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Abstract

Multi-element transmit arrays with low peak 10 g specific absorption rate (SAR) and high SAR 

efficiency (defined as B1
+/ peakSAR10g  are essential for ultra-high field (UHF) magnetic 

resonance imaging (MRI) applications. Recently, the adaptation of dipole antennas used as MRI 

coil elements in multi-channel arrays has provided the community with a technological solution 

capable of producing uniform images and low SAR efficiency at these high field strengths. 

However, human head-sized arrays consisting of dipole elements have a practical limitation to the 

number of channels that can be used due to radiofrequency (RF) coupling between the antenna 

elements, as well as, the coaxial cables necessary to connect them. Here we suggest an asymmetric 

sleeve antenna as an alternative to the dipole antenna. When used in an array as MRI coil 

elements, the asymmetric sleeve antenna can generate reduced peak 10 g SAR and improved SAR 

efficiency. To demonstrate the advantages of an array consisting of our suggested design, we 

compared various performance metrics produced by 16-channel arrays of asymmetric sleeve 

antennas and dipole antennas with the same dimensions. Comparison data were produced on a 

phantom in electromagnetic (EM) simulations and verified with experiments at 10.5 Tesla (T). The 

results produced by the 16-channel asymmetric sleeve antenna array demonstrated 28 % lower 

peak 10 g SAR and 18.6 % higher SAR efficiency when compared to the 16-channel dipole 

antenna array.

Index Terms—

Cable trap; dipole antenna; deep brain imaging; asymmetric sleeve antenna; ultra-high field 
magnetic resonance imaging

I. INTRODUCTION

MAGNETIC resonance imaging (MRI) at ultra-high fields (UHF, defined as ≥7 tesla (T)) 

are increasingly pursued for biomedical research due to gains in signal-to-noise [1]–[4] and, 

in some cases, contrast-to-noise ratios (SNR and CNR, respectively) (e.g. [5], [6]). This has 

led to initiatives pushing human MRI systems to extremely high magnetic field strengths, 

such as 10.5 T [7], [8]. However, in the UHF regime, the ratio of the wavelength of the 

radiofrequency (RF) electromagnetic (EM) waves employed for excitation of signals from 

the water protons in tissue compared to the object size becomes less than one [2], [9]. 

Consequently, UHF RF coil designs frequently migrate towards far field antenna concepts 

rather than the near field domain, like those used at current clinical MRI field strengths.

As MRI pushes into the UHF regime, electric (E) and magnetic (B) field amplitude and 

phase non-uniformities increase over the sample volume, and this leads to non-uniform 

power deposition and transmit efficiency [4], [9]–[12]. Radiative type antennas [8], [13]–

[15], particularly half wavelength (λ/2) dipole antennas, have been suggested as building 

blocks for such UHF transmit arrays and have recently shown promising performance 

initially for applications in the human torso [7], [14], [16], [17] and recently in the human 

Woo et al. Page 2

IEEE Trans Med Imaging. Author manuscript; available in PMC 2021 April 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



head [8], [18], [19] enabling improved transmit B1 efficiency and minimized power 

deposition in the imaging target (i.e. specific absorption rate (SAR)). Compared to other RF 

coil types, such as loops (e.g. [20], [21]) or microstrip type structures [22], [23], dipole 

antennas show more favorable Poynting vectors and improved B1 shimming performance. 

Dipole antennas also achieve greater penetration depth, however they encounter greater 

challenges in minimizing the mutual coupling between neighboring elements. For 

applications in the human torso, this challenge is mitigated by positioning the antenna in 

consistent close proximity to the body, thus promoting maximal coupling between the 

sample and the antenna while maintaining consistent coupling between neighboring 

elements. Similarly, subject-specific stripline coil arrangements in combination with 

geometric capacitive decoupling schemes had been successfully utilized to support more 

reliable coil loading for head arrays at 7 T [24]. More recently, in order to minimize 

coupling for radiative antenna arrays, a number of innovative decoupling techniques have 

been suggested [25]–[28]. However mutual coupling and radiation remain a significantly 

problem for human head applications at 10.5 T due to the relatively large and non-uniform 

gap between the head and the antenna array [27], [29], [30]. The lack of strong coupling to 

the imaging object encountered for dipole antenna array implementations for human head 

imaging also results in stronger interaction between the dipole antenna and the coaxial feed 

cable, which is typically routed in parallel to one leg of the dipole antenna in MR 

applications. Combined with the interaction among the many coaxial cables in a multi-

element array, degraded antenna performance and significant E- and B-field perturbations 

have been observed [31]–[33].

Here we adapt the sleeve antenna concept for MR imaging at UHF. The “sleeve” of the 

sleeve antenna concept has the same structure as a cable trap and we can elegantly use this 

for reducing sheath currents on the coaxial feed cable. We incorporate these floating sleeves 

[34], [35] into the antenna feed structure and extend the concept towards development of an 

asymmetric sleeve antenna array for MRI applications in the human head. In this paper, we 

describe a 16-channel asymmetric sleeve antenna array design for 447 MHz (10.5 T human 

head 1H imaging), which, at the time of this publication, is the highest magnetic field 

available for human imaging. We compare this asymmetric sleeve antenna array to a dipole 

antenna array and present validation with EM simulations and 10.5 T MR experiments, 

demonstrating advantages in B1
+ efficiency (defined as B1

+ amplitude in the center of the coil 

per unit square root power), 10 g SAR, and SAR efficiency (defined as 

B1
+center/ peakSAR10g ).

II. METHODS

A. Antenna Concept and Design of the Asymmetric Sleeve Antenna

The 3D modeling of a single element dipole antenna (Fig. 1a), a symmetric sleeve antenna 

(Fig. 1b) and an asymmetric sleeve antenna (Fig. 1c) are shown above, indicating the 

evolution from a classical half wave dipole to an asymmetric sleeve antenna. The practical 

implementation is shown in Fig. 1d; and drawn schematically in Fig. 1e. The basic structure 

of a sleeve antenna [34]–[38] is configured as a seamless combination of a monopole (= λ/4) 

built from the center conductor of a coaxial cable with one floating cable trap (= λ/4) placed 
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over the shield. The resulting structure is equivalent to a dipole antenna since the total 

structural length of the monopole and associated floating cable trap approximate a half 

wavelength. The length of the floating cable trap and monopole can be varied as long as the 

sum of the aforementioned parts remains the same (Fig. 1c–1e). The possibility to vary the 

length of the monopole and sleeve portions of the antenna adds an essential degree of 

freedom in the design and supports asymmetrical construction with benefits for the overall 

antenna layout [37], [38].

Theoretically the current distribution of the half wave dipole and the asymmetric sleeve 

antenna can be described as

IDipole = I0sin βL
2 (1)

ISleeve = I0sin β L
2 − ℎ

= I0sin βℓ ,
(2)

where IDipole and ISleeve are the current of the dipole and asymmetric sleeve antenna at the 

matching point, respectively. ß is the phase constant associated with the transmission line, L 

is the length of dipole antenna (Fig. 1a) and ℓ is the length of the floating sleeve (Fig. 1c) 

[38], [39].

In air, the resonant length of a dipole antenna is the sum of the equal length poles. At 447 

MHz, this half wavelength is ∼330 mm. For the sleeve antenna, the length of the antenna is 

the sum of the length of monopole and floating cable trap, which is also approximately one 

half of the wavelength [36], [37]. Due to dielectric media in close proximity (e.g., human 

head), the actual effective resonance length of the antenna is shortened to ∼250 mm for both 

dipole antenna and sleeve antenna.

B. Construction of the 16-Channel Arrays

The coil arrays and related coil formers were 3D modeled and the formers were fabricated 

in-house using a 3D printer (F410, Fusion3 Design, Greensboro, NC, USA). Both the 16-

channel dipole (Fig. 2a and 2b) and asymmetric sleeve antenna arrays (Fig. 2c and 2d) were 

designed and fabricated to the same physical inner dimensions. The array elements were 

arranged on an elliptically shaped former with a minor axis of 100 mm and major axis of 

110 mm. The length of the formers is 250 mm for the dipole antenna array and 200 mm for 

the asymmetric sleeve antenna array. This geometry results in an arrangement of sixteen 

antennas with 39 ± 14 mm spacing between individual elements. These arrays use the same 

elements for B1 transmit and receive (i.e. transceive array); the concepts, however, can be 

extended to transmit only and receive only designs. A 16-channel dipole antenna (length: 

250 mm) array with end points were built [15], [40]. This array is mounted on an elliptical 

shaped holder and the distance from the sample to each antenna varies slightly between 

elements. This results in variations of the capacitive loading between the sample and 

individual antenna elements. This variation in sample distance leads to slightly different 
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inductances per elements (from 5 to 17 nH). Fine tuning of individual elements was 

achieved by adjusting the end points of each dipole antenna.

In the frontal location, tuning inductors were inserted into both legs of the dipole in order to 

achieve the required physical length reduction while preserving electrical length and 

subsequent resonance frequency. The use of lattice balun match circuit and a floating cable 

trap significantly reduced sheath currents for each element of the 16-channel dipole antenna 

array (Fig. 2a and 2b). The length of each monopole conductor of the 16-channel 

asymmetric sleeve antenna array was set to 200 mm and combined with the 50 mm floating 

cable trap as shown in Fig. 2c and 2d.

All floating cable traps were built utilizing 50 mm long 3D printed polyethylene 

terephthalate glycol-modified (PETG) pipe structures. Each pipe has a 12 mm outer 

diameter and 5 mm inner diameter which accommodates the RG-400 coaxial feed cable. 

Two ceramic capacitors (100B series, American Technical Ceramics, Huntington Station, 

NY, USA) and one variable capacitor (JZ200HV, Knowles Voltronics, Cazenovia, NY, USA) 

were used to adjust the resonance frequency of the cable traps. Two sets of cable traps were 

utilized for each sleeve element, with the first set located at the nearest point to the antenna 

feed point; the second set located another quarter wavelength down the feed cable [34], [35]. 

The 16-channel dipole antenna array was equipped with the same type of floating cable traps 

at a quarter wavelength distance from the feed point. These cable traps reduced the coupling 

between the coaxial cable and dipole antenna. Optimally, cable traps should be located in 

immediate proximity to the feed point. In practice, however, cable traps are resonant 

structures that can interact with one of the dipole antenna poles. Thus, in practice it is 

beneficial to locate the cable traps up the feed coax λ/4 from the feed point for the dipole 

antenna.

C. Experimental Setup and Bench Measurements

All MR experiments were performed using a 10.5 T / 880 mm whole body magnet (Agilent, 

Santa Clara, CA, USA) interfaced with a MAGNETOM 10.5 T console (Siemens 

Healthineers, Erlangen, Germany) equipped with 16 independent parallel transmit (pTx) 

channels. The pTx system allowed for full control over transmitter phase, amplitude, timing, 

and waveform. For better comparison with standard systems all data presented here were 

acquired with equal RF transmit power per channel. A 16-channel transmit/receive interface 

box (Virtumed, Minneapolis, MN, USA), mounted on the patient table was equipped with 

in-house built transmit/receive switch modules to connect all array elements to the MRI 

system as shown in Fig. 3a and 3d. All of the individual antenna elements were connected 

with coaxial cables to the interface box and then on to the pTx system connectors of the MR 

scanner.

The phantom used to compare coil performance was an acrylic cylindrical container 180 mm 

in diameter and 305 mm in height filled with a sucrose doped saline solution [41]. 

Electromagnetic properties of this solution were measured using a DAKS-12 (SPEAG, 

Zurich, Switzerland) to be εr = 49 and σ = 0.6 S/m. The diameter of the phantom was 

selected based on the availability of pre-fabricated acrylic tubes that were close in size to 

that of the human head. The length of phantom was chosen to emulate the human head and 
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neck. The phantom was positioned within the coil formers in a realistic location for the 

human brain imaging applications.

All input reflections and coupling coefficients were measured in bench measurements using 

a 16-channel network analyzer (ZNBT8, Rohde & Schwarz, Munich, Germany). The S-

parameters of all 16 elements both arrays were measured in dB scaled values. The S11 of all 

channels, the S21 values with the nearest neighbors, and S31 values with the next nearest 

neighbors of all 16-channel are summarized in Fig. 4a and 4d.

Noise covariance matrices of the 16-channel dipole antenna array (Fig. 4b) and the 16-

channel asymmetric sleeve antenna array (Fig. 4e) were acquired to experimentally evaluate 

the crosstalk between the elements [42]. An actual flip angle imaging (AFI) sequence 

(TR1/TR2 = 20/120 ms, TE = 3.39 ms, nominal flip angle = 60°, GRAPPA (R = 2), 

resolution = 2 mm × 4 mm × 6 mm) was used to obtain the transmit B1
+ field maps (Fig. 5c 

and 5d) with the cylindrical phantom in a circular polarization (CP) mode. All B1
+ efficiency 

data sets using AFI were achieved with rectangle pulses (non-selective option and 3D). The 

flip angle with short TR1 and TR2 was calculated by

α = arccos rn − 1
n − r , (3)

where α = flip angle, n = TR2/TR1, and r ≈ 1 + ncosα
n + cosα  [43]. The flip angle was converted to 

B1
+ with

α = 2π γ B1
+τ, (4)

where γ is the gyromagnetic ratio and τ is the width in seconds of the RF pulse [44]. The 

individual relative B1 magnitude maps corresponding to each channel of the arrays are 

shown in Fig. 4c for the dipole antenna array and in Fig. 4f for the asymmetric sleeve 

antenna array. An individual relative B1 magnitude map is defined here as the magnitude of 

each individual transmitter divided by the total magnitude of all sixteen individual 

transmitter maps. In other words, the individual relative B1 map is proportional to the total 

of all B1 fields. The total magnitude of all sixteen individual transmitter maps was obtained 

by the calculation with the square root sum of squares. High resolution T2 weighted TSE 

images (TR = 5000 ms, TE = 72 ms, TA = 3:45 min, echo train length = 9, BW = 488 Hz/

pixel, FOV = 200 mm × 159 mm, resolution = 0.39 mm × 0.39 mm × 1.0 mm) of a human 

cadaver were obtained for the evaluation of the 16-channel asymmetric sleeve antenna array.

D. Numerical Simulation

EM simulations (XFdtd, REMCOM, State College, PA, USA) were performed to acquire E- 

(Fig. 3b) and B- (Fig. 3c) fields of the 250 mm long dipole antenna and E- (Fig, 3e) and B- 

(Fig.3f) fields of the asymmetric sleeve antenna (200 mm monopole antenna + 50 mm 

sleeve). These simulations were obtained with parallel alignment of a sleeve (= cable trap) 

and a coaxial cable for the dipole antenna and with collinear alignment of a sleeve and a 

coaxial cable for the asymmetric sleeve antenna. Coaxial cables were modeled by parallel 
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cylindrical central bars and pipe structures with realistic dimensions and electrical 

characteristic of copper. All cable traps were modeled and included in the simulation to 

match the experimental setup as much as possible.

EM simulations were also used to calculate B1
+ fields (Fig. 5a and 5b) and 10 g SAR (Fig. 6a 

and 6b) of both the 16-channel dipole antenna and the asymmetric sleeve antenna arrays 

with non-isotropic gridding (minimum: 4 mm and maximum: 8 mm). A phantom with 

matching dimensions and electrical properties was selected for experimental verification 

with a 1 mm × 1 mm × 1 mm resolution (re-gridded by post-processing). Importantly, all of 

the simulated 16-channel arrays included the coaxial cables and the sleeve - thus closely 

resembling the practical coil setup. All data were calculated using MATLAB (The 

Mathworks, Inc., Natick, MA, USA) after EM simulation. B1
+ fields were determined from

B1
+ = Bx + i By

2 , (5)

where Bx and By are the complex amplitudes of x- and y-oriented RF magnetic fields, 

respectively [45].

B1
+ efficiency, 10 g SAR, and SAR efficiency maps shown below (Fig. 5 and Fig. 6) compare 

the two 16-channel arrays. B1
+ fields were normalized to 1 W, in order to evaluate the B1

+

efficiency. The normalization was performed over the power supplied to the all antenna 

elements. For the safety validation, 10 g SAR (W/kg) values were calculated from the E-

field and compared between arrays. SAR efficiency values, which are B1
+ efficiency per 

square root of peak 10 g SAR, were compared between arrays as shown in Fig. 6c and 6d. 

For a quantitative comparison, the highest B1
+ efficiency, 10 g SAR, and SAR efficiency 

areas are indicated in the axial plane of the arrays. The values of each ROI (2 mm isotropic 

voxel) are indicated below the figures.

III. RESULTS

A. Comparison of Bench Measurements, Simulation, and Experiments Between the 16-
Channel Arrays

Bench measurements of the scattering parameters for the reflection (S11) and coupling (S21, 

and S31) coefficients when the coils were loaded with a uniform cylindrical phantom are 

summarized in Fig. 4a and 4d for both arrays, respectively. The S11 values of the 16-channel 

dipole and the asymmetric sleeve antenna arrays ranged between −11.1 dB to −28 dB, and 

between −15.4 dB to −22.8 dB, respectively. Coupling between adjacent elements (S21) was 

in the range of −7.9 dB to −14.3 dB for the dipole antenna array and −8.7 dB to −19.6 dB for 

the asymmetric sleeve antenna array. Noise covariance matrices were obtained in an MR 

experiment and are shown in Fig. 4b and 4e. A maximum correlation value of 0.17 was 

observed for the 16-channel dipole antenna array and of 0.11 for the 16-channel asymmetric 

sleeve antenna array, respectively. Overall B1
+ efficiency loss due to the inter-element 
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coupling was calculated and shown to be 44 % for the 16-channel dipole antenna array and 

22.7 % for the 16-channel asymmetric sleeve antenna array, respectively.

The B1
+ efficiency comparisons between the two arrays calculated from electromagnetic 

simulations and obtained experimentally are illustrated in Fig. 5. Compared to the 16-

channel dipole antenna array, the 16-channel asymmetric sleeve antenna array achieved ∼8 

% higher B1
+ (center) efficiency both in simulation and experimentally, as measured in the 

indicated region of interest (ROI) in the phantom. Red arrows indicate ROIs.

The overall average and peak values of SAR and 10 g SAR were summarized in Table I. 

Peak 10 g SAR values of the 16-channel dipole (Fig. 6a) and the 16-channel asymmetric 

sleeve antenna arrays (Fig. 6b) were 0.32 W/kg and 0.25 W/kg with the phantom, 

respectively. This indicates 28 % lower SAR value for the 16-channel asymmetric sleeve 

antenna array compared to the 16-channel dipole antenna array. As observed in the axial 

plane, the generated B- and E- fields among coaxial cables and antenna elements of the 16-

channel dipole antenna array led to higher peak 10 g SAR in the periphery area of the 

phantom compared to the 16-channel sleeve antenna array. The result is that the 16-channel 

asymmetric sleeve antenna array showed 18.6 % higher SAR efficiency compared to the 16-

channel dipole antenna array in the simulation due to the lower peak 10 g SAR values 

depicted in Fig. 6c and 6d.

Fig. 7 shows a B1
+ efficiency, 10 g SAR and, SAR efficiency comparison of the 16-channel 

arrays in electromagnetic simulations with a human model (Duke). As indicated in Fig. 7a 

and 7b, the B1
+ efficiency of the 16-channel dipole antenna array was generally higher 

compared to values achievable with the 16-channel asymmetric sleeve antenna array. For 

both arrays the human head model loaded the antennas heavier in the anterior-posterior axis 

compared to the phantom and this heavy loading helped to reduce the coupling between 

antennas and coaxial feed cables with the dipole antenna array.

To avoid alignment of the central dipole feed point with the eyes, the human head model was 

shifted down from the central feed point towards the lower leg side of the dipole antenna and 

this results in a shift of the peak 10 g SAR more to the superior part of the brain. Peak 10 g 

SAR values of the 16-channel dipole (Fig. 7c) and the 16-channel asymmetric sleeve 

antenna (Fig. 7d) arrays are 0.30 W/kg and 0.22 W/kg with the human head model, 

respectively. This equates to 36.4 % lower peak SAR for the 16-channel asymmetric sleeve 

antenna array compared to the 16-channel dipole antenna array.

B. Human Cadaver Experiments With the 16-Channel Asymmetric Sleeve Antenna Array

The high resolution turbo-spin-echo (TSE) human cadaver images acquired at 10.5 T, shown 

in Fig. 8, demonstrate the good overall B1 penetration and field distribution of the 16-

channel asymmetric sleeve antenna array. These images were achieved with the 16-channel 

asymmetric sleeve antenna array driven in a CP mode without any further B1 shimming or 

pTx pulses adjustments for improved transmit B1 uniformity; the images were also not 

manipulated with reconstruction techniques aimed at flattening the signal intensity 
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variations. In axial images, the signal intensity is highly uniform even in the absence of 

specific efforts to improve its uniformity.

IV. DISCUSSION

Within the described parameters of our comparison, our results demonstrate clear benefits of 

the asymmetric sleeve antenna concept compared to dipole antenna array when used as RF 

coil array element at 447 MHz. The structure of the sleeve antenna itself closely resembles 

the dipole antenna with one important difference: the layout of a sleeve antenna element and 

the coaxial feed cable are collinear, whereas in the dipole antenna, the feed cable attaches at 

the center of the antenna and necessarily runs parallel to a portion of the dipole antenna to 

exit the coil assembly. The dipole antenna thus suffers from E- and B-fields interactions 

between the antenna element and the parallel-running feed cable. In MR body applications, 

dipole antennas can be placed directly on the body resulting in high coupling to the sample. 

This reduces interaction between the dipole antennas and coaxial feed cables. Remaining 

unbalanced currents flowing on coaxial feed cables can be tackled using balun matching 

networks, cable traps or the combination of the two [34], [35], [46]. For head applications, 

however, the weaker coupling combined with coaxial cable routing does affect both the E- 

and B-fields pattern of a dipole antenna. The collinear arrangements of the elements that 

make up the asymmetric sleeve antenna minimize these E- and B-fields interactions.

Moreover, the floating cable trap design of a sleeve antenna acts to further suppress 

imbalanced RF currents leaking onto the outer surface of the shield of the coaxial feed cable. 

These floating cable traps did not negatively influence either the antenna efficiency nor the 

radiation pattern.

The other important advantage of the asymmetric sleeve antenna array, compared to the 

dipole antenna array, is substantially lower peak 10 g SAR, and resulting enhanced SAR 

efficiency over a central ROI. To evaluate the safety at UHF, 10 g SAR can be used as an 

important criterion to estimate local E-fields and the related temperature changes [8], [47]–

[49]. As shown in Fig. 7,1 the peak 10 g SAR of the 16-channel asymmetric sleeve antenna 

array loaded with the human model was substantially lower than that of the 16-channel 

dipole antenna array. As a result, asymmetric sleeve antenna concepts allow for improved 

RF transmission for 10.5 T human brain imaging (for a given number of transmits channels).

Recently a passive feeding network and a snake type antenna structure were suggested to 

reduce peak 10 g SAR by Zivkovic et al. [50] and Steensma et al. [51], respectively. In 

future work, we will evaluate and compare SAR and SAR efficiency as a transceiver with 

these newly suggested techniques and we will also extend the comparison towards transmit-

only and receive-only (TORO) arrays [52].

As indicated in Fig. 5d, experimentally for CP excitation, the asymmetric sleeve antenna 

array showed less uniform B1
+ efficiency distribution in the axial slice compared to the 

dipole antenna array. In future work, we will evaluate the achievable uniformity beyond 

1A supplementary figure is available in the supporting documents.
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simple CP excitation at 10.5 T while utilizing parallel transmission within safe imaging 

parameters.

We also observed non-uniformity along the superior-inferior (z-) direction, visible in the 

sagittal image (Fig. 8) produced by the asymmetric sleeve antenna array. This is to be 

expected as the cylindrical layout of the antenna elements does not allow for antenna 

conductors to be in the vicinity of the superior portion of the head. However, this could 

possibly be remedied using monopole elements that are not straight, but conform to the 

curvature of the head in the z-direction, and we will evaluate this in future work. 

Furthermore, B1 shimming using pTx techniques can be utilized to improve the uniformity 

of images encompassing the entire human head, and we plan to evaluate this in future work.

V. CONCLUSION

Here we present an asymmetric sleeve antenna concept for UHF MRI of the human head and 

demonstrate the potential of this antenna type for imaging at 10.5 T. For future in-vivo 

human brain imaging, the asymmetric sleeve antenna array will be further optimized 

regarding number of channels and more form fitting geometry. This optimized sleeve 

antenna array will be RF safety validated for in vivo human head experiments and carefully 

evaluated for whole head shim capability. It is expected that the optimized sleeve antenna 

array geometry and utilization of pTx techniques will support further improved B1 fields and 

allow for lower peak 10 g SAR, which could lead to new neurological developments using 

UHF MRI.
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Fig. 1. 
Modification steps involved in converting a dipole antenna (a) to a symmetric sleeve antenna 

(b) then to an asymmetric sleeve antenna (c). The basic structures of a dipole and a 

symmetric sleeve antenna are equivalent (b). However, the sleeve antenna is an end-fed 

structure (b and c) while the dipole antenna is a center-fed structure (a). The sleeve portion 

of the sleeve antenna is a part of the antenna which acts as the ground. The architecture of 

the sleeve antenna leads the freedom to modify the length of the antenna part, which consists 

of the monopole, and sleeve portion, leading to an asymmetric sleeve antenna (c-e). 

Photograph (d) and schematic diagram (e) of an asymmetric sleeve antenna. The sleeve 

portion of the antenna is mechanically fixed in position, remains electrically floating without 

any direct contact to conductors of the coaxial cable.
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Fig. 2. 
3D modeling (a and c) and photographs (b and d) of the 16-channel dipole and the 16-

channel asymmetric sleeve antenna arrays. Importantly, all coaxial cables were included in 

the simulation to calculate E- and B-fields. Red dotted lines in Fig. 2a and 2c indicate the 

location of the individual transmit field maps displayed in Fig. 4c and 4f, respectively.
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Fig. 3. 
Simulation model of a dipole antenna array (a) and an asymmetric sleeve antenna array (d) 

with coaxial cables in the bore of the MRI system. For realistic head imaging, coaxial feed 

cables have to be positioned in parallel alignment with antennas for an in bore setup. 

Individual E-fields in free space including simulation of the coaxial cable of one dipole 

antenna (b) and one asymmetric sleeve antenna (e) are shown. Also shown are 

corresponding B-fields of one dipole antenna (c) and one asymmetric sleeve antenna (f). 

Note the higher interaction of the dipole antenna array with the center-fed coaxial cable, 

which results in high E- and B-fields between one pole of a dipole antenna and a coaxial 

cable (b and c). However, this is notably minimized in the asymmetric sleeve antenna (e and 

f).
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Fig. 4. 
Summary of the achieved S-parameters (a and d), noise covariance matrices (b and e) and 

individual relative B1 magnitude maps (c and f) of the 16-channel dipole (upper row) and the 

16-channel asymmetric sleeve antenna (lower row) arrays. Fig. 4c and 4f show relative 

percentage contribution of each transmitter on each pixel. Note that neither of these radiative 

arrays have any additional decoupling circuitry. As marked in Fig. 2a and 2c, the transmit 

field of dipole channel 14 (Fig. 4c), which is positioned over the forehead, appears weaker 

due to a shifted location and the larger inductors required for this shortened element.
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Fig. 5. 

Simulation (a and b) and experimental (c and d) B1
+ efficiency B1

+/ W  maps of the 16-

channel dipole and the 16-channel asymmetric sleeve antenna arrays with a phantom. The 

results are shown in the axial, coronal, and sagittal planes. For the experimental data (c and 

d), a threshold was applied for better data display purpose. Note: Due to the reduced 

interaction among the coaxial cables and antennas of the 16-channel asymmetric sleeve 

antenna array, the sagittal image shows more field distortion compared to the 16-channel 

dipole antenna array. Red arrows indicate ROIs where values are measured. The 

measurements are listed below the corresponding set of figures for comparison. Green dots 

indicate the position of individual element of the arrays.

Woo et al. Page 18

IEEE Trans Med Imaging. Author manuscript; available in PMC 2021 April 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 6. 

10 g SAR (a and b) and SAR efficiency B1
+/ peakSAR10g  (c and d) maps of the 16-channel 

dipole and asymmetric sleeve antenna arrays with a phantom; results are shown in axial, 

coronal, and sagittal planes. Red dotted lines of a coronal and a sagittal plane in Fig 6a and 

6b indicate the location of the axial plane with peak 10 g SAR. Red arrows indicate ROIs 

where values are measured. The measurements are listed below the corresponding set of 

figures for comparison.
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Fig. 7. 

Simulation of B1
+ efficiency (a and b), 10 g SAR (c and d) and SAR efficiency (e and f) maps 

of the 16-channel dipole and the 16-channel asymmetric sleeve antenna arrays with a human 

head model (Duke) in an axial, coronal, and sagittal planes. The peak 10 g SAR of the 16-

channel asymmetric sleeve antenna array (d) is substantially lower compared to the 16-

channel dipole antenna array (c). SAR efficiency of the 16-channel asymmetric sleeve 

antenna array (f) is higher compared to the 16-channel dipole antenna array (e).
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Fig. 8. 
Turbo-spin-echo (TSE) images acquired at 10.5 T with the 16-channel asymmetric sleeve 

antenna array with human cadaver in the axial, coronal and sagittal planes. The displayed 

images were achieved in circular polarization (CP) mode without any B1 shimming or pTx 

pulse optimization technique. TR = 5000 ms, TE = 72 ms, TA = 3:45 min, BW = 488 Hz/

pixel, FOV = 200 mm × 159 mm, resolution = 0.39 mm × 0.39 mm × 1.0 mm.
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