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Abstract
Background: The study aimed to uncover the regulation mechanisms of diabetic cardiomyopathy 
(DCM) and provide novel prognostic biomarkers. 
Methods: The dataset GSE62203 downloaded from the Gene Expression Omnibus database was 
utilized in the present study. After pretreatment using the Affy package, differentially expressed genes 
(DEGs) were identified by the limma package, followed by functional enrichment analysis and pro-
tein–protein interaction (PPI) network analysis. Furthermore, module analysis was conducted using 
MCODE plug-in of Cytoscape, and functional enrichment analysis was also performed for genes in the 
modules. 
Results: A set of 560 DEGs were screened, mainly enriched in the metabolic process and cell cycle relat-
ed process. Hub nodes in the PPI network were LDHA (lactate dehydrogenase A), ALDOC (aldolase C,  
fructose-bisphosphate) and ABCE1 (ATP Binding Cassette Subfamily E Member 1), which were also 
highlighted in Module 1 or Module 2 and predominantly enriched in the processes of glycolysis and ribo-
some biogenesis. Additionally, LDHA were linked with ALDOC in the PPI network. Besides, activating 
transcription factor 4 (ATF4) was prominent in Module 3; while myosin heavy chain 6 (MYH6) was 
highlighted in Module 4 and was mainly involved in muscle cells related biological processes. 
Conclusions: Five potential biomarkers including LDHA, ALDOC, ABCE1, ATF4 and MYH6 were 
identified for DCM prognosis. (Cardiol J 2020; 27, 6: 807–816)
Key words: diabetic cardiomyopathy, expression profile, differential analysis, module 
analysis, glycolysis, ribosome biogenesis 

Introduction

Type 2 diabetes mellitus (T2DM) remains  
a life-threatening disease worldwide with in-
creasing incidence [1, 2]. The predominant cause 
of death for T2DM patients was cardiovascular 
disease [3]. The diabetic cardiomyopathy (DCM) 
has been recognized as ventricular dysfunction in 
the absence of hypertension and coronary artery 
disease, may increase the risk of developing heart 
failure [4]. Moreover, DCM has been defined as  
a primary disease progressing into a metabolic 
disturbance that was mainly due to the elevation of 

free fatty acid (FFA) and the alteration of glucose 
metabolism, and would change the myocardial 
structure and function [5, 6]. It was reported that 
the mortality of patients with DCM was 42%, and 
the ST-segment elevation myocardial infarction 
(STEMI) and non-STEMI mortality in diabetic 
patients were 72% and 67%, respectively [7]. Cur-
rently, there were no specific therapeutic interven-
tions for this predominant complication, except  
a paucity of proposed drugs such as eplerenone [8]. 
The understanding of mechanisms on DCM pro-
gression would facilitate finding novel targets for 
treatment of this disease. Several mechanisms in 
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charge of DCM were proposed. For instance, it was 
confirmed that FFA-mediated apoptosis, hypertro-
phy, and contractile dysfunction were the causative 
factors for DCM [6]. Oxidative stress was another 
major cause for the pathogenesis of DCM [9]. The 
overexpression of insulin like growth factor 1 was 
reported to act as an inhibitor in DCM develop-
ment [10]. A more recent study elaborated mo-
lecular mechanisms that contributed to functional 
alterations in the diabetic heart and consequently 
identified several crucial advanced glycation end 
products (AGEs), fibrosis related genes including 
poly (ADP-Ribose) polymerase 1 (PARP-1), Otsuka 
Long Evans Tokushima fatty (OLETF) and matrix 
metalloproteinases 2 (MMP-2), inflammatory cy-
tokines such as interleukin-1beta (IL-1b), IL-6, 
tumor necrosis factor-alpha (TNF-a) and trans-
forming growth factor beta1 (TGF-b1) and altered 
pathways like mitogen-activated protein kinase 
(MAPK signaling) and TGF-b signaling, as well 
as critical miRNAs (miR-143, miR-181, miR-103, 
miR-107 and miR-802) [11]. However, previous 
informative findings only partially elucidated the 
molecular mechanism involved in DCM, and future 
study for comprehensive illustrating the primary 
genes and the pathways for the prevention of DCM 
was needed. 

So far, the patient-specific induced pluripotent 
stem cells (iPSCs) model has been applied to mimic 
the DCM condition and dilated cardiomyopathy, 
to investigate therapeutic strategies or epige-
netic regulations in these diseases [12–14]. Among 
them, Drawnel et al. [13] used a patient-specific 
induced iPSC model to exhibit metabolic disorders 
during the progression of DCM and finally screened 
several remarkable molecular drugs such as W7 
(calmodulin), penitrem A (sodium and potassium 
channel blocker) and MCBQ (PDE5 inhibitors) for 
the prevention of DCM. Although several gene 
alterations such as the elevated MYL2, MYL4 
and PLN; and the decreased NPPA, NPPB and 
ACTA1 were validated, the interactions among 
them and their functions were not interpreted, and 
thus lacked evidence for the prediction of potent 
therapeutic targets. Therefore, the expression 
profile GSE62203 deposited by Drawnel et al. 
[13] was re-analyzed to identify critical genes 
by extensive bioinformatical methods including 
differential analysis, protein–protein interaction 
(PPI) network and module analysis. Based on the 
above analyses, the aim herein was to uncover 
the interrelated regulation mechanisms of DCM 
and provide novel biomarkers for detection and 
prevention of DCM. 

Methods

Gene expression data
A data set of the gene expression profile 

GSE62203 containing 4 treated samples (human 
iPS-derived CMs exposed to glucose, endothelin-1 
and cortisol for 2 days in vitro) and 4 untreated 
samples (vehicle-control treated) was utilized in 
this study, which was deposited by Drawnel et al. 
[13] in the public Gene Expression Omnibus (GEO, 
http://www.ncbi.nlm.nih.gov/geo) database. In the 
Drawnel study, CMs were derived from CDI-MRB 
iPSCs (cellular dynamics international [CDI]). 
After being cultured for 2 days with conditions 
of 37°C and 7% CO2, the plating medium for the 
CMs was changed for maturation medium (MM) 
for 3 days. After 3 days, the MM was exchanged 
for DM (MM+ glucose, endothelin and cortisol) 
for treated samples or MM+ vehicle control for 
untreated samples for another 2 days. Thus, the 
DCM condition was established. The platform for 
the expression profile was Affymetrix Human Ge-
nome U133 Plus 2.0 Array (Affymetrix Inc., Santa 
Clara, California, USA).

Data preprocessing and differential analysis
The Affy package in Bioconductor (http://www.

bioconductor.org/packages/release/bioc/html/affy.
html) [15] was employed to perform the pretreat-
ment. The raw data were subjected to background 
correction, quantile data normalization and probe 
summarization recruiting the robust multi-array aver-
age (RMA) algorithm [16]. After obtaining the gene 
expression matrix, differentially expressed genes 
(DEGs) between the 2 kinds of samples were selected 
based on a t-test using linear models for microarray 
data (limma, http://www.bioconductor.org/packages/ 
/release/bioc/html/limma.html) package of Bioconduc-
tor R [17]. The cut-off values for the DEGs identifica-
tion were p < 0.05 and |log2 fold change| > 0.5.

Functional enrichment analysis for the DEGs
To explore the altered biological process (BP) 

and pathways, the DEGs were mapped into gene 
ontology ([GO], http://www.geneontology. org/) 
and Kyoto Encyclopedia of Genes and Genomes 
([KEGG], http://www.genome.jp/kegg/pathway.
html) databases, using Database for Annotation, 
Visualization and Integration Discovery ([DAVID], 
http://david.abcc.Ncifcrf.gov/) online tool [18] with 
the Modified Fisher Exact test [19]. The p-value 
< 0.05 and the count (number of the genes) > 2 
were set as the threshold for significant BP terms 
and pathways. 
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Construction of PPI network
To further explore potential correlations from 

the protein level, which facilitated to illustrate the 
underlying molecular mechanisms, identified DEGs 
were mapped into the Search Tool for the Retrieval 
of Interacting Genes/Proteins ([STRING], http://
string-db.org/) database [20]. The PPI network 
of protein products of the genes was established, 
containing pairwise interactions with required 
confidence (combined score) > 0.4. A protein in 
the network was considered as a ‘node’ and the 
‘degree’ of a node referred to the interaction pair 
numbers of a protein. The degree was calculated 
for each node using connectivity degree analysis. 
The ‘hub’ node in the network was deemed as the 
node with high degrees.

Module analysis of the PPI network
Functional modules of the network was ex-

tracted using the MCODE [21] plug-in of Cytoscape 
software with default parameters (Degree Cutoff: 2,  
Node Score Cutoff: 0.2, K-Core: 2, Max. Depth: 
100) for selection. Subsequently, high scored mod-
ules with substantial nodes were further screened 
out for enrichment analysis, as described above.

Results

DEGs between treated and untreated samples
Based on the aforementioned criteria, a co-

hort of 560 DEGs was identified between the 
treated and untreated samples, consisting of 264 
up-regulated genes and 296 down-regulated genes 
(Supplementary material 1). 

BPs and pathways altered  
in the treated sample

After GO and KEGG enrichment analysis, 
the up-regulated DEGs were mainly enriched in 
metabolic BP terms such as generation of precur-
sor metabolites and energy (GO: 0006091), hexose 
metabolic process (GO: 0019318), monosaccharide 
metabolic process (GO: 0005996) and glucose 
metabolic process (GO: 0006006); and besides 
response to wounding (GO: 0009611); response 
to organic substance (GO: 0010033), regulation 
of cell proliferation (GO: 0042127); while the 
down-regulated DEGs were significantly enriched 
in the processes including positive regulation of 
macromolecule metabolic process (GO: 0010604), 
cellular response to stress (GO: 0033554), and the 
cell control related functions such as regulation 
of apoptosis (GO: 0042981), regulation of pro-
grammed cell death (GO:0043067), regulation of 

cell death (GO:0010941), cell cycle (GO:0007049) 
and positive regulation of cellular biosynthetic 
process (GO:0031328) (Table 1).

The over-represented pathways for the up-
regulated DEGs were glycometabolism and proteo-
metabolism related pathways including glycolysis/
gluconeogenesis (hsa00010), fructose and man-
nose metabolism (hsa00051), pentose phosphate 
pathway (hsa00030), starch and sucrose metabo-
lism (hsa00500), arginine and proline metabolism 
(hsa00330), cysteine and methionine metabolism 
(hsa00270); by contrast, the prominent ones for 
down-regulated DEGs were aminoacyl-tRNA 
biosynthesis (hsa00970) and arginine, and proline 
metabolism (hsa00330) (Table 2). 

The PPI network of the DEGs
By mapping the DEGs into the STRING data-

base, a PPI network was established, comprising 
of 317 nodes and 929 interactions. As revealed in  
Figure 1, the remarkable nodes with high degree  
(> 20) were GAPDH (degree = 49), FN1 (degree =  
= 30), LDHA (degree = 28), ENO1 (degree= 27), 
PGK1 (degree = 26), ABCE1 (degree = 25), SOD2  
(degree = 23), PKM (degree = 23), GOT1 (de- 
gree = 22), HK1 (degree = 22), TPI1 (degree = 21),  
GPI (degree = 21) and ALDOA (degree = 21).

Functional module network and the  
enrichment analysis for genes in the modules

According to module analysis of the PPI net-
work, four modules with a high score (> 3) were 
extracted from the PPI network. There were 
14 up-regulated nodes such as ALDOC, LDHA, 
PGK1 and TPI1 in Module 1 with a final score of 
12.923; and 10 nodes including ABCE1, GAR1 and 
FBL in Module 2 with a final score of 8.222. The 
Module 3 contained five down-regulated nodes as 
DDIF3, ATF4, CEBPG, CEBPB and HERPUD1 
and achieved a score of 4, while Module 4 consisted 
of 15 nodes such as CASQ2, CKMT2, IARS, CCT5, 
ACTA1, CKMT2 and MYH6 and had a score of 
3.857 (Fig. 2).

The BP functions of the genes (which encode 
proteins in the modules) in the four modules 
were further analyzed. As presented in Table 3, 
the over-represented BPs for genes in Module 1  
were predominantly correlated with the cata-
bolic process of various carbohydrates such as 
glycolysis (GO:0006096), glucose catabolic process 
(GO:0006007), monosaccharide catabolic pro-
cess (GO:0046365) and alcohol catabolic process 
(GO:0046164); while that for genes in Module 2 
were mainly related to ribosome biogenesis and 
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Table 1. Biological processes significantly affected by the DEGs in treated samples.  
(Top ten, ranked by gene numbers enriched in a specific process).

Category Term Description Count P

Up-regulated DEGs

BP GO:0006091 Generation of precursor metabolites and energy 28 1.37E-13

BP GO:0055114 Oxidation reduction 25 2.72E-05

BP GO:0009611 Response to wounding 24 3.98E-06

BP GO:0010033 Response to organic substance 23 1.07E-03

BP GO:0019318 Hexose metabolic process 22 8.75E-13

BP GO:0005996 Monosaccharide metabolic process 22 1.47E-11

BP GO:0042592 Homeostatic process 22 3.95E-03

BP GO:0006006 Glucose metabolic process 21 1.05E-13

BP GO:0042127 Regulation of cell proliferation 19 4.54E-02

BP GO:0044057 Regulation of system process 16 5.92E-05

Down-regulated DEGs

BP GO:0010604 Positive regulation of macromolecule metabolic process 22 1.20E-02

BP GO:0033554 Cellular response to stress 21 1.97E-04

BP GO:0042981 Regulation of apoptosis 20 2.32E-02

BP GO:0043067 Regulation of programmed cell death 20 2.54E-02

BP GO:0010941 Regulation of cell death 20 2.62E-02

BP GO:0009891 Positive regulation of biosynthetic process 19 1.17E-02

BP GO:0007049 Cell cycle 19 3.14E-02

BP GO:0006412 Translation 18 6.09E-06

BP GO:0006396 RNA processing 18 2.41E-03

BP GO:0031328 Positive regulation of cellular biosynthetic process 18 2.05E-02

DEG — differentially expressed genes; BP — biological process; GO — gene oncology; Count — gene numbers enriched in a specific BP term.

Table 2. Pathways significantly altered by the DEGs in treated samples.

Category Term Description Count P

Up-regulated DEGs

KEGG hsa00010 Glycolysis / Gluconeogenesis 15 3.66E-12

KEGG hsa00051 Fructose and mannose metabolism 6 4.49E-04

KEGG hsa00330 Arginine and proline metabolism 7 5.12E-04

KEGG hsa00500 Starch and sucrose metabolism 6 1.21E-03

KEGG hsa00030 Pentose phosphate pathway 5 1.25E-03

KEGG hsa04810 Regulation of actin cytoskeleton 12 2.84E-03

KEGG hsa04510 Focal adhesion 10 1.57E-02

KEGG hsa00270 Cysteine and methionine metabolism 4 2.77E-02

KEGG hsa05012 Parkinson’s disease 7 3.78E-02

KEGG hsa04610 Complement and coagulation cascades 5 4.46E-02

KEGG hsa05211 Renal cell carcinoma 5 4.67E-02

Down-regulated DEGs

KEGG hsa00970 Aminoacyl-tRNA biosynthesis 7 2.92E-05

KEGG hsa00330 Arginine and proline metabolism 4 4.56E-02

DEG — differentially expressed genes; KEGG — Kyoto Encyclopedia of Genes and Genomes; Count — gene numbers enriched in a specific 
biological process term
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Figure 1. Protein–protein interaction network of differentially expressed genes in iPS-derived cardiomyocytes treated 
by glucose, endothelin-1 and cortisol. Circles represent protein products of differentially expressed genes, and red 
denotes up-regulated, green denotes down-regulated; color depth indicates the significance of differential expressed 
genes.

Figure 2. Modules of the protein–protein interaction network. A. Module 1; B. Module 2; C. Module 3; D. Module 4.  
Circles represent protein products of differentially expressed genes, and red denotes up-regulated genes, green 
denotes down-regulated genes, as well as diamonds stand for hub nodes; color depth indicates the significance of 
differentially expressed genes.
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processing functions including ribosome biogen-
esis (GO:0042254), RNA processing (GO:0006396) 
and rRNA metabolic process (GO:0016072). Genes 
in the Module 3 were significantly correlated 

with the metabolic process involved in the cel-
lular biosynthesis such as positive regulation of 
nucleobase, nucleoside, nucleotide and nucleic 
acid metabolic process (GO:0045935), positive 

Table 3. Significantly enriched processes of genes in the module network.

Category Term Description Count P

Module 1

BP GO:0006096 Glycolysis 13 8.68E-30

BP GO:0006007 Glucose catabolic process 13 1.48E-28

BP GO:0019320 Hexose catabolic process 13 1.46E-27

BP GO:0046365 Monosaccharide catabolic process 13 2.12E-27

BP GO:0046164 Alcohol catabolic process 13 1.17E-26

BP GO:0044275 Cellular carbohydrate catabolic process 13 2.18E-26

BP GO:0016052 Carbohydrate catabolic process 13 5.18E-25

BP GO:0006006 Glucose metabolic process 13 3.64E-23

BP GO:0006091 Generation of precursor metabolites and energy 14 4.25E-22

BP GO:0019318 Hexose metabolic process 13 6.06E-22

Module 2

BP GO:0042254 Ribosome biogenesis 3 4.78E-04

BP GO:0022613 Ribonucleoprotein complex biogenesis 3 1.04E-03

BP GO:0006396 RNA processing 3 9.27E-03

BP GO:0006364 rRNA processing 2 2.69E-02

BP GO:0016072 rRNA metabolic process 2 2.81E-02

Module 3

BP GO:0034976 Response to endoplasmic reticulum stress 3 3.67E-05

BP GO:0045935 Positive regulation of nucleobase, nucleoside,  
nucleotide and nucleic acid metabolic process

4 3.77E-04

BP GO:0051173 Positive regulation of nitrogen compound metabolic process 4 4.14E-04

BP GO:0010557 Positive regulation of macromolecule biosynthetic process 4 4.34E-04

BP GO:0031328 Positive regulation of cellular biosynthetic process 4 4.98E-04

BP GO:0009891 Positive regulation of biosynthetic process 4 5.19E-04

BP GO:0042981 Regulation of apoptosis 4 8.00E-04

BP GO:0043067 Regulation of programmed cell death 4 8.23E-04

BP GO:0010941 Regulation of cell death 4 8.32E-04

BP GO:0010604 Positive regulation of macromolecule metabolic process 4 9.66E-04

Module 4

BP GO:0006936 Muscle contraction 5 1.44E-05

BP GO:0003012 Muscle system process 5 2.08E-05

BP GO:0030239 Myofibril assembly 3 2.07E-04

BP GO:0031032 Actomyosin structure organization 3 3.70E-04

BP GO:0010927 Cellular component assembly involved in morphogenesis 3 6.14E-04

BP GO:0006418 tRNA aminoacylation for protein translation 3 1.00E-03

BP GO:0043039 tRNA aminoacylation 3 1.00E-03

BP GO:0043038 Amino acid activation 3 1.00E-03

BP GO:0055002 Striated muscle cell development 3 1.28E-03

BP GO:0055001 Muscle cell development 3 1.48E-03

BP — biological process; GO — gene oncology; Count — gene numbers enriched in a specific BP term
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regulation of nitrogen compound metabolic pro-
cess (GO:0051173), positive regulation of cellular 
biosynthetic process (GO:0031328); and besides 
the cell control related BPs including regulation 
of apoptosis (GO:0042981) and regulation of pro-
grammed cell death (GO:0043067); whereas the 
prominent BPs for the genes in the Module 4 were 
involved in the processes relating to muscle cells 
such as muscle contraction (GO:0006936), muscle 
system process (GO:0003012) and muscle cell 
development (GO:0055001). 

Discussion

The DCM is defined as ventricular dysfunction 
that occurs in diabetic patients [22] and the iPSC 
model was applied to detect the metabolic altera-
tions and screen potential genes and molecular 
drugs [13, 23]. In the present study, the expres-
sion profile GSE62203 was utilized to conduct  
a series of bioinformatic analyses and as a result, 
identify a cohort of 560 DEGs between treated 
and untreated samples. The hub nodes in the PPI 
network were LDHA, ALDOC and ABCE1, which 
were also highlighted in Module 1 or Module 2 
and predominantly enriched in the glycolysis and 
ribosome biogenesis. Besides, ATF4 was promi-
nent in Module 3; while MYH6 was highlighted 
in Module 4 which was mainly involved in muscle 
cells related BPs.

The LDHA (lactate dehydrogenase A) is one 
of the subunits of LDH which play significant 
roles in the final step of anaerobic glycolysis by 
interconversion of pyruvate and lactate using 
NADH/NAD+ as a co-substrate to allow continu-
ous energy production [24]. It was reported that 
overexpression of LDHA activity may influence 
normal glucose metabolism and insulin secretion 
in the islet beta-cell type, and also result in insulin 
secretory defects in some forms of T2DM [25, 26]. 
In addition, the overexpression of LDHA activity 
might increase the lactate level and lactate–pyru-
vate interconversion rates in diabetes patients [27]. 
Similarly, the increased level of LDH was observed 
in the diabetic group, while luteolin exerted a pro-
tective effect against DCM by reducing the content 
of LDH in serum [28]. Hypoxia-inducible factor 
(HIF)-1, was a crucial transcription factor in brain 
ischemic pre-conditioning [29] and the expression 
of HIF-1a was decreased by a diabetic environment 
[30]. Partial deficiency of HIF-1a was proposed to 
increase the risk of DCM, and interestingly, LDHA 
was one of the target genes of HIF-1 that is in-
volved in glucose metabolism and was upregulated 

in the HIF-1a heterozygous-null mutants [31]. In 
the present study, LDHA was the striking node in 
both PPI network and Module 1, and significantly 
enriched in glycolysis, giving potent evidence that 
LDHA might emerge as a central regulator in the 
progression of DCM via disturbing the glycolysis 
process.

ALDOC (aldolase C, fructose-bisphosphate) 
encodes a member of the class I fructose-biphos-
phate aldolase family gene, which acts as a catalyst 
that catalyzes the reversible aldol cleavage of 
fructose-1,6-biphosphate and fructose 1-phos-
phate to dihydroxyacetone phosphate and either 
glyceraldehyde-3-phosphate or glyceraldehyde, 
respectively in the glycolysis process [32]. In-
creased glucose was one hallmark of diabetes 
mellitus (DM) and ALDOC was one of the enzymes 
that promoted glycolysis and was induced by the 
elevated glucose [33]. Then, the up-regulated  
ALDOC was a positive correlation with the in-
crease of FFA in plasma which might impair insulin 
secretion to develop T2DM [34, 35]. Additionally, 
ALDOC was up-regulated in the heart tissue in  
a rodent model of myocardial I/R injury [36]. 
Though no direct evidence existed that ALDOC and 
LDHA were interplayed with regard to diabetes or 
cardiomyopathy, it was indicated that ALDOC and 
LDHA were both up-regulated in a cervical cancer 
cell line of paclitaxel-resistant HeLa sublines [37]. 
On the other hand, DM was tightly related to the 
risk of various cancers including cervical cancer 
[38]. Notably, ALDOC and LDHA were both linked 
to HIF-1, which was associated with the risk of 
DCM as mentioned above [31]. These findings 
collectively suggested that the interacted ALDOC 
and LDHA might be involved in the regulation of 
the glycolysis process during DCM progression, 
as predicted by the current module analysis and 
enrichment analysis. However, more validations 
are needed to confirm the regulatory relationship 
between the two genes.

The ABCE1 encoded ATP Binding Cassette 
Subfamily E Member 1 which belongs to a fam-
ily member of the ATP-binding cassette (ABC) 
transporters and is primarily known as RNase L 
inhibitor (RLI) [39]. Zeng et al. [40] had indicated 
that RNase L activation was responsible for type I  
diabetes, and it was also suggested that the in-
creased expression of RNase L or down-regulated 
of its inhibitor (RLI) might enhance the insulin 
response in muscle cells of obese people [41]. 
Additionally, further studies demonstrated that 
the mutation of ABCB and gene polymorphisms 
of ABCG8 and ABCG5 have been linked to T2DM 
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[42, 43]. Moreover, ABC transporters are energy-
dependent when transporting various molecules 
across the biological membranes, while HF is the 
consequence of insufficient energy supplement of 
the cardiac pump. Therefore, it was hypothesized 
that the expression alterations of ABC transporters 
occurred during human HF [44, 45]. Due to ABCE1 
is a member of ABC transporters, and the present 
results indicated that the ABCE1 was a prominent 
down-regulated node in Module 2. Thus, it was 
predicted that the defective ABCE1 might have  
a significant influence on the progression of DCM. 
However, there is no direct evidence to prove that 
ABCE1 had interplayed with DCM, and it still 
needs further validation to confirm the relationship 
between the ABCE1 and DCM.

The endoplasmic reticulum (ER) is a cell 
system consisting of the lipid synthesis, calcium 
homeostasis, protein folding, and maturation. The 
ER stress has been reported in the development 
of DCM [47, 48]. Moreover, it has been confirmed 
that ER-triggered apoptosis would contribute to 
the pathology of DCM [49]. Activating transcrip-
tion factor 4 (ATF4) is a DNA binding protein. 
The glucagon-like peptide-1 analog liraglutide 
(LIRA) was confirmed to protect against DCM by 
inactivating the ER stress pathway, meanwhile 
the expression of ATF4 was decreased with the 
treatment of LIRA [50], implying that ATF4 might 
play significant roles in the progression of DCM, 
as predicted in the present result that ATF4 was  
a prominent node in Module 3. 

The cardiac muscle myosin MYH6 was de-
creased in type 2 Zucker diabetic fatty rats [51]. 
Strikingly, MYH6 was diminished under the hy-
pertrophic stress (DM-treated with CMs) [13] and 
was considered a cardiac marker by fluorescent 
immunostaining [52]. The current results indicated 
that MYH6 was highlighted in Module 4 and cor-
related with muscle cells related BPs, suggesting 
that MYH6 might also be used as a biomarker for 
the prognosis of DCM. 

Conclusions

In conclusion, five potential biomarkers in-
cluding LDHA, ALDOC, ABCE1, ATF4 and MYH6 
were identified for DCM prognosis. During DCM 
progression, LDHA and ALDOC might have in-
terplayed and play significant roles via regulation 
of the glycolysis process. However, these find-
ings need to be further confirmed via extensive 
validation.
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