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ABSTRACT
Thalassiosira is a species-rich genus with about 170 described species, many of which are harmful algal
species with significant negative ecological impact. However, genome data of these species remain lim-
ited. In this study, the complete mitochondrial genome of Thalassiosira profunda (Hendey) Hasle 1973
was determined for the first time. The circular genome was 40,470bp in length with GC content of
30.98%. It encodes 63 genes including 36 protein-coding genes (PCGs), 25 tRNA genes, and two rRNA
genes. Phylogenetic analysis using concatenated PCGs suggested that T. profunda had a closer evolu-
tionary relationship with Skeletonema marinoi of a different family (Skeletonemataceae) than
Thalassiosira pseudonana, suggesting complex evolutionary relationship among species in these two
families. Colinearity analysis also revealed fewer genome rearrangements between T. profunda and S.
marinoi than that between T. profunda and T. pseudonana. This study suggests that mitochondrial
genomes of many more species in the Thalassiosiraceae and Skeletonemataceae families are needed to
disentangle the complex evolutionary relationships in the order of Thalassiosirales.
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Thalassiosira (Mediophyceae, Bacillariophyta) is a species-rich
genus with about 170 species described globally (Guiry and
Guiry 2020) and about 50 species described in China (Li
2006). At least 10 Thalassiosira species, such as Thalassiosira
rotula, Thalassiosira diporocyclus, and Thalassiosira weissflogii,
have been found to form blooms with negative impact on
environment (Li 2006; Li et al. 2013). Despite their important
role in environment and ecology, molecular analysis of spe-
cies in this genus has been limited. Here, we constructed the
complete mitochondrial genome of Thalassiosira profunda
(Hendey) Hasle 1973. The strain CNS00050 was isolated in
water samples collected during an expedition to the
Jiaozhou Bay (36�01.4810N, 120�17.2020E) in March 2019
onboard the research vehicle ‘Innovation’. The strain
CNS00050 was confirmed to be T. profunda based on its mor-
phological features and molecular sequences. The cells of
CNS00050 were small, with diameters being 3–5 mm.
Phylogenetic analysis of full-length 18S rDNA sequences indi-
cated that the full-length 18S rDNA sequence of CNS00050
(MW205689) clustered with four T. profunda 18S rDNA
sequences (KC284713, MN528652, MN528651, and
MN528654) reported previously (Alverson 2016; Arsenieff
et al. 2020). Another T. profunda full-length 18S rDNA

sequence (AM235383) was clustered with Thalassiosira nor-
denskioeldii. However, this sequence was not supported by
any published evidence. Similar phylogenetic analysis of
other molecular markers including 28S rDNA D1-D2 regions
(MW205747), rbcL (MW478286), and ITS (MW474850) all sup-
ported that the strain CNS00050 was T. profunda. Its speci-
men was deposited in the collection of marine algae in
KLMEES of IOCAS (Nansheng Chen, chenn@qdio.ac.cn) under
the voucher number CNS00050.

Illumina sequencing results of T. profunda were assembled
into scaffolds using SPAdes v3.13.2 (Bankevich et al. 2012)
and Platanus-allee v2.2.2 (Kajitani et al. 2019). Scaffolds of tar-
get mitochondrial genomes were selected from the assembly
results using BLASTN v2.10.0. The mitochondrial genome
sequence was examined using DOTTER v4.44.1 (Sonnhammer
and Durbin 1995) and validated using the MEM algorithm of
BWA v0.7.17 (Li and Durbin 2010). The alignments were
visualized using IGV v2.8.12 (Robinson et al. 2011). Open
reading frames (orfs) in the mitochondrial genome were first
identified using Open Reading Frame Finder (ORF finder)
(https://www.ncbi.nlm.nih.gov/orffinder) with ‘Genetic code:
4, ORF start codon: ‘ATG’ only’ selected. Protein-coding genes
(PCGs) annotation was performed by using SmartBLAST
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(https://blast.ncbi.nlm.nih.gov/smartblast/) and BLASTP. tRNA
genes were annotated using tRNAscan-SE 2.0 (Chan and
Lowe 2019) with default setting. The locations of rRNAs were
predicted by MFannot (https://megasun.bch.umontreal.ca/
RNAweasel/) and determined by direct alignment with the
mitogenomes of related species using MEGA X (Kumar et al.
2018) and BLASTN. The annotations were converted into gen-
ome maps by using OrganellarGenomeDRAW (OGDRAW)
(Greiner et al. 2019).

The complete mitochondrial genome of T. profunda
(GenBank accession number: MW013551) is 40,470 bp in size
with GC content of 30.98%. It encodes 63 genes including 36
PCGs, 25 tRNA genes, and two rRNA genes. Among the 36
PCGs, 34 genes start with the canonical ATG start codons,
nad11 with TTG, and atp8 with ATT. Most genes have canon-
ical stop codons TAA (31 of 36 genes), with five genes having
TAG as stop codons. The 25 tRNA genes, ranging in length
from 72 bp to 89bp, have typical cloverleaf secondary

structures. No introns were found in the T. profunda mito-
chondrial genome.

Maximum-likelihood (ML) phylogenetic tree (Figure 1) was
constructed using tandem amino acid sequences of 31 com-
mon genes including atp6, 8, 9; cob; cox1, 2, 3; nad1–7, 4L, 9,
11; rpl2, 5, 6, 14, 16; rps3, 4, 8, 10, 11, 13, 14, 19; and tatC,
from 35 publicly diatom mitochondrial genomes using IQtree
v1.6.12 (Trifinopoulos et al. 2016) with 1000 bootstrap align-
ments. Mitochondrial genomes of two Oomycota species
Phytophthora ramorum (EU427470) and Saprolegnia ferax
(NC_005984) were used as out-group taxa. The results dem-
onstrated that species fell nicely into three clades corre-
sponding to three classes of the phylum Bacillariophyta
including Coscinodiscophyceae, Mediophyceae, and
Bacillariophyceae. T. profunda was grouped with Skeletonema
marinoi and T. pseudonana with strong support. T. profunda
of the family Thalassiosiraceae showed closer evolutionary
relationship with S. marinoi of the family Skeletonemataceae

Figure 1. Maximum-likelihood (ML) phylogenetic tree based on tandem amino acid sequences of 31 common genes from 35 publicly diatom mitochondrial
genomes, and Phytophthora ramorum (EU427470) and Saprolegnia ferax (NC_005984) in Oomycota were used as out-group taxa. The numbers beside branch nodes
are the percentage of 1000 bootstrap values.
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than that with T. pseudonana, which were different families
in the order Thalassiosirales (Stoermer 2003). Furthermore,
colinearity analysis of the mitochondrial genomes of three
species T. profunda, T. pseudonana, and S. marinoi identified
a single inversion event involving a single gene atp6
between T. profunda and S. marinoi, while identified an inver-
sion event involving atp6 plus a translocation event involving
two genes cox2-cox3 between T. profunda and T. pseudonana,
also suggesting higher similarity between T. profunda and S.
marinoi. These results were consistent with findings from a
recent study suggesting that T. pseudonana should be classi-
fied as a species of another genus Cyclotella (Alverson et al.
2011). Thus, the mitochondrial genome of T. profunda likely
represents that first mitochondrial genome of Thalassiosira.
The complete mitochondrial genomes of more species in
Thalassiosira and related genus will help to clarify the evolu-
tionary relationships and classification of the order
Thalassiosirales.
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