Skip to main content
. 2021 Apr 15;4:233–249. doi: 10.1016/j.crfs.2021.03.009

Table 4.

Applications of MVS with traditional ML in food processing.

Products Species Application Classification Methods Evaluation Reference
Animal Beef Predicting a regression model R2 ​= ​98.2,P< ​0.05
adjusted
Amani et al. (2015)
Clam Detecting Binary DT accuracy ​= ​98% Coelho et al. (2016)
Grading SPA–PLSR RP ​= ​0.801, RMSEP ​= ​0.157 Xiong et al. (2015)
Chicken Grading PLSR RMSEp, multiple results Yang et al. (2018)
Egg Grading SPA-SVR, SVC 96.3% for scattered yolk Zhang et al. (2015)
Salmon Grading PLSR rcv ​= ​0.834(driploss)
rcv ​= ​0.877(PH)
He et al. (2014)
Grading TreeBagger accuracy ​= ​97.8% Xu et al. (2016)
Fruit Apple Grading RVM accuracy ​= ​95.63% Zhang et al. (2014)
Grading PLS, CARS rp ​= ​0.977,0.977,0.955 (three positions) Fan et al. (2016a)
Grading MLR R ​= ​0.90, RMSECV ​= ​6.99N Sun et al. (2016)
Grading CPLS r ​= ​0.9327 Fan et al. (2016b)
Grading a bi-layer model r ​= ​0.9560 Tian et al. (2017)
Grading PLS R2p ​= ​0.83 Khatiwada et al. (2016)
Grading PLS-DA, PBR accuracy ​= ​98% Keresztes et al. (2016)
Apricot Grading PLS Büyükcan et al. (2016)
Blueberry Grading CARS-LS-SVM accuracy ​= ​93.3% (for healthy), accuracy ​= ​98.0% (for bruised) Fan et al. (2017)
Grading logistic function tree accuracy ​= ​95.2% Hu et al. (2016)
Grading SVM accuracy ​= ​97% Leiva-Valenzuela et al. (2013)
Cherry harvesting Bayesian accuracy ​= ​89.6% Amatya et al. (2015)
Citrus Detecting Gaussian–Lorentzian accuracy ​= ​93.4% Lorente et al. (2015)
Mango Grading SVR, MADM accuracy ​= ​87%. Nandi et al. (2016)
Grading Fuzzy classifier accuracy ​= ​89% Naik et al. (2017)
Peach Grading SPA accuracy ​= ​100% Sun et al. (2017)
Grading An improved watershed segmentation algorithm accuracy ​= ​96.5% (for bruised), accuracy ​= ​97.5% (for sound) Li et al. (2018)
Pear Grading SPA-SVM accuracy ​= ​93.3%, 96.7% Hu et al. (2017)
Pomegranate Grading PLS r ​= ​0.97 Khodabakhshian et al. (2016)
Strawberry Grading SVM accuracy ​= ​100% Liu et al. (2014)
Vegetable Tomato Grading DSSAEs accuracy ​= ​95.5% Iraji (2018)
Onion Grading SVMs accuracy ​= ​88.9% Wang et al. (2015)
Potato Grading LDA-MD for color above 90%
for 5 potato cultivars (color)
Noordam et al. (2000)
Others Beans Classifying K-means and KNN accuracy ​= ​99.88% Araújo et al. (2015)
Cheese Grading PLSR R2 ​= ​0.8321 Barreto et al. (2018)
Coffee bean Grading linear estimation models R2 ​= ​0.93 Ramos et al. (2017)
Cookie,
Potato Chips
Monitoring non-destructive computer vision-based image analysis R2 ​= ​0.895 Ataç Mogol et al. (2014)
Dried food Monitoring PCA, FCM Aghbashlo et al. (2014)
General Detecting GMM multiple results Einarsdóttir et al. (2016)
Grain Monitoring SMK–LSSVM accuracy ​= ​98.13% Liu et al. (2016)
Olive Grading PLSR, PCA, LDA multiple results Fernández-Espinosa (2015)
Olive oil Grading ANN, SVM, BN accuracy ​= ​100% with BN Sanaeifar et al. (2018)
Potato Chips Detecting SVM accuracy ​= ​94% Dutta et al. (2015)
Rice Monitoring Fuzzy logic accuracy ​= ​89.2% Zareiforoush et al. (2016)
Sesame Grading CARS-LS-SVM,
CARS-LDA
accuracy ​= ​100% Xie et al. (2014)
Soybean Grading PLSR multiple results Huang et al. (2014)
Spring rolls, minced meat Detection SDA 5% error with 10-fold cross-validation Einarsson et al. (2017)
Tomato Juice Grading PLSR R2 ​= ​0.75 Deak et al. (2015)
Walnut Grading SVM Tran et al. (2017)