting 

interaction coefficients is not necessarily easy or straightforward (see also Dawson, 2014; 

Preacher et al., 2006). Consider the following multiple regression equation with a single 

two-way interaction term:1

yi = b0 + b1xi + b2zi + b3xizi + εi .

Output from a regression analysis (assuming continuous and standardized predictors) might 

provide us with the following (Example 1), which shows coefficient estimates in place of the 

b values:

y = 40 + 15x + 11z + 10xz .

For applied researchers, the interpretation of 15 or 11 may not be intuitive, largely because 

each of these effects depends (or is conditional) on the value of the other interacting variable 

given the inclusion of the interaction term, XZ. For instance, one can interpret the coefficient 

b1 (in this case, 15) as the effect of a 1-unit change in X on the value of Y when all other 

predictors are equal to zero. In other words, because an interaction term is specified in this 

model, b1 is also the effect of X only when Z = 0. Rearranging the formula can show this 

more explicitly:

1.Though we do not include covariates (control variables) in this example, any number of covariates can be included to explain 
additional error variance in the outcome variable or to examine the effect of variables of interest on a dependent variable above and 
beyond the effects of these covariates. As is the case with any other predictor, the interaction coefficient will be affected by the 
inclusion of a covariate to the degree that (a) the interaction term and its constituent lower-order variables are highly intercorrelated 
with the covariate (i.e., multicollinearity) and (b) the variance in the dependent variable is explained by the covariate (Cohen, Cohen, 
West, & Aiken, 2003).
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y = 40 + 11z + (15 + 10z)x .

When Z is 0, 10Z is also 0, and the slope of Y on X reduces to 15. Because 11Z in the 

remaining term also reduces to 0 in this case, we are left with the regression equation 

y = 40 + 15x, which gives the intercept and simple slope of X for Y when Z is zero. Because 

Z is standardized (i.e., the mean of Z is 0), the slope for X is synonymous with the slope of 

Y on X at the mean of Z. Similarly, b3 (in this case, 10) might be interpreted as the effect of 

a 1-unit change in Z on the coefficient of X (or, conversely, the effect of a 1-unit change in X 
on the coefficient of Z). With a bit of algebra, one can use the estimates of the conditional 

effects, b2 and b1, and the interaction term, b3, to extract the meaning of the interaction in 

relatively plain language that can help us to confirm or disconfirm the hypothesized effect. 

Following Aiken and West (1991), readers could use the information in a regression table to 

construct simple-slopes equations for a range of values of Z. For instance, when Z = −1 in 

the present example, the equation becomes y = 29 + 5x; when Z = 1, the equation becomes 

y = 51 + 25x; and so on. However, we argue that relying on algebra to understand a 

substantive finding unduly burdens readers.

Instead, we suggest that researchers use visual displays to aid themselves and readers in 

making inferences about moderation hypotheses. Figure 1 illustrates three different forms of 

interaction, each of which may support different theories about how the interplay between 

two factors influences an outcome (see also Luthar et al., 2000; Roisman et al., 2012). 

Figure 1a illustrates a synergistic interaction, in which higher levels of Z enhance the effect 

of X on Y (as in Example 1). In contrast, Figure 1b illustrates a buffering effect, in which 

higher levels of Z instead reduce the effect of X on Y. Figure 1c illustrates an antagonistic 
interaction: The two predictors affect Y in the same direction, though X is associated with Y 
only at lower levels of Z or in the absence of Z. Such displays are common in psychological 

research and are typically the basis for making inferences about whether the data support a 

specific moderation hypothesis.

However, these displays lack a number of core features that are key to both effective 

communication and statistical integrity (G. King, Tomz, & Wittenberg, 2000; Tufte, 2001). 

First, these plots limit the number of displayed quantities of substantive interest, in that they 

communicate only the values of Y  at selected values of X and Z, and any effects outside this 

range remain undetected (Preacher et al., 2006; Roisman et al., 2012). Second, they do not 

communicate a reasonable measure of uncertainty in the displayed estimates. Including a 

measure of uncertainty is either recommended or required by journal editors for text 

descriptions of results (Cumming, 2014), but uncertainty is seldom addressed in the analysis 

of interactions (Brambor et al., 2006). For example, although the American Psychological 

Association publication manual (American Psychological Association, 2010) recommends 

reporting 95% confidence intervals (CIs) for regression coefficients whenever possible, most 

current interaction displays do not include confidence regions for simple slopes. Third, these 

graphics do not show the observed data on which the model estimates are based. Including 

these data is essential for diagnosing model misspecification—that is, determining whether a 

model appropriately captures patterns that are suggested by the observed data (Cohen, 
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Cohen, West, & Aiken, 2003). A common means of including the data in the bivariate case 

is the scatterplot, which helps one determine visually how well a regression line quantifies a 

theoretically linear bivariate relation (e.g., Tufte, 2001), yet observed data are rarely 

included in displays of interaction effects.

Here, we first review present practices for the visual display of interactions in psychology 

and describe the strengths and limitations of these approaches. We then describe an open-

source software utility that allows users to apply several graphic solutions that address these 

limitations.

Disclosures

All simulation code, simulated data, and code for creating the key figures in this article, as 

well as source code and instructions for using the Web utility described, are available online 

in a GitHub repository (https://github.com/connorjmccabe/InterActive). Code for generating 

the simulated examples used in this article and the simulated data can be found at https://

github.com/connorjmccabe/InterActive/tree/master/Simulated%20Data. Code for 

reproducing the key figures can be found at https://github.com/connorjmccabe/InterActive/

tree/master/Manuscript%20Figures%20Code. Source code for the Web utility, called 

interActive, introduced in this manuscript can be found at https://github.com/

connorjmccabe/InterActive/blob/master/interActive_OLS.R.

Present Practices

The simple-slopes approach

The most common method for probing interaction effects is simple-slopes analysis, typically 

conducted using the pick-a-point approach (Aiken & West, 1991). In the pick-a-point 

approach, researchers select values of interest of the moderator variable (Z) and examine the 

effect of the focal predictor (X) on the outcome (Y) at each of these values (Cohen et al., 

2003). When Z is continuous, the interaction is probed by recentering Z around values of 

interest. That is, Z is shifted by subtracting a value—typically +1 SD or −1 SD—from each 

observation, such that the distribution of Z is centered about this value. The model is 

reestimated with these recentered variables to obtain coefficient estimates, CIs, and p values 

for the effect of X on Y at these selected values of Z. Table 1 illustrates this process in a 

simulated example of a synergistic interaction involving continuous variables (the 

parameterization is based on the model in Example 1). The table suggests that when Z is low 

(i.e., centered at 1 SD below its mean), a 1-unit increase in X is not significantly associated 

with change in Y (b = 4.01, 95% CI = [−7.60, 15.61]), β = 0.06). However, when Z is at the 

mean, a 1-unit increase in X is associated with a 22.17-unit (95% CI = [12.79, 31.54]) 

increase in Y (β = 0.34), and when Z is high (i.e., centered at 1 SD above its mean), a 1-unit 

increase in X is associated with a 40.32-unit (95% CI = [27.70, 52.95]) increase in Y (β = 

0.62). In the case of binary categorical moderators, analyses can be carried out using 

identical steps, but instead the moderator is recentered around each dummy-coded category. 

Testing interactions is more analytically cumbersome with multiple categories because it 

involves testing a set of interaction terms using multiple dummy-coded variables (e.g., 

Dawson, 2014). However, a simple-slopes estimate for each dummy-coded category can be 
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derived by reestimating the effect of X on Y separately for each category (Cohen et al., 

2003).

Figure 2 provides a simple-slopes plot for Example 1, based on the simulated results in 

Table 1. Plots like this one can be created with software programs such as Excel (e.g., 

Dawson, 2014), either by using coefficients derived using the pick-a-point approach or by 

computing simple slopes based on coefficient estimates from the original model. By default, 

plots are typically constructed displaying the effect at 1 SD above and below the mean of 

both X and Z.

Simple-slopes plots are limited in several ways. First, they often do not represent the full 

nature of an interaction effect because they typically display the data only at 1 SD above and 

below the means of the predictors. For instance, each of the interactions in Figure 1 may also 

take the form of a disordinal (or crossover) interaction if the depicted lines are within an 

appropriate range of X. Disordinal interactions suggest that the rank order of Y given Z 
changes with X (or the rank order of Y given X changes with Z). The value of X at which 

this change happens (i.e., the crossover point) can be computed as follows (Cohen et al., 

2003):

x = − b2
b3

. (1)

A crossover point may provide evidence that an interaction is disordinal. However, all 
interactions are disordinal interactions across an infinite range of X, and interactions should 

not be interpreted as disordinal if the crossover point is outside the observed range of X 
(Cohen et al., 2003). Thus, on one hand, extending the horizontal axis beyond the observed 

range of the focal variable may suggest a disordinal interaction that is unsupported by the 

data (a Type I error), but on the other hand, restricting the range of X (to within 1 SD above 

and below its mean, e.g.) may obscure evidence of this effect if it truly exists (a Type II 

error; e.g., Roisman et al., 2012). Providing a depiction of an interaction within a 

meaningful range of X can substantially aid in evaluating this effect.

Range restriction in moderator variables is also a concern. Displaying an interaction at 

several levels of a continuous moderator does not necessarily describe the full nature of an 

interaction across all relevant levels of that moderator. This limitation may be especially 

important when the significance or direction of the simple-slopes effect changes at more 

extreme levels of the moderator. For example, if a moderator is skewed or if a sample is 

particularly large, there may be a substantial number of participants represented at values 

higher than 1 SD above the mean or lower than 1 SD below the mean, and simple-slopes 

plots may not accurately represent the nature of the predictors’ effects at those values. Using 

the J-N technique addresses this concern analytically (Johnson & Fay, 1950; Potthoff, 1964). 

This approach provides an estimate of the range of the moderator variable at which the focal 

predictor is significantly associated with the outcome. In effect, this technique is an 

extension of the pick-a-point approach: Interactions are probed not only at a limited number 

of levels of a moderator, but rather across the full range of values of the moderator observed 

in the data. The statistical significance and direction of these simple slopes are then used to 
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better characterize the interaction. Tools for conducting and plotting the results of J-N 

analyses have been developed for standard statistical software programs (Hayes & Matthes, 

2009; Preacher et al., 2006). Simple-slopes plots do not accommodate the analytic strengths 

of the J-N technique.

Plots of simple slopes typically show only the simple-slopes estimates, with little direct 

indication of the uncertainty in the estimates or whether the slopes differed significantly 

from zero. Showing the uncertainty in simple slopes would provide a depiction of how 

precisely each effect was estimated, which is influenced by factors such as sample size. For 

instance, Figure 3a displays simple slopes and confidence regions associated with the 

predicted values of Y for the simulated example in Figure 2 and Table 1 (N = 150), whereas 

Figure 3b displays simple slopes and confidence regions from an identical parameterization 

in a larger sample size (N = 500). Although the estimates for the two sample sizes are nearly 

identical, the confidence regions are notably wider in the smaller sample, which suggests 

less certainty in the predicted outcome values compared with the larger sample. Moreover, 

whereas the simple slope at low levels of the moderator (1 SD below the mean) was not 

significant in the smaller sample (b = 4.01, 95% CI = [−7.60, 15.61], β = 0.06), this effect 

was statistically different from zero in the larger sample (b = 6.64, 95% CI = [0.64, 12.64], β 
= 0.12). This is because, holding all else constant, the standard error of the simple slope will 

be smaller at larger sample sizes, which results in more precise estimation of the regression 

line and increased power to detect the slope effect.

Finally, most simple-slopes plots do not display the observed data. This omission prevents 

the use of these plots to diagnose whether the interaction effect is appropriately specified 

(e.g., Tay et al., 2016) or whether the simple slopes selected represent actual data. For 

instance, Figure 4 displays three scenarios for Example 1 in which the observed data for the 

predictor variables were simulated from different population distributions (N = 500). 

Although the simple slopes are nearly identical in the three scenarios, the observed data 

provide markedly different information as to how well the estimated simple slopes fit the 

data. For example, in Figure 4a, both X and Z are multivariate normally distributed 

predictors, and the simple-slopes estimates capture the data fairly well and provide evidence 

for a disordinal interaction. However, in Figure 4b, X and Z were simulated from 

exponential distributions (skew of X = 2.61, skew of Z = 2.35). The positive skew in both 

variables means that almost no data existed at 1 or 2 SD below the mean of X, and the 

simple-slopes effect when Z is 1 SD below the mean in fact represents no individuals in the 

observed data. Finally, Figure 4c shows how simple slopes can suggest an interaction effect 

that does not exist in the data. The data for this plot were instead generated from a model in 

which X had a quadratic effect but the interaction coefficient was zero, which is suggested 

by the parabolic pattern shown in this display. Because X and Z were strongly correlated in 

this example (r = .52), XZ and X2 were confounded, and a significant interaction was 

erroneously detected (Cohen et al., 2003; MacCallum & Mar, 1995). It has been strongly 

recommended that researchers carefully consider their data and plot interactions at 

meaningful levels of the moderator to ensure that the simple-slopes effects they report 

appropriately reflect real data (Aiken & West, 1991; Dawson, 2014); plotting observed data 

may help researchers meet this recommendation.
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The marginal-effects approach

Marginal-effects (or regions-of-significance) plots (e.g., Berry et al., 2012; Preacher et al., 

2006) are commonly used in combination with the J-N analytic approach to interactions. 

These plots depict the simple-slope coefficient of the focal variable and its 95% confidence 

region against values of the moderator. They indicate the significance, uncertainty, 

magnitude, and direction of the simple slope across a full hypothetical range of the 

moderator variable, often a range from 3 SD below to 3 SD above the mean (e.g., Fig. 2 in 

Preacher et al., 2006). Whereas simple-slopes plots display conditional effects at only select 

levels, marginal-effects plots ensure that an interaction is fully explored by showing how the 

simple-slope coefficient of a focal predictor changes across the entire range of the 

moderator. For instance, Figure 5 is a marginal-effects plot of the interaction in Example 1. 

When the moderator is 2.30 SD below the mean or lower, or 0.60 SD below the mean or 

higher, the 95% CI does not contain 0. The plot thus indicates that X is negatively associated 

with Y when Z is very low (at least 2.30 SD below the mean) and positively associated with 

Y when Z is −0.60 SD below the mean or greater. Note that, by comparison, Figure 2 fails to 

provide evidence of the reverse effect in the same data when Z is “low” (1 SD below the 

mean) because the simple negative slope is significant only when Z is 2.30 SD below the 

mean or lower.

Although marginal-effects plots aid in detecting and communicating interaction effects that 

may otherwise be missed, they fail to indicate whether or how much data are represented 

within the graphed regions and therefore may suggest effects that are not (or are very 

minimally) supported by the data. For instance, in the data from Example 1, very few data 

points are observed when Z is lower than 2.30 SD below the mean (see Fig. 5). Only two 

observations (1.3% of the sample) fall within the region of significance where the slope is 

negative, and there is no indication of the extent to which these observations are consistent 

with the estimated model. Indeed, in an often-cited article describing the use of the J-N 

technique in psychology, the authors provided a figure in which one of the tails of the 

displayed moderator Z had few to no observations, but this was noted only in the text 

(Preacher et al., 2006). Restricting the range of the horizontal axis to the observed range of Z 
and including a marginal rug of the observed data, as in Figure 5, helps address this concern 

(e.g., Berry et al., 2012). The inclusion of the observed data might lead us to infer that they 

do not support the conclusion that X has a significant effect on Y when Z is 2.30 SD below 

the mean or lower.

Moreover, despite their utility, marginal-effects plots have been provided less often than 

simple-slopes plots in publications reporting tests of moderation. For instance, we randomly 

sampled 50 of the 253 articles that were published in 2016 and cited the article in which 

Preacher et al. (2006) described the use of the J-N technique and marginal-effects plots. In 

brief, of these 50 articles, 38 (76%) provided a simple-slopes plot at two or more levels of 

the moderator to supplement their analyses. Only 10 (20%) made any mention of conducting 

a regions-of-significance analysis, and only 4 (8%) provided a marginal-effects plot 

depicting regions-of-significance results. In other words, among a sample of 50 publications 

citing a seminal manuscript describing the use of marginal-effects plots, only 8% actually 

used that kind of display in their article, and 76% used a less descriptive display. These 
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results illustrate a substantial gap between the development of an advanced approach to 

analysis and its implementation.

We suspect that the unintuitive nature of marginal-effects plots has limited their widespread 

adoption. Marginal-effects plots are ultimately used to understand the range of a moderator 

for which a focal predictor is statistically significantly associated with an outcome (as well 

as the degree of uncertainty in the association); thus, this information is somewhat redundant 

with information provided by a text description of results obtained using the J-N technique. 

Moreover, readers are mostly interested in using displays to infer the predicted value of the 

dependent variable at meaningful values of X and Z. Common visuals for presenting effects 

(e.g., bar graphs, histograms, bivariate scatter-plots, and simple-slope plots) meet this need 

by assigning the values of greatest interest (i.e., values of the dependent variable) to the 

vertical axis and the primary predictor variable to the horizontal axis. However, marginal-

effects plots allocate a relatively unintuitive value (the simple slope) to the vertical axis and 

the predictor of lesser importance (the moderator) to the horizontal axis, and omit 

information about the model-predicted value of the dependent variable entirely. We 

encourage researchers to use marginal-effects plots to support regions-of-significance 

analyses and, when doing so, to include overlaid data on these plots. However, given the 

limitations of such plots, providing additional displays may further aid in communicating an 

interaction effect.

Summary of present practices

Visual displays of interactions can substantially improve inferences, communication, and 

transparency, and also can help in diagnosing problems in data analysis. Although simple-

slopes and marginal-effects plots strengthen the interpretation of moderation analyses in 

some ways, they have several limitations. In the next section, we describe an approach to 

create displays of interactions that utilize the strengths of present practices and address the 

concerns we have highlighted in our critiques.

Improving the Visual Display of Interactions: interActive

We created an open-source analysis and data-visualization application that builds on simple-

slopes and marginal-effects plots to display all quantities of interest, uncertainty in the 

displayed estimates, and the data underlying an interaction (https://

connorjmccabe.shinyapps.io/interactive/). We created this application, called interActive, 

using the freely available statistical program R (R Development Core Team, 2016) in the 

Shiny Web application framework (Chang, Cheng, Allaire, Xie, & McPherson, 2017). The 

graphics were created using the ggplot2 graphics package (Wickham, 2009). The interActive 

application provides data-upload functionality and allows users to specify and analyze OLS 

regression models with two-way interaction effects. The present functionality allows for 

either continuous linear or quadratic focal predictors and either continuous or binary 

categorical moderator predictors. The application accommodates the specification of 

covariates (i.e., control variables) and was designed to be usable by researchers at all levels 

of quantitative expertise. It can be used to conduct regions-of-significance analyses for 
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interactions of continuous variables and creates marginal-effects plots of the results, with 

marginal rugs indicating observed data (e.g., Fig. 5).

The interActive application is based on the concept of small multiples (Tufte, 2001). An 

individual plot is created for each of several simple slopes (e.g., Fig. 6). This facilitates the 

display of a broad range of simple-slope effects, observed data, and measures of uncertainty. 

Because the design of all plots is identical except for the level of the moderator, a viewer’s 

attention is directed toward the change in pattern across multiples, which enables the viewer 

to understand the nature of the interaction depicted. Using small multiples allows indicators 

of observed data and measurement uncertainty to be included in each plot. Additionally, 

users can specify the level of the moderator for each multiple. This provides users with 

flexibility in deciding the number of levels of the moderator and the specific values of the 

moderator at which they will probe the interaction, so as to best characterize the observed 

data.

The functionality of interActive is leveraged to display the observed data that are most 

representative of each simple slope. For each small multiple representing a given moderator 

value, the displayed data points reflect the bivariate relation between the focal predictor and 

the dependent variable. This relation is shown within a range of the moderator that begins at 

half the distance from the value of the moderator at the next lower multiple and ends at half 

the distance from the value of the moderator at the next higher multiple. For instance, in a 

series of multiples depicting simple slopes at −1, −0.5, 0, +1, and +2 standardized units from 

the mean of the moderator, the −1-SD multiple would depict only observations with values 

of the moderator at −0.75 SD or lower; the −0.5-SD multiple would correspond with 

observations between −0.25 and −0.75 SD; and so forth. Limiting each multiple to a 

particular data space makes it possible to evaluate each simple slope on whether it represents 

real data.

We implemented additional design choices to allow for more nuanced evaluation of the 

depicted effect. For instance, interActive specifies the limits of the x-axis of each multiple as 

the minimum and maximum values of the focal variable, in order to display each simple 

slope across the full range of the focal predictor. Also, interActive computes the crossover 

point (using Equation 1) and displays it on each small multiple so that viewers can use it in 

conjunction with the observed data to determine the degree of evidence for a crossover 

effect. In addition, each multiple displays the coefficient and 95% CI of the simple slope to 

provide readers with a text description of the displayed slope. Each multiple also displays 

the percentile corresponding with the specified level of the moderator to aid readers in 

evaluating whether the depicted simple-slope effect is sensible given the data. Finally, we 

added horizontal dashed lines at the minimum and maximum observed values of the 

outcome variable to aid extrapolation of each prediction line.

For each simple slope, interActive computes the 95% CI for the predicted value of Y 
conditional on each observed value of X. If covariates are included, they are held constant at 

their respective means when these estimates are derived. These CI estimates are used to plot 

a confidence region, the area in which the true regression line is expected to fall 95% of the 
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time. The CI for yi conditional on the value of the predictor variables is given by the 

following equations (Cohen et al., 2003):

CIyi = yi ± t 1 − α
2 , n − k − 1 SEyi (2)

And

SEyi = σ xiT XTX −1xi, (3)

where 1 − α
2  is the two-tailed probability for a given α, n−k− 2 is the degrees of freedom, X 

is an n × k matrix of the predictor variables, xi is a p × 1 column vector of individual 

observations, σ is the residual standard error, and T is defined as the transpose operator. For 

each simple slope, interActive computes 95% CIs for yi for hypothetical values of the focal 

predictor across the observed range. These values are then used as the bounds of the shaded 

polygon that depicts the confidence region of the regression line for that simple slope.

Appendix A provides an example of the computation of the confidence interval for a 

predicted value in a bivariate case. Equivalently, and perhaps more intuitively for many 

researchers, this interval can also be understood as the 95% CI of the intercept in a 

regression model, and one could center the focal predictor around different values to derive 

points that follow the edges of the confidence region. Table 2 and Figure 7 illustrate this 

point in a bivariate case using Example 1. Note that in the standard regression output 

provided in Table 2, the intercept value when X is centered at zero (i.e., the value of yi) is 

44.46, and the standard error is 4.32. Using Equation 2, given 148 (n − k − 1) degrees of 

freedom and a corresponding t value of 1.98, we can compute that the 95% CI for y when X 
is zero ranges from 35.91 to 52.98. We can compute the CI in the case when X is centered at 

any other value; for instance, when X is centered at 1 (see Table 2), the intercept yi  is 

71.95, the standard error of this value is 6.49, and the corresponding CI ranges from 59.13 to 

84.77. Note that the lower and upper limits of y when X is centered at 0 and 1 correspond 

with the points denoted on the confidence region in Figure 7; if this process were repeated 

across the full displayed range of X, these values would circumscribe the 95% confidence 

region.

The interActive plot in Figure 6 was simulated from Example 1 using multivariate normal 

predictors. Note that this display provides much of the same information found in Table 1 

(e.g., estimates of slopes, intercepts, and confidence) while also showing more thoroughly 

how well the model represents the data. Figure 8a displays corresponding estimates 

simulated from exponentially distributed predictors. Note that the plot elements added by 

interActive make it readily apparent that the data are not well represented by these graphs; 

they suggest that the researcher should consider values of the moderator that are more 

representative of the data (e.g., Fig. 8b). Appendix B provides an example of how 

interActive can enhance understanding of an interaction effect observed in real data.
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Discussion

We have reviewed current practices for graphically displaying interaction effects and 

provided tools and guidelines for improving displays to affirm and communicate statistical 

results of moderation analyses. We have included simulated examples showing the 

conditions under which improper visual displays can affect inference and have shown how 

the interActive application can be used to address these concerns. To facilitate understanding 

of the full nature of interaction effects, we recommend the J-N technique and marginal-

effects plots as standard analytic strategies for probing interactions of continuous variables 

across the full range of the moderator (Preacher et al., 2006; Roisman et al., 2012). We also 

encourage researchers to continue providing displays of simple-slopes effects to 

communicate the substantive nature of interactions and to construct these displays bearing in 

mind the principles of graphic integrity we have described here. These practices will support 

the validity of inferences made while also communicating them with appropriate precision 

and clarity. When advances in both statistical and graphic approaches are employed, 

researchers and readers alike can evaluate the nature of an interaction effect with greater 

understanding and confidence.

We consider the practices we have described to be a first step toward improving visual 

displays of interactions. For instance, we aim to extend these practices to displaying 

interactions in nonlinear models given that interpreting simple effects is even less 

straightforward in nonlinear than in linear cases (Ai & Norton, 2003; Karaca-Mandic, 

Norton, & Dowd, 2012). Similarly, these principles should also be extended to interactions 

in structural equation and multilevel modeling (Preacher et al., 2006). We hope that 

educators, editors, and researchers will use the interActive application and the principles we 

have detailed to improve understanding and methodological rigor in moderation analyses. 

We urge researchers to consider data visualization as a crucial (rather than auxiliary) step in 

the scientific process.
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Appendix A:: Computing the Confidence Interval of a Predicted Value of a 

Dependent Variable

In this appendix, we illustrate how to compute an estimate and 95% confidence region for yi
We use a randomly sampled subset (n = 5) from the data generated in Example 1 to illustrate 

computations in matrix-algebra form.

Assume the following data:
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X Y

−1.29 48.80

0.64 4.78

1.20 81.38

1.37 112.00

−0.70 67.79

We are regressing Y on X, as follows:

yi = b0 + b1xi + ei .

In matrix form, this can be equivalently understood as

y = Xb + e,

where b is a 2 × 1 vector of unstandardized coefficients and e is an n × 1 vector of residuals. 

Estimating this model in ordinary least squares regression yields the estimates shown in 

Table A1, which can be obtained directly from standard statistical software.

Suppose we arrange our predictor variable into a 5 × 2 matrix X, which includes a column of 

1s so that the intercept is included in the linear combination:

X =

1 −1.53
1 0.40
1 0.95
1 1.13
1 0.95

We can then create a row of hypothetical values of our predictor to obtain the value and 95% 

confidence interval of yi Assuming we wish to use the hypothetical value of X = 0.5, we 

represent this as a 2 × 1 column vector:

xi = 1
0.5 ,

where the first row of this vector is a placeholder value of b0 and the second row represents 

the hypothetical value of the predictor X. Note that we can multiply xiT by a 2 × 1 vector of 

our model’s coefficients to obtain yi given X = 0.5:

yi = 1 0.5 60.03
11.99 = 66.03.
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Table A1.

Linear-Model Results for the Effect of X on Y (n = 5)

Parameter Estimate SE t p

Intercept (b0) 60.03 19.75 3.04 .06

X coefficient (b1) 11.99 18.20 0.66 .56

Note: The residual standard error is 43.03, and R2 is .126.

The formula for the standard error of this estimate (Equation 3) is

SEyi = σ xiT XTX −1xi .

Obtaining the inverse of the inner product (XTX)−1, rounded to two decimal places, yields

XTX −1 = 1 1 1 1 1
−1.53 0.40 0.95 1.13 0.95

1 −1.53
1 0.40
1 0.95
1 1.13
1 0.95

−1

= 0.20 0
0 0.18 .

Once this matrix is computed, we can apply this quantity to our formula, in concert with the 

values of σ and xi obtained earlier:

SEyi = 43.03 1
0.5

0.20 0
0 0.18 1 0.5 = 19.80.

Given yi = 66.03 and t 1 − α
2 , n − k − 1 = t(0.025, 3) = 3.18, we can now use Equation 2 to 

compute a 95% confidence region for this value:

yi ± t 1 − α
2 , n − k − 1 SEyi = 66.03 ± 3.18(19.80) = [3.02, 129.03] .

These results suggest that when X = 0.5, we are 95% confident that the predicted value of Y 
falls between 3.02 and 129.03. Conducting these computations across a range of xi 

quantities would create points that circumscribe the confidence region of a plotted linear 

estimate.

The R code for recreating these computations and generating a plot depicting these values is 

available at https://github.com/connorjmccabe/InterActive/blob/master/Appendix%20A

%20code/AppendixA_code.R.
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Appendix B:: Example of Using interActive With Real Data

Here we illustrate how using interActive to depict a previously reported interaction effect 

can enhance interpretation of the data. The example is drawn from a study of 491 young 

adults who were undergraduate students in the Pacific Northwest region of the United States. 

The study examined whether the effect of sensation seeking on the frequency of alcohol-

related problems differed across levels of alcohol use (see K. M. King, Karyadi, Luk, & 

Patock-Peckham, 2011, for more details). Note that the original authors used 

semicontinuous regression given that the outcome variable was zero inflated and 

overdispersed, and violated ordinary least squares (OLS) assumptions. Therefore, in this 

example, we use parametric bootstrapping to simulate a new conditionally normal alcohol-

problems variable that was based on an OLS model from the original data. Moreover, we do 

not include the covariates included in the original report because these variables were 

unavailable in the current data set. Nonetheless, the estimate of the interaction effect we 

obtained (b = 0.082, 95% confidence interval, CI = [0.025, 0.140]) was nearly identical to 

that of the original report (b = 0.071, 95% CI = [0.016, 0.126]).

Figure B1a is an adaptation of the simple-slopes display from the original article. In this 

graphic, the slope for the effect of sensation seeking on alcohol-related problems was plotted 

at low (1 SD below the mean), mean, and high (1 SD above the mean) levels of alcohol use. 

The reader can infer several effects. First, the fact that the graphed lines are higher on the 

vertical axis as the level of alcohol use increases suggests a strong main effect of alcohol use 

on problems. Second, this plot shows that when alcohol use was low, a 1-unit increase in 

sensation seeking corresponded with about a 1-unit decrease in the level of alcohol-related 

problems, suggesting that sensation seeking may be protective against alcohol-related 

problems when alcohol use is low. At mean levels of alcohol use, this effect diminished. 

Because this simple slope is approximately flat, the graphic suggests that sensation seeking 

was unrelated to alcohol-related problems at average levels of alcohol use. In contrast, at 

high levels of drinking, sensation seeking appeared to increase the risk of alcohol-related 

problems (specifically, a 1-unit increase in sensation seeking at high levels of use 

corresponded with about a 3-unit increase in problems). Third, this graphic can be used to 

examine estimates of alcohol-related problems conditional on specific hypothetical values of 

sensation seeking and alcohol use. For instance, the model predicts that an individual 

reporting an average level of both drinking and sensation seeking would experience about 18 

alcohol problems per year. An individual who has a high level of alcohol use and is 1 SD 
above the mean in sensation seeking is predicted to experience about 39 alcohol problems 

per year, and so on.
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Fig. B1. 
The relation between sensation seeking and the number of alcohol-related problems 

experienced per year across multiple levels of alcohol use. The graph in (a) shows the simple 

slopes for the relation between the standardized level of sensation seeking (on the x-axis) 

and the number of alcohol-related problems (on the y-axis) at low (1 SD below the mean), 

mean, and high (1 SD above the mean) levels of alcohol use (adapted with permission from 

K. M. King, Karyadi, Luk, & Patock-Peckham, 2011). The graph in (b) provides a marginal-

effects display for the same interaction effect. The x-axis indicates the standardized level of 

the moderator, and the vertical dashed lines indicate the levels of the moderator at which the 

focal variable becomes significantly associated with the dependent variable. The 95% 

confidence region is indicated by the shaded area. A marginal rug showing the frequency of 

different levels of alcohol use is included.
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Using this graphic alone, one might infer that the effect of sensation seeking on alcohol-

related problems reverses depending on how much one drinks. That is, sensation seeking 

appears to be protective when use is low and a risk factor when use is high, and it may or 

may not be associated with alcohol-related problems when use is at average levels. This 

effect is ostensibly supported by a regions-of-significance analysis: The slope of the effect of 

sensation seeking on alcohol-related problems is significant and negative when alcohol use 

is approximately 2.15 SD below its mean and is significant and positive when use is 0.35 SD 
higher than its mean (Fig. B1b).

Fig. B2. 
Small-multiples depictions of the interaction effect reported by K. M. King, Karyadi, Luk, 

and Patock-Peckham (2011), who examined the interactive effect of sensation seeking and 

alcohol use (the moderator) on the number of alcohol-related problems experienced per year. 

The small multiples in (a) illustrate the interaction across the range from 2 SD below to 2 
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SD above the mean of alcohol use. In (b), the small multiples have been tailored to reflect 

the distribution of the moderator, ranging from 1 SD below to 2 SD above the mean. Each 

graphic shows the computed 95% confidence region (shaded area), the observed data (gray 

circles), and the maximum and minimum values of the outcome (dashed horizontal lines). CI 

= confidence interval; PTCL = percentile.

Although the effects presented using interActive’s small multiples (see Fig. B2) are similar 

to those depicted in Figure B1a, more nuanced information about these effects is available 

from the small multiples because they include confidence regions and more simple slopes 

and also display the observed data. For instance, as does Figure B1a, Figure B2 indicates 

that greater alcohol use is associated with more negative alcohol consequences and that the 

effect of sensation seeking on alcohol-related problems becomes stronger at higher levels of 

use. Also, as in the case of Figure B1a, the simple slopes provided can be used to determine 

the predicted level of alcohol-related problems conditional on specific values of sensation 

seeking and alcohol use. But in the case of Figure B2, predictions across a greater range of 

conditional values are possible because the x-axis is extended to include the full observed 

range of the data.

The added elements in the display also increase the transparency of the data and clarify the 

inferences that can be made from the results. For instance, though J-N analyses indicated a 

significant protective effect of sensation seeking when alcohol use was 2.15 SD below the 

mean (b = −2.93, 95% CI = [−5.84, −0.02]), Figure B2a shows that this effect in fact 

represents no observations of alcohol use (i.e., there are no data at 2 SD below the mean, 

which corresponds with the 0th percentile of alcohol use). Similarly, whereas Figure B1 

suggests that sensation seeking was protective against alcohol-related problems at 1 SD 
below the mean of alcohol use, Figure B2a shows that this effect was not significant (b = 

−0.94, 95% CI = [−2.72, 0.84]). In contrast, the figure shows that when alcohol use was at 

the mean, sensation seeking had no observed effect on alcohol-related problems (b = 0.80, 

95% CI = [−0.52, 2.11]), and when use alcohol use was at 1 SD above the mean, the effect 

was significant and positive (b = 2.53, 95% CI = [0.72, 4.34]). The graphic also shows that 

among individuals 2 SD above the mean of alcohol use, a 1-unit increase in sensation 

seeking was associated with slightly more than 4 additional reported alcohol-related 

problems per year (b = 4.27, 95% CI = 1.48, 7.05]). Note that although no observed data 

existed at 2 SD below the mean of alcohol use, real data are represented at 2 SD above the 

mean. However, the simple slope does not capture the data range in this small multiple 

particularly well, and a researcher may opt to interpret this slope tentatively.

In summary, Figure B2a suggests a substantively different conclusion compared with the 

graphics in Figure B1. Whereas the plots in Figure B1 suggest that sensation seeking was 

protective against alcohol-related problems at low levels of alcohol use, the revised graphic 

shows that this inference is in fact unsupported. Instead, they suggest that the effect of 

sensation seeking on alcohol-related problems is not significantly different from zero at 

mean levels of alcohol use or lower, but is significant and positive at both 1 and 2 SD above 

the mean level of alcohol use. We can consider revising the interActive graphic to depict this 

effect across a more representative range of the moderator, as in Figure B2b.
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Fig. 1. 
Standard visual displays illustrating (a) synergistic, (b) buffering, and (c) antagonistic 

interactions.
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Fig. 2. 
A simple-slopes plot of the simulated XZ interaction corresponding with the results 

provided in Table 1. Note that low refers to 1 SD below the mean and high refers to 1 SD 
above the mean for both X and Z.
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Fig. 3. 
Illustration of the effect of sample size on uncertainty in simple-slopes estimates: simple 

slopes with 95% confidence regions for (a) the simulated example in Table 1 (N = 150) and 

(b) the same parameterization with a larger sample size (N = 500). For Z, low refers to 1 SD 
below the mean, and high refers to 1 SD above the mean.
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Fig. 4. 
Illustration of the impact of nonnormality on the interpretation of simple slopes. The three 

scatterplots show regression lines and observed data for the XZ interaction in Example 1, 

simulated from different predictor distributions. Although the simple slopes are nearly 

identical in the three graphs, the interaction patterns evident in the observed data differ 

according to whether the predictors (a) are normally distributed, (b) have skewed 

distributions, or (c) are strongly correlated (i.e., the interaction is confounded with a 

quadratic effect of the focal predictor). For Z, low refers to 1 SD below the mean, and high 
refers to 1 SD above the mean.
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Fig. 5. 
A marginal-effects (or regions-of-significance) plot of Example 1. The plot shows the 

marginal effect of X on Y (i.e., the simple slope of X) across a range of the moderator 

variable Z; the shaded area indicates the 95% confidence region for the marginal effect. The 

marginal rug of Z on the horizontal axis indicates the frequency of observed values of Z 
across its displayed range.
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Fig. 6. 
Illustration of small multiples created by interActive for Example 1 using multivariate 

normal predictors. Simple slopes are provided for levels of the moderator 2 SD and 1 SD 
below the mean, at the mean, and 1 SD and 2 SD above the mean. Each graphic shows the 

computed 95% confidence region (shaded area), the observed data (gray circles), the 

maximum and minimum values of the outcome (dashed horizontal lines), and the crossover 

point (diamond). The x-axes represent the full range of the focal predictor. CI = confidence 

interval; PTCL = percentile.
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Fig. 7. 
Plot of the bivariate relation between X and Y in Example 1 and the confidence region of the 

linear estimate. The small squares indicate the lower and upper limits of the 95% confidence 

interval of y when X is (centered at) 0 and (centered at) 1 (see Table 2).
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Fig. 8. 
Small multiples created by interActive for Example 1 in a simulation with exponentially 

distributed predictors. In (a), simple slopes are provided for levels of the moderator 2 SD 
and 1 SD below the mean, at the mean, and 1 SD and 2 SD above the mean. The observed 

data are better characterized in (b), which provides simple slopes for a more restricted range 

of values of the moderator. Each graphic shows the computed 95% confidence region 

(shaded area), the observed data (gray circles), the maximum and minimum values of the 

outcome (dashed horizontal lines), and the crossover point (diamond). The x-axes represent 

the full range of the focal predictor. CI = confidence interval; PTCL = percentile.
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