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Development of an objective 
index, neural activity score 
(NAS), reveals neural network 
ontogeny and treatment effects 
on microelectrode arrays
Austin P. Passaro1,2, Onur Aydin3, M. Taher A. Saif3 & Steven L. Stice1,2*

Microelectrode arrays (MEAs) are valuable tools for electrophysiological analysis, providing 
assessment of neural network health and development. Analysis can be complex, however, requiring 
intensive processing of large data sets consisting of many activity parameters, leading to information 
loss as studies subjectively report relatively few metrics in the interest of simplicity. In screening 
assays, many groups report simple overall activity (i.e. firing rate) but omit network connectivity 
changes (e.g. burst characteristics and synchrony) that may not be evident from basic parameters. 
Our goal was to develop an objective process to capture most of the valuable information gained from 
MEAs in neural development and toxicity studies. We implemented principal component analysis 
(PCA) to reduce the high dimensionality of MEA data. Upon analysis, we found the first principal 
component was strongly correlated to time, representing neural culture development; therefore, 
factor loadings were used to create a single index score—named neural activity score (NAS)—reflecting 
neural maturation. For validation, we applied NAS to studies analyzing various treatments. In all 
cases, NAS accurately recapitulated expected results, suggesting viability of NAS to measure network 
health and development. This approach may be adopted by other researchers using MEAs to analyze 
complicated treatment effects and multicellular interactions.

Micro- (or multi-)electrode arrays (MEAs) are valuable tools for network-level electrophysiological analysis 
of neuronal populations1–4. While sacrificing single cell resolution compared to traditional patch clamp elec-
trophysiology, MEAs allow for recordings of entire neural networks both in vitro and in vivo and can be used 
to study dynamic network properties and development, either spontaneously or in response to stimulation or 
treatment. During recording, action potentials, or spikes, are detected via recording the corresponding volt-
age changes in the extracellular environment. Analysis of spike patterns provides network characteristics such 
as firing rate and network synchrony (see Supplementary Table S1 for list of all measured parameters), which 
are useful when determining neuronal network function and/or response to perturbation (i.e., stimulation or 
pharmacological treatment)5,6.

Given these advantages, along with the advent of multi-well MEA plates that allow for higher-throughput 
screening and more complex experimental design, MEAs have seen widespread adoption from characterizing 
neural maturation to toxicity screening and drug development. Interestingly, despite the adoption of MEAs for 
these screening approaches, analysis has typically been limited to mean firing rate and other metrics of overall 
activity7,8. This limited analysis severely underutilizes MEA capabilities and may result in “false-negative” screen-
ing results, as only conditions or compounds that increase or decrease overall neural activity will be registered as 
hits with no regard to other aspects of neural network functionality or ontogeny. Current MEA analysis methods 
require the use of raster plots to visualize network development or individual parameter analysis, which are 
qualitative and difficult to interpret, respectively. While a general pattern of network development from spo-
radic spikes to sporadic bursts to coordinated synchronous network bursts has been well-described in previous 
studies2,3,9,10, there is currently a lack of sufficient methods to quantify this observed ontogeny.
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Here, we developed a method implementing dimensionality reduction techniques, specifically principal 
component analysis (PCA), to create a singular index score—named neural activity score (NAS)—reflective of 
neural network ontogeny. NAS serves as an easily interpretable measurement to evaluate spontaneous network 
development in simple and complex cultures (i.e., neuron-glia co-cultures) or effects of various treatments 
(i.e., soluble factors or stimulation). We present validation of this method in several experiments, including a 
culture media comparison, various conditioned media treatments, and a microglia-neuron co-culture system, 
demonstrating the ability to measure both positive and negative effects on neural network activity and further 
interrogate toxicological screening, evaluating sensitivity on potential toxic compounds.

Results
Neural network ontogeny revealed by microelectrode array.  Mouse embryonic stem cells were 
cultured and differentiated, resulting in cultures containing a mixture of motor neurons, excitatory and inhibi-
tory neurons, and glial cells11. These neural cultures were allowed to mature on 48-well MEA plates over a 
19-day period, typical for neuron maturation and network formation for these cells12. General spiking activity 
was detected at approximately 5 days post-seeding (days in vitro; DIV) and increased gradually throughout the 
recording period. Qualitatively, raster plots generated at various time points throughout the recording period 
demonstrate an expected pattern of network development: sparse and sporadic spikes appearing first, followed 
by sporadic bursts, followed eventually by synchronous network bursts (Fig. 1a–f). While this emergent devel-
opment is evident from the raster plots, it is difficult to quantify. Quantification of several spike, burst, and 
network/synchrony metrics reveals general increases over time in these categories (Fig. 1g–n), but current MEA 
analysis methods do not allow for simple quantification of network ontogeny incorporating these and other 
activity metrics.

Principal component analysis of MEA parameters reveals temporal correlation, allowing for 
neural activity score derivation.  Given the complexity and multivariate nature of the data, PCA was 
performed to reduce dimensionality and allow for easier visualization. After standard score normalization, all 
of the aforementioned parameters at all time points were included as data points for PCA. Examining the two-
dimensional projection of the first two principal components revealed a distinct pattern in the data (Fig. 2a). 
Adding a dimension of time (via colormap), this pattern was revealed to be a temporal separation of the data 
points, especially along the first principal component. Statistically, linear regression analysis supported this tem-
poral component, as principal component 1 (PC1) is strongly correlated to time (Fig. 2b; R2 = 0.5441, p < 0.0001), 
indicating recapitulation of network ontogeny and maturation. After confirmation of this relationship, factor 
loading values for PC1 were examined to determine which factors (MEA parameters) contributed most strongly 
to this component. While substantial contributions were observed for many parameters, the strongest metrics 
were burst percentage, network burst percentage, number of spikes per burst, number of bursting electrodes, 
number of spikes per network burst, and synchrony index (Table 1). Notably, mean firing rate, the most com-
mon parameter analyzed in MEA studies, was the 11th-strongest contributor. Finally, these factor loading values 
were used to develop an individual index score—NAS (Eq. 1; see “Methods”). As NAS represents all aspects of 
neural network activity, it allows for assessment of neuronal network ontogeny and evaluation of the effects of 
various perturbations, such as stimulation, pharmacological treatment, or alternative culture conditions, which 
can typically be difficult to analyze if various parameters do not exhibit unidirectional changes. Additionally, 
NAS reduces the high variation often observed in individual MEA parameters, as evidenced by lower coefficient 
of variation for 24/25 (96%) measured parameters (Supplementary Fig. S1).

Enhancement of neural network ontogeny is easily quantified via NAS.  Regression analysis 
served as initial support that NAS accurately measures neural network ontogeny, but we also sought to experi-
mentally validate NAS in several conditions to further confirm this recapitulation. For initial validation, several 
experiments were performed to analyze enhanced neural network ontogeny and activity in response to differ-
ent conditions known to enhance neural activity—namely, optimized culture media13 and muscle-conditioned 
media treatment14. To examine the effects of optimized culture media, mixed neural cultures (HBG3-derived) 
were grown on MEAs in two different media conditions: DMEM/F12 & Neurobasal-based medium (DMNB) 
or BrainPhys-based medium (BP). While DMNB has traditionally been widely used to culture HBG3-derived 
and other neural cell lines, BP was developed for electrophysiological applications due to a more physiologically 
relevant formulation, resulting in increased electrophysiological function of various cell lines13. However, BP 
has not been evaluated on HBG3-derived neural cultures. In both DMNB and BP groups, the neurons began 
showing activity at approximately day 5, increasing over 3 weeks, as expected; however, the cells cultured in BP 
exhibited enhanced activity and network development, as indicated by the significantly higher NAS (Fig. 3a; 
p < 0.0001, two-way repeated measures ANOVA).

To examine the effects of conditioned media on network ontogeny, mixed neural cells were treated with mus-
cle cell (C2C12)-conditioned media (CM), which has previously been shown to significantly accelerate network 
activity and development14. Likewise, NAS analysis showed similar results and provided simple quantification 
(Fig. 3b; p < 0.0001, two-way repeated measures ANOVA) of this accelerated network development.

Disruption of neural network ontogeny is easily quantified via NAS.  In addition to measuring 
neural network activity enhancement, we also sought to validate NAS on more complex culture conditions and 
for quantifying disruption of network activity. Microglia, the resident immune cells of the central nervous system 
(CNS), are being increasingly implicated in neurodegenerative diseases and have been shown to be neurotoxic 
in many conditions15–18; therefore, we decided to explore co-culturing microglia with mixed neural cultures on 
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Figure 1.   Neural network ontogeny revealed by microelectrode array. (a–f) Representative raster plots of 
one well over time, demonstrating qualitative network development. Each plot is 5 s for sufficient spike and 
burst resolution, and horizontal rows correspond to one channel/electrode, each. Note the changes over time: 
few spikes on few channels (DIV 8) to more spikes on more channels (DIV 10) to sporadic bursts (DIV 13, 
16) to rhythmic network bursts (DIV 19) to stronger, rhythmic network bursts (DIV 28). (g–n) Line graphs 
of 8 example individual MEA parameters covering major categories (activity, bursting, network bursting, 
synchrony). Raster plots generated with Neural Metric Tool v1.2.3 software (Axion Biosystems): https://​www.​
axion​biosy​stems.​com/​produ​cts/​softw​are/​neural-​module#​appli​catio​ns.

https://www.axionbiosystems.com/products/software/neural-module#applications
https://www.axionbiosystems.com/products/software/neural-module#applications
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MEAs. After allowing neurons to become active over 10 days, BV2 cells, an immortalized mouse microglia cell 
line, were added to the cultures at 8 different cell densities. We observed rapid disruption in network function 
in a clear cell density-dependent manner, with higher numbers of microglia relative to the neuronal population 
resulting in accelerated network disruption, as indicated by a decrease in NAS (Fig.  4a; p < 0.0001, two-way 
repeated measures ANOVA, Tukey’s post-hoc test).

To examine whether this disruption is contact-dependent or the result of secreted factors, neural cultures 
were treated with BV2-conditioned media at 10 days (similarly to the co-culture experiment described above). 
Similar to the co-culture condition, BV2-conditioned media treatment also disrupted network function (Fig. 4b), 
suggesting a role for microglia-secreted factors in neural network disruption. To examine whether this effect was 
exacerbated by microglial activation, BV2 cells were stimulated with two concentrations of the pro-inflammatory 
endotoxin lipopolysaccharide (LPS; 10 ng/mL and 100 ng/mL) for 24 h prior to conditioned media collection. 
LPS-stimulated BV2-conditioned media disrupted network function in a concentration-dependent manner, with 
unstimulated BV2-conditioned media causing significant disruption (p < 0.0193, two-way mixed model, Tukey’s 
post-hoc test), followed by 10 ng/mL LPS stimulation (p = 0.0003) and 100 ng/mL LPS stimulation (p < 0.0001), 
providing further support for NAS as a viable method to quantify complex treatment effects and evaluate disrup-
tion of electrophysiological function.

NAS summarizes neural activity for neurotoxicology screening.  Advances in MEA technology8,19 
have led to adoption of MEAs for neurotoxicological screening20 Given the potential of NAS to consolidate many 
functional MEA parameters, we sought to determine its applicability to neurotoxicity screening.

For this analysis, NAS values were calculated from MEA toxicity screening of 52 compounds from the NTP 
or ToxCast libraries21,22 (Fig. 5a–c). In previous studies21,22, the authors performed a network formation assay 
(NFA) using primary cortical neurons, measuring 17 parameters of activity in response to compound treatment 
over 12 days on MEAs to determine compound effects on network formation. Additionally, viability testing was 
performed to measure cytotoxicity. For each of these assays, EC50 values were determined for each compound. 
Here, we used NAS values to calculate and compare EC50 values to individual MEA parameter EC50 values and 
cytotoxicity EC50 values (Fig. 5d–f, Supplementary Table S2).

Of the 52 compounds we analyzed, 33 were found to have measurable effects in the network formation 
assay (defined as a decrease in activity by 3× median absolute deviation from control) for at least one activity 
parameter (though the specific parameter(s) differed among compounds), and 26 compounds were found to 

Figure 2.   Principal component analysis of MEA parameters reveals temporal correlation. (a) The first two 
principal components (accounting for 66.9% of total variation), colored by time (yellow > green > blue > purple), 
showing a distinct pattern of separation/progression. (b) Principal component 1 (PC1) is positively correlated 
with time. Linear regression analysis confirms this strong correlation (R2 = 0.5541, F = 1487, p < 0.0001).



5

Vol.:(0123456789)

Scientific Reports |         (2021) 11:9110  | https://doi.org/10.1038/s41598-021-88675-w

www.nature.com/scientificreports/

have measurable cytotoxicity in the viability assay21 (Fig. 5g). Similarly, using NAS EC50 values, we found 26/52 
compounds (50%) affected neural activity (Fig. 5g). For these compounds, we compared the EC50 calculated 
from NAS to determine sensitivity compared to the average individual MEA parameter EC50 values and cyto-
toxicity EC50 values. We found NAS to be more sensitive (lower EC50) than the average of all parameters for 
16/26 compounds (61.5%) and more sensitive than the average cytotoxicity EC50 for 18/26 compounds (69.2%) 
(Fig. 5g, Supplementary Table S2).

Discussion
Advances in MEA technology, including multi-well MEA plates, incubated recording setups, and constantly 
improving software, allow for higher throughput than previously possible18,19, though analysis has traditionally 
been limited to simple parameters, primarily mean firing rate. Only recently have researchers begun incorporat-
ing advanced metrics of network activity in these screening approaches20–22. These advanced metrics have pro-
vided researchers with tools to record from entire neuronal populations and analyze complex neuronal network 
dynamics. Multi-well MEAs enable high-throughput neuronal recordings, facilitating their adoption for drug/
toxicity screening applications and evaluation of complex culture conditions. However, the information that 
can be gleaned from MEAs has been hampered by limited analytical methods and tools, as well as high varia-
tion. Here, we present a novel method to overcome these limitations—development of an index, neural activity 
score, that incorporates and consolidates traditional MEA measurements into a single quantitative value that 
can be used to objectively evaluate neuronal network development and function across various culture condi-
tions, treatments, and neural cell sources. This is valuable not only for basic neuroscience research on neuronal 
networks, but also translational research and preclinical studies. To facilitate adoption, further validation, and 
improvement, codes used to calculate NAS can be found at the following open source repository: https://​doi.​
org/​10.​5281/​zenodo.​39393​10.

Despite these advantages, NAS is not free from its own limitations—particularly those associated with its 
derivation from principal component analysis. As NAS is essentially a linear weighted combination of individual 
activity parameters, parameters changing in equal (weighted) magnitude but in opposite directions could negate 
each other, resulting in no net change. While this example demonstrates the potential for different electro-
physiological profiles with identical NAS, the overall goal of NAS is to provide a holistic interpretation of neural 
development and maturity, suggesting that these "equal but opposite" changes still represent cultures with similar 
overall states of maturation. For example, a culture with increased firing rate but decreased synchrony may rep-
resent an overall similar level of maturity—especially when comparing different cell types or culture conditions 
that may exhibit variations in ontogeny. NAS provides a way to "balance" these changes that would be difficult 

Table 1.   Factor loading values for principal components 1–5 for all MEA parameters analyzed. Parameters 
sorted by descending PC1 loading value.

Parameter PC1 PC2 PC3 PC4 PC5

Burst percentage—Avg 0.938953 − 0.21655 − 0.09068 0.095365 − 0.03905

Network burst percentage 0.930335 − 0.16411 − 0.03479 − 0.00912 0.030603

Number of spikes per burst—Avg 0.927633 − 0.07813 0.131878 0.180872 − 0.20604

Number of bursting electrodes 0.924737 0.11382 − 0.13932 − 0.05683 − 0.03851

Number of spikes per network burst per channel—Avg 0.916818 − 0.09696 0.059892 − 0.0695 − 0.30286

Synchrony index 0.91299 − 0.25337 − 0.09404 0.126219 − 0.03106

Number of spikes per network burst—Avg 0.90668 − 0.14074 0.063698 − 0.03136 − 0.3157

ISI coefficient of variation—Avg 0.875459 − 0.13787 − 0.14411 0.203831 − 0.09526

Area under normalized cross-correlation 0.866748 − 0.32439 − 0.0838 0.14749 − 0.01187

Number of elecs participating in burst—Avg 0.866593 0.127533 − 0.16016 − 0.10207 − 0.04436

Mean firing rate (Hz) 0.787233 − 0.09261 0.483835 − 0.01736 0.111684

Network IBI coefficient of variation 0.739427 0.22799 − 0.36458 − 0.23674 0.12618

Burst duration—Avg (s) 0.730618 0.521412 0.032794 0.197191 − 0.12086

Normalized duration IQR—Avg 0.707402 0.327012 − 0.30471 0.026697 0.337296

IBI coefficient of variation—Avg 0.64845 0.459111 − 0.30775 0.114136 0.20907

Network normalized duration IQR 0.613893 0.064961 − 0.38534 − 0.17934 0.144007

Area under cross-correlation 0.606648 − 0.40216 0.517657 0.237669 − 0.14355

Burst frequency—Avg (Hz) 0.592944 − 0.04631 0.437397 0.034638 0.423479

Network burst frequency (Hz) 0.506543 − 0.0198 0.364146 − 0.01999 0.590348

Network burst duration—Avg (s) 0.490791 0.412156 0.078862 − 0.54881 − 0.07344

Width at half height of cross-correlation 0.233083 0.626106 0.385101 − 0.42764 − 0.13819

Width at half height of normalized cross-correlation 0.175127 0.727927 0.205821 − 0.28793 − 0.18294

Mean ISI within burst—Avg 0.029257 0.891807 0.112554 0.360375 0.016162

Median ISI within burst—Avg − 0.05205 0.881542 0.1378 0.359244 0.017994

Inter-burst interval—Avg (s) − 0.27591 0.571143 − 0.11858 0.370944 − 0.15048

https://doi.org/10.5281/zenodo.3939310
https://doi.org/10.5281/zenodo.3939310
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to compare and interpret individually; however, these are important considerations to take into account during 
interpretation depending on the question of interest.

Another potential limitation is sensitivity to detect meaningful changes compared to noise, which is dif-
ficult to evaluate. Technologically, this sensitivity is determined by the MEA platform, recording settings, and 
analysis thresholds, such as the thresholds for determining spikes and bursts. For NAS, this sensitivity relies on 
the particular changes in activity. In one case, minute changes in multiple parameters in the same direction are 
summed, which would be measured as a larger overall change in NAS than the individual changes; however, in 
cases such as the one described above, small changes in opposite directions may go undetected. While this case 
may result in relatively low sensitivity, it also reduces variation, providing additional confidence that detected 
changes represent meaningful development and maturation.

One final limitation involves incorporation into existing analytical pipelines. While we encourage use and 
modification of the provided code and formulas to calculate NAS, we recognize that these are additional ele-
ments and steps to add to already complex pipelines and software packages that vary across individual labs and 
equipment. These extra steps may hinder rapid adoption for users with different MEA platforms and custom 
analyses, especially in other programming languages (e.g., MATLAB, R).

The results presented here demonstrate the value of NAS to assess potential developmental neurotoxicity 
(DNT) hazards, a field with a widely recognized need for more sensitive, less variable, and higher throughput 
functional assays21–24. The mixed neural cultures used for NAS derivation and the primary cultures analyzed in 
the network formation assay are both maturing networks, derived from embryonic stem cells or isolated from 
neonatal rodents, respectively. As a result, NAS is well-suited for analysis of maturing neural networks, as is 
necessary in DNT studies, covering a range from non-active to full maturity, with synchronized network burst-
ing. The application to developing networks from multiple cell sources suggest NAS has substantial value for 
improving the use of MEAs for toxicity screening and drug development.

As the concern over drug development costs continues to rise, scientists are noticing several recurring prob-
lems, including the reproducibility crisis and inadequacies of current screening assays, in vivo models, and 
other preclinical studies25–27. For neural assays, specifically, assays have traditionally used simple endpoints 
such as viability and morphological analysis (i.e. neurite outgrowth) for screening, primarily due to scalability28. 
However, electrophysiological endpoints are often more sensitive and allow for assessment of electrophysi-
ological toxicity, which involves separate—and highly time-sensitive—mechanisms8,29,30. By improving result 

Figure 3.   Enhancement of neural network ontogeny is easily quantified using neural activity score. (a) 
BrainPhys-based culture media results in clear enhancement of neural activity compared to traditional DMEM/
Neurobasal-based media, and this enhancement is quantifiable via NAS (p < 0.0001, two-way repeated measures 
ANOVA, n = 24/group). (b) Muscle-conditioned media treatment results in similar enhancement of neural 
activity (p < 0.0001, two-way repeated measures ANOVA, n = 12/group).
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interpretation, NAS will facilitate incorporation of functional measures into screening programs focused on 
cytotoxicity and morphology.

Index scoring has been used extensively in clinical settings and in vivo; for example, neurological deficits 
in amyotrophic lateral sclerosis (ALS) and Parkinson’s disease (PD) are assessed using the Revised ALS Func-
tional Rating Scale (ALSFRS-R)31 and United Parkinson’s Disease Rating Scale (UPDRS)32, respectively. Stroke 
severity is frequently measured using various scales [i.e., modified Rankin scale (mRS)33,34 and NIH stroke scale 
(NIHSS)]35, and these have been shown to correlate strongly with patient outcomes and be useful for thera-
peutic evaluation34. The simplified analytical pipeline provided by these indices is vital to detecting effects (or 
lack thereof) in clinical and preclinical studies. Due to this, a need has been recognized to develop multivariate 
approaches and index scores for in vitro approaches, as well36,37. Similar analysis pipelines provided by index 
scores could be especially valuable for screening assays, allowing for improved hit detection when screening 
potential neurotoxicants or therapeutics. Several composite scores have been developed to condense information 
from multiple toxicity assays for specific compound classes (e.g. endocrine disruptors, halogenated aliphatics), 
previously38,39. Here, we developed NAS using a similar approach to condense the high-dimensional data from 
MEA recordings into a single measurement with reduced variation that can be used to easily and consistently 
evaluate compound effects on neural activity, as opposed to analyzing many different parameters individually. 

Figure 4.   Disruption of neural network ontogeny is easily quantified using neural activity score. (a) 
Co-culturing mixed neural cultures and microglia (BV2 cells) results in a microglia concentration-dependent 
disruption of neural activity (p < 0.0001, two-way repeated measures ANOVA, Tukey’s post-hoc test, n = 6/
group). (b) Similarly, BV2-conditioned media treatment resulted in a similar decrease (p < 0.0193, two-way 
mixed ANOVA, Tukey’s post-hoc test). Additionally, 24-h LPS treatment of BV2s prior to conditioned media 
collection exacerbated this disruption in a concentration-dependent manner (10 ng/mL, p = 0.0003; 100 ng/mL, 
p < 0.0001) (n = 14/group except media control group, for which n = 12). Grey dashed lines indicate time of BV2 
or CM addition. Reported statistics are Tukey’s post-hoc comparisons 24 h post-addition. Connecting letters on 
graphs indicate comparisons for other time points.
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This reduced variation and improved interpretation could help identify and/or narrow down compounds to 
examine and develop further, saving time and money wasted on poor candidate compounds. Likewise, improved 
in vitro studies could help reduce the necessity of in vivo studies, which are expensive, time-consuming, and 
have ethical and practical concerns due to a myriad of potential endpoint measurements and species differences 
that can contribute to high variability and difficulty determining true treatment effects40.

The validation studies presented here indicate that the NAS formula provides an easily interpretable meas-
ure of neural network health/functionality and overall effects of perturbation. By compiling all MEA metrics 
as opposed to individual metrics (i.e., mean firing rate), NAS represents all aspects of neural network function, 
which can provide more consistent analysis and results interpretation/reporting. Additionally, NAS has the 
potential to provide increased sensitivity over a collection of individual parameters, as NAS was more sensitive 
than the individual parameter average for 61.5% of compounds. This result was interesting, demonstrating the 
utility of implementing relative parameter weights. Since NAS was derived from how all parameters contribute 
to development/maturation, this result indicates that this approach may describe treatment effects in a more 
holistic manner than analysis of individual parameters alone, which only describe certain aspects of activity. 
However, when specific parameters are of interest, we suggest incorporating NAS as an additional metric for 
screening, not as a complete replacement, as a summary statistic for electrophysiological function and neural 
network maturation. Additionally, larger training data sets and/or other optimization may allow for improved 
sensitivity in the future.

Two of the three compounds for which NAS was found to be most sensitive, MPP+ and picoxystrobin, 
share similar toxic mechanisms, both inhibiting mitochondrial electron transport chain complexes41,42. While 
further research would be needed to determine if this is more than a coincidence, it does suggest mitochondrial 
function as a sensitive predictor of neurodegeneration. This finding supports a wealth of evidence linking mito-
chondrial dysfunction to neurodegenerative diseases, in some cases prior to symptom onset and diagnosis43–45. 
Using NAS to analyze and compare various compound classes in more detail may allow for deeper insight into 
toxicity mechanisms for different compound classes or varying therapeutic potential in drug discovery studies. 
To this point, the compounds analyzed here were primarily organohalogens, halogenated alkanes, and pyre-
throids. Future analysis of additional compound classes with varying properties and mechanisms of actions 
(e.g., organophosphates) would provide further validation for NAS, as well as additional data on the sensitivity 
of MEAs and electrophysiological screening to assess developmental neurotoxicity. Indeed, a larger screen of 27 
organophosphates detected neurotoxic effects for approximately 1/3rd of tested compounds21; however, further 
studies are needed to make comparisons to the classes examined here and whether other assays may provide 
higher sensitivity for specific classes of compounds.

Lastly, challenges in analyzing complex and large data sets have been widely acknowledged across multiple 
assays and techniques, including high-throughput screening, image analysis, and flow cytometry46–50. These chal-
lenges include high variability, difficulty interpreting results across multiple metrics, and reproducibility—prob-
lems that are only exacerbated when examining complex/emergent phenomena that may be difficult to quantify 
otherwise, such as neuronal network function. While we developed and validated NAS using MEA data, many 
of the solutions posed for the aforementioned techniques also utilized PCA and other dimensionality reduction 
methods, suggesting a similar index scoring approach may be useful for these, and other, applications to gain a 
deeper understanding of important results.

Methods
Cell culture.  Mouse HBG3 embryonic stem cell-derived mixed neuronal and glial cells (Aruna Bio, Inc., 
Athens, GA) were cultured according to previously published protocols11. Briefly, cells were thawed and seeded 
on polyethyleneimine (Sigma Aldrich, St. Louis, MO) and laminin (Sigma)-coated MEA plates (Axion Biosys-
tems, Atlanta, GA) in 6 µL droplets centered over the electrode grids at 40–80,000 cells/well. Cells were main-
tained with media changes every 3–4 days with full neural culture media consisting of BrainPhys Basal Media 
(STEMCELL Technologies, Vancouver, BC, Canada) or Advanced DMEM/F12 (ThermoFisher, Waltham, MA) 
and AB2 Basal Neural Media (ArunA Bio) (1:1) supplemented with 10% (v/v) KnockOut Serum Replacement 
(ThermoFisher), 2  mM l-glutamine (ThermoFisher), 1% penicillin/streptomycin (ThermoFisher), 0.1  mM 
β-mercaptoethanol (Sigma), 10 ng/mL glial-derived neurotrophic factor (GDNF) (Peprotech Inc., Rocky Hill, 
NJ), and 10 ng/mL ciliary neurotrophic factor (CNTF) (Peprotech).

BV2 microglia cells (gift from Dr. Jae-Kyung Lee, University of Georgia, Athens, GA) were cultured accord-
ing to previously published protocols51. Briefly, cells were thawed and seeded on tissue culture-treated plates 
at approximately 5–10,000 cells/cm2 and passaged at 60–80% confluency. Cells were maintained with media 
changes every other day with neural medium consisting of DMEM/F12 (ThermoFisher) supplemented with 5% 
fetal bovine serum (FBS) (GE Healthcare, Chicago, IL), 2 mM l-glutamine (ThermoFisher), and 1% penicillin/

Figure 5.   Neural activity score summarizes neural activity for neurotoxicology screening. (a–c) Examples of 
NAS calculation for all concentrations of three compounds of varying toxicity from EPA compound libraries 
analyzed. (d–f) Concentration–response curves showing how EC50 was determined for the same three 
compounds. Grey dotted line indicates 50% of control NAS AUC, used as a threshold for EC50 extrapolation 
(indicated via red dashed line). Note the lack of extrapolation for aspirin since sufficient effect was not detected. 
(g) Summary of NAS EC50 values from Frank et al. 201722 and Shafer et al. 201921. (Left) Total compounds with 
detected effects (EC50 within tested range). (Inset) Sensitivity comparisons for NAS vs. average individual MEA 
parameter and cytotoxicity assays for all compounds with detected effects. Higher sensitivity is defined as lower 
EC50 value.
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streptomycin (ThermoFisher). For lipopolysaccharide (LPS) treatment, cells were treated with 10 ng/mL or 
100 ng/mL LPS in neural medium for 24 h before conditioned media was collected and centrifuged to remove 
any cells or cellular debris.

MEA preparation, recording, and data processing.  48-well MEA plates (Axion Biosystems) were 
prepared according to manufacturer’s protocol. Briefly, plates were coated with 0.1% polyethyleneimine (PEI) 
(Sigma) for 1 h at 37 °C, rinsed with sterile water, and allowed to air dry in a biosafety cabinet overnight. The 
following day, plates were coated with 20 µg/mL laminin (Sigma) for 2 h at 37 °C prior to cell seeding. Mouse 
neural cultures (see above) were seeded and allowed to adhere for 1 h, then maintained in full neural culture 
media (see above) supplemented with GDNF (Peprotech) and CNTF (Peprotech) (10 ng/mL each) with media 
changes every 3–4 days throughout the 3-week recording period.

Neuronal activity was recorded using the Maestro system (Axion Biosystems) and AxIS software v2.1–2.5 
(Axion Biosystems) with the following settings: band-pass filter (Butterworth, 300–5000 Hz), spike detector 
(adaptive threshold crossing, 8xSD of RMS noise), burst detector (100 ms maximum inter-spike interval, 5 spikes 
minimum, 10 spikes minimum for network bursts, 10 ms mean firing rate detection window). Recordings were 
performed daily for 2 min at 37 °C after allowing plates to acclimate to the Maestro system.

Raw data files were processed offline using the Statistics Compiler function in AxIS. Statistics Compiler output 
files were processed in Microsoft Excel (Microsoft Corporation, Redmond, WA) and with custom Python scripts 
to organize and extract individual parameter data for each well of each MEA plate and for data normalization.

Raster plots generated with Neural Metric Tool v1.2.3 software (Axion Biosystems): https://​www.​axion​biosy​
stems.​com/​produ​cts/​softw​are/​neural-​module#​appli​catio​ns

Neural activity score calculation.  After initial data processing, normalization (to z-score values), and 
outlier removal (− 3 > z > 3), JMP 14 (SAS Institute, Cary, NC) was used to conduct principal component analy-
sis. All parameters (Supplementary Table S1) were used for all wells (replicates) at 5–19 days in vitro (DIV). The 
first two principal components were used to visually analyze the temporal separation of the data (Fig. 2a), then 
the first principal component was used for linear regression analysis to determine the extent of correlation to 
time. Finally, the factor loadings for the first principal component were calculated to show the extent of contribu-
tion for each individual MEA activity parameter (Table 1).

Factor loadings for principal component 1 were then implemented as coefficients in a formula incorporating, 
and ultimately consolidating, all of the measured individual MEA parameters into an individual index score—
NAS—defined as the sum of each measured parameter value multiplied by its factor loading value for each well 
(replicate) at each time point (Eq. 1).

where βi are the factor loading values and xi are the z-normalized measured values for each parameter.

Analysis of DNT hazard screening data.  Raw MEA data [*.raw files generated via the Maestro system 
and AxIS software (Axion Biosystems), see above] from previous studies21,22 was processed through the same 
analysis pipeline described above. Additional processing for neurotoxicity data was based on methods described 
by Shafer et al.21, including area under curve (AUC) calculation, Hill function fitting, and EC50 extrapolation. 
Specifically, AUC values for each compound and concentration were calculated in Python 3 using the trapezoi-
dal rule (numpy.trapz() function) to integrate normalized NAS values over time (see Data Availability below for 
more information about custom Python codes). Concentration–response curves (NAS AUC vs. concentration) 
were generated via nonlinear least squares regression ([Inhibitor] vs. normalized response model) in GraphPad 
Prism 8.2.0 (GraphPad Software Inc., San Diego, CA) for each compound with Hill slope = − 1.0, and EC50 values 
were extrapolated from the resulting curves.

EC50 values corresponding to cytotoxicity (Supplementary Table S2) that were used for sensitivity analysis 
were reported from previous studies21,22. EC50 values for NAS and average MEA parameter were calculated as 
described above.

Statistical analysis.  Statistical analysis was performed in GraphPad Prism 8.2.0 (GraphPad Software Inc). 
Two-way repeated measures analysis of variance (ANOVA) was used to assess differences between treatment 
groups over time for validation studies unless otherwise noted, and post-hoc tests are stated for individual 
experiments.

Code and data availability
Custom Python codes and MEA data (.csv files from AxIS Statistics Compiler, compiled into .xlsx file, and ana-
lyzed data at several steps) are provided at the following repository: https://​doi.​org/​10.​5281/​zenodo.​39393​10.

Received: 25 August 2020; Accepted: 16 February 2021
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