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Estimating, monitoring, 
and forecasting COVID‑19 
epidemics: a spatiotemporal 
approach applied to NYC data
Vinicius V. L. Albani1, Roberto M. Velho2 & Jorge P. Zubelli3*

We propose a susceptible-exposed-infective-recovered-type (SEIR-type) meta-population model 
to simulate and monitor the (COVID-19) epidemic evolution. The basic model consists of seven 
categories, namely, susceptible (S), exposed (E), three infective classes, recovered (R), and deceased 
(D). We define these categories for n age and sex groups in m different spatial locations. Therefore, the 
resulting model contains all epidemiological classes for each age group, sex, and location. The mixing 
between them is accomplished by means of time-dependent infection rate matrices. The model is 
calibrated with the curve of daily new infections in New York City and its boroughs, including census 
data, and the proportions of infections, hospitalizations, and deaths for each age range. We finally 
obtain a model that matches the reported curves and predicts accurate infection information for 
different locations and age classes.

During December 2019, in Wuhan, China, many cases of severe acute respiratory syndrome, caused by an 
unknown virus, were registered. Since then, the virus was named SARS-CoV-2, and the corresponding disease 
was designated by the acronym COVID-19, which means coronavirus disease 2019. On 11-Mar-2020, a pandemic 
was declared by the World Health Organization (WHO). As of 20-Feb-2021, SARS-Cov-2 has infected more 
than 111 million individuals and has caused more than 2.46 million deaths worldwide.

One clear message from the above history of the pandemic so far is that the study and management of the 
crisis calls for the use of spatiotemporal epidemiological models and their appropriate calibration using math-
ematical tools from numerical analysis and regularization theory1,2. This is the first goal of the present article.

The mathematical modeling of complex phenomena such as the COVID-19 outbreak involves building on 
previous models adopted in the literature3–7. It also involves considering specificities associated to the current 
outbreak. Here, the insights from social and behavioral science can considerably help the development of realistic 
models8. One natural conclusion is that the networking aspects of the epidemiological spread related to human 
interaction in urban areas are important. These aspects are included in our model through the construction of 
the spatial network and the age and sex interactions9.

It is now well documented that the likelihood of developing the more severe form of the disease increases 
dramatically with age10–14. In addition, the infection appears to be more frequent in older people14. These obser-
vations indicate that age plays an important role in possible containment and mitigation measures. Sex also 
appears to play a major role in COVID-19 outcomes, as documented in15,16. The sex dependency of COVID-19 
may be linked, for example, to the differences in the behavior of male and female individuals, such as in the use of 
masks or in social distancing8. Incorporating age and sex structure in the model is the second goal of this article.

The absence of a universally available vaccine and of an effective treatment, at the time of writing of this article, 
considerably limits the number of possible actions to control the spread of the disease and the subsequent volume 
of hospitalizations and deaths. Thus, only containment or mitigation policies, such as quarantine or lockdown, 
may be applied. However, such measures have been causing an unprecedented impact on the economy and labor 
market, leading to massive unemployment and recession17. The International Monetary Fund revised its forecast 
in April 2020, predicting a 4.9% drop in global output in 202018.
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Quantifying and tracking the disease spread in different places and age ranges, as well as its impact on the 
health system, is useful for deciding whether the lockdown measures can be relaxed, gradually allowing the 
return of economic activity. This is the third goal of this work.

Moreover, an accurate forecasting of the number of regular hospital and intensive care unit (ICU) beds enables 
better use of public resources, bringing economic relief.

Susceptible-Exposed-Infected-Recovered (SEIR) and Susceptible-Infected-Recovered (SIR) models have 
been used to describe different disease outbreaks dynamics since the seminal work reported in19. See also20 in 
a textbook format. Recently, several studies11,21–26 have applied SIR- and SEIR-type models, or their extensions 
including fractional derivatives3–7, to describe the COVID-19 epidemic, including different features, such as 
geographical information and time-dependent transmission parameters.

In this article, we also propose a versatile SEIR-type model applied to COVID-19 epidemic dynamics. Our 
model takes into consideration different levels of disease severity, its impact on age ranges, and the distribution of 
the population in different locations. Following10, individuals in a severe state of this disease are considered in our 
model as hospitalized, while those critically ill are considered to be in an ICU. The interactions between classes of 
infected and susceptible individuals from different age-ranges, sexes, and places are defined by time-dependent 
transmission matrices. If appropriately calibrated with up-to-date data on daily new infections, such matrices can 
be used to reconstruct the status of the disease spread and allow us to verify the impact of containment measures.

Regarding vaccines, the flexible general form of our model can be used to design vaccination strategies that 
account for age, sex, and spatial distribution of susceptible population. From the sanitary point of view, such 
designed strategies may break the transmission chain of the disease while optimizing the costs of immunization 
of the population on the financial side.

The dependence of disease severity on age-range and sex is translated into the model through transmission 
rates and the rates of recovery, hospitalization, ICU admission, and death. The values of these rates are based 
on publicly available datasets and recent studies that analyzed, among other characteristics, the relationship 
between COVID-19 severity and age10,14,26,27 and sex15,16. Other parameters, such as mean incubation time and 
case fatality rate outside ICU, were obtained from12,13,28–31.

As mentioned above, our proposed model also accounts for spatial information. Policy makers can then 
identify clusters of uncontained disease spread in real time, isolate them, and later verify if the chosen imposed 
restrictions measures were effective. Moreover, the model can be used to detect which regions should be reo-
pened first, thus reducing the economic impact of a lockdown. Once an effective vaccine is available, the model 
can be used to target regions where there are clusters of infected individuals. This approach will then be used to 
create immunization belts around such regions. Moreover, the proposed model can forecast future spatially and 
age-distributed clusters of infected individuals and provide information to design contention or immunization 
measures.

Therefore, our main motivation is to present a computational methodology capable of tracking and forecasting 
the epidemics caused by new emerging pathogens, including SARS-CoV-2, in terms of different geographical 
regions, sexes, times, and age classes, as well as a calibration procedure that leads to adequate data fitting. This 
approach in turn allows scenario generation as well as quantitative analysis of public health strategies. See, for 
example32, where an analysis of vaccination delay is performed.

We obtain the geographical distribution of the disease dynamics considering the five NYC boroughs (Manhat-
tan, Bronx, Brooklyn, Queens, and Staten Island) using the census data33, the curve of daily new infections27, and 
the corresponding proportions of hospitalizations and deaths depending on age classes, by borough.

Main findings.  After smoothing out the daily curves through 7-day moving averages, we estimate the model 
parameters. The predicted curve by the model for daily new infections shows good agreement with the averaged 
data curve. Furthermore, the predictions of hospitalizations and deaths match well the reported values based on 
NYC data and its boroughs.

We observe a dramatic change in the pattern of disease transmission on 19-Mar-2020, identifying the effec-
tiveness of containment measures imposed a week earlier, when a state of emergency was declared and people 
were asked to stay home. We also observe a considerable decrease in the time-dependent transmission coef-
ficient and the time-dependent basic reproduction rate (obtained via the next-generation matrix technique34). 
We also noticed this phenomenon in the dynamics of the time-dependent transmission coefficients associated 
with the NYC boroughs.

In the analysis of the datasets, the patterns of daily hospitalizations and deaths changed consistently between 
the end of February and the end of August, especially the rate of hospitalization, which has decreased systemati-
cally since the end of March. To account for this feature, we allow the model rates of hospitalization and death to 
be time-dependent. This approach produces model predictions in agreement with the datasets.

Short-term forecasts, with calibrated parameters, were also tested in two different situations, namely, during 
the transmission regime change and after the spread containment. In both cases, the model accurately predicted 
the observed scenarios.

Moreover, different reopening scenarios were simulated, considering the impacts of reopening the entire 
NYC, the borough of Staten Island only, or schools only. In all such cases, unless strict social distancing measures 
were maintained, the model predictions indicate new infection waves that affect the population of the entire city 
(Figs. 5, 6, 7). Such findings are corroborated by recent news, with new infection waves identified in Europe, New 
Zealand, and China35–37, as well as the reports of COVID-19 spread among a youth population in an overnight 
camp in Georgia (United States) and in schools in Israel38,39.
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Methods
This section presents the epidemiological model and the procedure to estimate the model parameters from 
the reported data. The estimation of the parameters is performed by minimizing a log-posterior density with a 
gradient-descent technique. Bootstrap sampling is used to test parameter sensitivity as well as to provide 90% 
confidence intervals40.

The epidemiological model.  The SEIR-type model considered here accounts for disease severity, age 
range, sex, and geographic distribution of some predefined group or population. For simplicity, we postpone the 
inclusion of sex and (spatial) location dependence to the end of the present section. A number n of age ranges 
is assumed, each one represented by the superscript i = 1, . . . , n and distributed in seven epidemic categories: 
susceptible ( Si ), exposed but not yet infective ( Ei ), infective in mild conditions ( IiM ), infective in severe condition 
or hospitalized ( IiH ), infective in critical condition or in an intensive care unit (ICU), denoted by IiI , recovered 
( Ri ), and deceased ( Di ). Following10, we assume the following forms are synonyms: in severe condition and 
hospitalized. The same applies for the forms of in critical conditions and in ICU. Each individual in the first two 
infective compartments, mildly infective (M) and hospitalized (H), can recover, die, or develop a more severe 
disease outcome. The individuals in ICU can only recover or die.

To describe the model, we introduce the following notation: Define the vector

where the superscript T denotes the transposed vector, and similarly for E , IM , IH , II , R , and D . Define also the 
tensor product:

Then, the epidemiological model can be written as:

A schematic representation of the model in Eqs. (1)–(7) is shown in Fig. 1.
The matrices βM , βH , and βI contain the transmission parameters for the infective individuals in the mild, 

hospitalized, and ICU classes, respectively. Such parameters are time-dependent and, if well calibrated, may be 
used to address the effectiveness of the containment measures, to verify the changes in the transmission pat-
tern, or to track the impact of the suspension of a lockdown. It is important to mention that, depending on the 
information available, simplifying assumptions on the structure of such matrices must be made. In our study, 
βM , βH , and βI assume the following form:

where the symmetric n× n matrix B is of the form:

S = [S1, . . . , Sn]T ,

x : y = [x1y1, x2y2, . . . , xnyn]
T .

(1)
dS

dt
= −S : (βMIM + βH IH + βIII ),

(2)
dE

dt
= S : (βMIM + βHIH + βIII )− σE,

(3)
dIM

dt
= σE − (νM + µM + γM) : IM ,

(4)
dIH

dt
= γM : IM − (νH + µH + γH ) : IH ,

(5)
dII

dt
= γH : IH − (νI + µI ) : II ,

(6)
dR

dt
= νM : IM + νH : IH + νI : II ,

(7)
dD

dt
= µM : IM + µH : IH + µI : II .

(8)βM = β(t)B, βH = aβM , and βI = bβM ,
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β(t) is a time-dependent scalar parameter that controls the epidemic dynamics, and the parameters a and b 
are scale factors between 0 and 1. The matrix B , which describes the mixing between age ranges, depends on 
2n− 1 parameters, namely, a1, . . . , an , containing the observed rates of infections in the n age ranges reflecting 
the observed heterogeneity of the infectiousness of COVID-19 into the model, and b1, . . . , bn−1 , which will be 
estimated from the available data. The n-dimensional vectors νM , νH , and νI contain the recovery rates for each 
age range in the infective classes M, H, and I, respectively. Similarly, µM , µH , and µI contain the mortality rates 
for mild, hospitalized, and in ICU infective individuals. The mean time of incubation is 1/σ . The rates γM and 
γH represent the hospitalization and ICU admission, respectively.

The rates of recovery, mortality, hospitalization, and ICU admission are inversely proportional to the cor-
responding mean times of disease evolution and are directly proportional to the probabilities of moving on to 
other compartments. All quantities defining such rates are based on the results of references10,12–14,27–31.

The time-dependent transmission parameters βM , βH , and βI , as well as the initial number of infective cases, 
are unknowns and will be estimated from the recorded data of daily new infections. The available census data 
are used to determine the population size and the proportions of susceptible population on each age range.

Moreover, whenever the data from daily reports of new cases (infections, hospitalizations, and deaths) include 
different age ranges, the model can be generalized to incorporate such information. In this case, the entries of 
βM are as follows:

with β j(t) , j = 1, . . . , n , time-dependent scalar coefficients, and Bij the entries of the matrix B defined above. The 
other transmission parameters are still of the form βH = aβM and βI = bβM.

Since for the NYC datasets only the accumulated numbers of infections, hospitalizations and deaths are age-
structured, we assume that the daily reported cases are not age-structured. To introduce more realistic death 
and hospitalization rates, we adjust µI and γM by appropriate delayed ratios from daily reports. More precisely, 
if γM and µI represent the mean rates of hospitalization and death, respectively, for each age range i = 1, . . . , n , 
the constant rates γ i

M and µi
I are replaced by

where ĨM , ĨH , and D̃ are the time series from the daily reports of new infections, hospitalizations, and deaths, 
respectively. In addition, τM is the mean time of onset to hospitalization and τD is the mean time from hospi-
talization to death. We set τM = 1 , approximating the median value found in28, and the parameter τD is set to 
τD = 1 , obtained empirically in the numerical tests. Note that we do not consider the curves of daily reports of 
ICU admissions because these data are not available in the NYC dataset.

Including sex in the model.  COVID-19 affects male and female individuals differently. Depending on the age 
range, the case fatality ratio is much larger for male individuals15,16. To take sex variance into account in the 
model, the transmission parameters ( βM , βH , and βI ) are generalized. The transmission matrix for the mild class 
assumes the following form:

[βM ]jj = β j(t)Bjj , [βM ]ij =
Bij

2

(

β i(t)+ β j(t)
)

, i �= j,

(10)γ i
M

ĨH (t)

γMĨM(t − τM)
and µi

I

D̃(t)

µI ĨH (t − τD)
,

Figure 1.   Schematic representation of the epidemiological model described by Eqs. (1)–(7).
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where βF
M and βM

M  are the transmission matrices for the age ranges defined above for the female and male indi-
viduals, respectively. The transmission matrices βH and βI have the form βH = aβM and βI = bβM.

Note that the transmission between sexes is accounted by the mean value of the transmission inside sexes. 
Intuitively, this means that a female individual who maintains social distancing with other females will also 
continue such containment measures with male individuals. This assumption also applies to male individuals.

Including geographical information.  Monitoring and forecasting the disease spread and the effectiveness of con-
tainment measures in large regions, such as metropolitan areas, states, and countries, are difficult tasks. Hetero-
geneous distribution of population and differences in the implementation of social restrictions may lead to quite 
different disease dynamics among different locations. Moreover, people moving between regions can cause new 
infection waves. Thus, to account for these aspects, an epidemiological model must include the geographical 
distribution of the population. A number of approaches have been proposed, and a review on this subject can 
be found in20. In particular, SEIR-type models have been repeatedly used to describe the dynamics of human 
infectious diseases including geographical information. For example,23,25 describe the COVID-19 dynamics in 
United States counties and in Italy, respectively.

To include the geographical distribution of the population into the model described by Eqs. (1)–(7), we 
enlarge the transmission matrices. By indexing each site under consideration by l = 1, . . . ,m , let β l

M , β l
H , and 

β l
I be the corresponding transmission matrices. Then, the transmission matrix for mildly infective individuals 

in the model becomes:

where 1 is the m× n-matrix with all entries equal to one and cl = mini,j[B
l]i,j , where Bl is the matrix defining the 

transmission matrix β l
M , for the l-th location. The transmission matrices for the other infective classes are similar.

This choice for the matrix that represents the mixture of infective populations from different locations helps 
to simplify the model, considerably reducing the number of unknowns, facilitating calibration. In addition, the 
model structure is data-driven in the sense that it depends on the current information and thus reflects more 
precisely the behavior of the population under different containment measures.

When dealing with large areas, such as states and countries, it is important to consider the distance between 
locations in the model by using exponential, Gaussian, or power law functions20. Due to the interconnectedness 
of NYC and its boroughs, we prefer to estimate the transmission-matrix components from the reported data.

Estimation procedure.  For simplicity, we start by presenting the estimation procedure for the model with-
out sex or geographical dependence. Moreover, the data on new infections, new hospitalizations, and new deaths 
released by the NYC authorities do not include sex or age ranges. Thus, we use this simpler version of the model, 
where βM = β(t)B . In addition, to simplify the estimation, the constants a and b, related to the transmission 
matrices of hospitalized and in ICU individuals, are empirically set as a = 0.1 and b = 0.01 , respectively.

To estimate the model parameters from the publicly available curves of daily new infections, we build the 
so-called posterior distribution relating parameters to data.

We assume that the number of daily new infective cases, denoted by I  , is Poisson-distributed with parameter 
σ
∑n

i=1 E
i(t) . Thus, denoting the vector of model parameters by θ , the logarithm of the likelihood function is

where N is the number of the samples in the data and the log(I!) is approximated by the Stirling’s formula

We also assume that the vector of parameters θ is Gaussian-distributed with the mean given by some vector 
of suitably chosen a priori parameters, denoted by θ0 , and identity covariance matrix. Thus, the negative of the 
logarithm of the posterior distribution lP(θ |I , θ0) satisfies

The constant α is the so-called regularization parameter in the context of Tikhonov-type regularization 
methods1. The estimated parameters are obtained by minimizing lP(θ |I , θ0).

We estimate the initial proportion of mild infective individual in each age range as follows:

(11)βM =

[

βF
M

1
2 (β

F
M + βM

M )
1
2 (β

F
M + βM

M ) βM
M

]

,

βM =

















β1
M c11 c11 · · · c11

c11 β2
M c21 · · · c21

...
. . .

. . . · · ·
...

...
. . .

. . .
. . .

...
c11 · · · cm−21 cm−11 βm

M

















,

L(θ) ∝

N
∑

j=1

[

I(tj). log

(

σ

n
∑

i=1

Ei(tj)

)

σ

n
∑

i=1

Ei(tj)− log(I(tj)!)

]

,

log(I!) ≈
1

2
log(2πI)+ I log(I)− I .

(12)lP(θ |I , θ0) ∝ L(θ |I)+
α

2
�θ − θ0�

2.



6

Vol:.(1234567890)

Scientific Reports |         (2021) 11:9089  | https://doi.org/10.1038/s41598-021-88281-w

www.nature.com/scientificreports/

where IM,0 is a scalar and pi is the population fraction of infective individuals in the i-th age range. The latter 
is estimated from census data. Thus, the vector of the parameters to be estimated assumes the following form:

where the values of bj , j = 1, . . . , n− 1 , correspond to the entries of the matrix B in Eq. (9). The time-dependent 
transmission coefficient β(t) also appears in the definition of βM.

The estimation of θ is carried out as follows: 

1.	 Assume that β(t) is constant and estimate θ from the set of daily reports of new infections;
2.	 Estimate β(t) for each tj in the dataset by minimizing the following functional: 

The estimation of the model with geographical information is carried out as follows. Consider the m-dimen-
sional time series of daily new reported infections from m different locations, where I l , l = 1, . . . ,m , denotes 
the set of reports for the l-th location. For each l, let θ l and β l(t) denote the vector of parameters and the 
time-dependent transmission coefficient, respectively, of the l-th location. We estimate the set of parameters 
� = [θ1, . . . , θm] and the coefficients β(t) = [β1(t), . . . ,βm(t)]T , by minimizing the log-posterior densities 
given by:

where lP(θ l|I l , θ l0) and F(β l(tj+1)|β
l(tj), θ

l ,I l(tj+1)) are given by (12) and (14), respectively. The computational 
cost of estimating this model varies with the number m of the sites considered. Based on the available compu-
tational resources, for large m, it may be useful to simplify the model by reducing the number of age ranges or 
merging the locations into a larger areas, thus reducing the model’s dimension.

We implemented the model’s solution and the estimation procedures in MATLAB (The MathWorks, Inc., 
Natick, USA). The code is available upon request. The optimization of the posterior density was performed by 
the general-purpose gradient-based algorithm LSQNONLIN from MATLAB’s Optimization Toolbox.

Results: estimation, backtesting, and forecasting
We start by evaluating the accuracy of the proposed methodology on fitting real data. Then, we perform back-
testing of the estimated results with out-of-sample data for periods of 7 and 20 days. Finally, we perform a forecast 
analysis under different scenarios.

Our results are based on New York City reports of new infections, hospitalizations, and deaths. This dataset 
is updated daily and contains information about the disease distribution at the five NYC boroughs with age-
structured accumulated numbers27.

As the number of daily COVID-19 tests have been increasing in NYC and more effective treatments have been 
tested and implemented41, the rates of new hospitalizations and new deaths have been decreasing relative to the 
rates of new infections. To account for all these features, the rates used in the model were updated.

Estimation results.  Our initial example set does not yet consider geographical dependence. This informa-
tion shall be incorporated in “Including geographical information”. The disease dynamics are estimated from 
the number of daily new infections in the entire NYC area. The data series is from 29-Feb-2020 to 21-Aug-2020 
and is obtained from the publicly available data in27. This source provides COVID-19 case reports and statistics 
for NYC and each of its five boroughs. The populations of NYC and of its boroughs are distributed in the 5 age 
ranges present in the datasets. The population distribution in the age ranges and boroughs is based on the census 
data publicly available at33. The curves of the daily reports of new infections were smoothed-out by a moving 
average of seven consecutive days. The rates per 100,000 inhabitants were used to define the various model 
parameters. They include the hospitalization, recovery, and death rates, as well as the vector a in the definition 
of the transmission matrices.

After preliminary calibration tests, two disease evolution regimes were clearly identified. In the first regime, 
the number of infective individuals increased exponentially, and in the second regime, the spread was consider-
ably reduced due to the containment measures imposed by the state of emergency declared on 12-Mar-2020. The 
effect of such intervention was clearly observed by the change in the time-dependent transmission coefficient 
β(t) on 19-Mar-2020 (Fig. 2).

To capture possible regime changes, such as the different age-range mixing, we divided the time-series into 
two parts, namely, the data before and after 19-Mar-2020. For these two time series subsets, we estimate the 
vector of parameters θ and the time-dependent β . Note that for the second dataset, after 19-Mar-2020, we do 
not estimate the initial infective population. The estimated parameters and the corresponding 90% confidence 

IM(0) = [I1M(0), . . . , InM(0)]T ≈ IM,0[p1, . . . , pn]
T ,

(13)θ = [IM,0,β(t), b1, . . . , bn−1]
T ,

(14)
F
(

β(tj+1)|β(tj), θ ,I(tj+1)
)

= I(tj+1). log
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σ

n
∑
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Ei(tj+1)

)

− σ

n
∑

i=1

Ei(tj+1)

− log
(

I(tj+1)!
)

+ α
(

β(tj+1)− β(tj)
)2
, with j = 1, . . . ,N − 1.

(15)
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lP(θ l |I l , θ l0) and

m
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l ,I l(tj+1)), j = 1, . . . ,N − 1,
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intervals (CIs) can be found in Table 1. Such intervals were obtained by excluding the 5% largest and smallest 
values generated by 200 bootstrap samples40. Figure 2 presents the comparison between the reported and model 
predicted curves for daily new infections. The time evolution of the basic reproduction rate can be found in Fig. 2. 
Table 2 depicts the predicted and reported number of infections, hospitalizations, and deaths for 21-Aug-2020 
with 90% CIs.

In Table 1, the estimated values of β were far from each other in both periods, indicating the aforementioned 
change in the transmission regime. For the vector b , after containment, the estimated values decrease consist-
ently, indicating that the interaction between age ranges was also significantly reduced. All these results show 
that disease spread was contained after 19-Mar-2020. However, as we shall see later on, new infection waves can 
occur if containment measures are relaxed.

Figure 2 shows the adherence of the calibrated model predictions to the 7-day moving average of the reported 
number of new infections. The hospitalization and death rates were evaluated using the ratios of the reported data 
defined in Eq. (10). The proportions of ICU admissions by age were obtained in14 and were adjusted according 
to the proportions of deaths available in27. The model accuracy is also illustrated in Table 2, showing that the 
model predictions for the accumulated numbers of infections, hospitalizations, and deaths, for each age range 
and sex, are close to the reported values. We also evaluate the relative error of the best fit model infections. It has 
a median value of 6.5× 10−4 and a 90% CI of 8.9× 10−6 to 0.09.

It is clearly observed from Fig. 2 that the time-dependent basic reproduction rate R(t) values can be classified 
into two different categories. Prior to 19-Mar-2020, R(t) has large values, indicating that the disease was spreading 
uncontrollably. After 19-Mar-2020, the transmission parameter value drops to approximately one, indicating 
the control of transmission by containment measures imposed from 12-Mar-2020 onwards. Note that the large 
values for the basic reproduction rate in the first part of the series, i.e., prior to 19-Mar-2020, may be caused by 
an accumulation of reports in the beginning of the outbreak. Such accumulation can be related, for example, to 
the difficulties faced by the health authorities in setting up an appropriate diagnosis protocol.

The adherence of the calibrated model predictions to reported data, the accuracy in the number of hospi-
talizations and deaths, as well as the behavior of the calibrated parameters indicating the effect of disease con-
tainment measures for the NYC data show that our proposed model captures the COVID-19 dynamics in NYC 
well. Therefore, it is useful to track the spread dynamics, allowing to assess the effects of, for example, travel 
quarantine, social distancing, and reopening strategies. If infection curves for different age ranges are available, 
it is possible to use the present model to track aspects such as the effects of reopening schools, universities, or 
parks and public gardens since these spaces are usually frequented by people of well-defined age ranges. Thus, 

Figure 2.   Model predictions and reported daily new infections (left) and time-dependent basic reproduction 
rate (right). Solid lines represent best-fit predictions, and bars are the 7-day moving average of reported cases. 
Filled envelopes are the 90% CIs. The vertical dashed lines mark different events in disease dynamics. The first 
line divides the dataset into uncontained and contained spread, and the remaining lines mark the beginning of 
reopening phases. NYC data. Figure generated with MATLAB R2019b (mathworks.com).

Table 1.   Best fit and 90% CIs of the model parameters obtained from the time-series subsets of daily reported 
new infections in NYC.

Subset 1 Subset 2

IM,0 2.0 (2.0–2.0) –

β 8.29 (8.15–8.35) 2.81 (2.71–3.20)

b1 0.88 (0.87–0.89) 0.51 (0.50–0.81)

b2 0.81 (0.79–0.81) 0.24 (0.01–0.31)

b3 0.77 (0.75–0.78) 0.19 (0–0.53)

b4 0.52 (0.32–0.58) 0.17 (0.11–0.85)
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it is easier to track the disease spread dynamics more accurately, allowing the decision of whether additional 
reopening or further restrictions can be implemented.

Including geographical information.  Let us consider the epidemiological dynamics of the five boroughs 
of NYC, namely, Queens, Manhattan, Staten Island, Brooklyn, and the Bronx. The datasets for the five boroughs 
were downloaded from27 on 02-July-2020.

The calibrated model predictions of daily new infections and the corresponding time-dependent transmission 
coefficients can be found in Fig. 3.

Figure 3 shows the model predictions adherence to the curves of reported daily new infections. The high 
accuracy of the model is also evidenced by the comparison between the reports and predictions of the accumu-
lated number of total infections, hospitalizations, and deaths for 01-July-2020 in Table 3.

The behavior of the time-dependent transmission coefficient for each borough is similar to the basic repro-
duction rate R(t) in the previous example. This behavior is expected since transmission containment measures 
were undertaken since 12-Mar-2020 in the entire NYC.

This example demonstrates the ability of the present model to detect disease transmission patterns in differ-
ent locations at the same moment. The model also accounts for the interaction between individuals of different 
age ranges, sexes, and locations. Using such features, it is possible to track the implications of reopening, the 
necessity of additional containment measures, or modification of the design of vaccination strategies. Such broad 
applications could not be achieved via simpler models. The median and 90% CI of the relative error of the best 
fit model infections are 6.7× 10−4 and 2.0× 10−5 to 0.03, respectively.

Backtesting.  To test the short-term forecast capabilities of the model, we consider two different periods of 
the COVID-19 outbreak in NYC.

Uncontained spread.  We calibrate the parameters with data from reports on new infections in the period from 
29-Feb-2020 to 19-Mar-2020, and we produce a seven-day forecast starting on 20-Mar-2020. This forecasted 
period is of particular interest since on 19-Mar-2020, the disease spread pattern changed considerably due to 
the containment measures undertaken 7 days earlier, as a consequence of the state of emergency declared on 
12-Mar-2020. To generate the predictions, we assume that β(t) is constant for dates t after 19-Mar-2020 and that 
it takes the same value as that estimated on 19-Mar-2020.

Figure 4 presents a comparison between the forecasted curves and the reported data. Although the param-
eters were estimated with information based on uncontrolled disease spread, the 7-day ahead forecast for daily 
new infections and new hospitalizations starting on 20-Mar-2020 show satisfactory accuracy. The accumulated 
number of infections, hospitalizations, and deaths for the forecasted period can be found in Table 4.

Contained spread.  We now generate a forecast for the period 24-July-2020 to 12-Aug-2020. For dates t after 
23-July-2020, the time-dependent values of the transmission coefficient are given by the mean of values for the 
period from 13 to 23-July-2020.

Table 2.   Model predictions with 90% CIs (top rows) and reported numbers (bottom rows) of accumulated 
infections, hospitalization, and deaths for NYC on 21-Aug-2020, by age range and sex.

Infections Hospitalizations Deaths

Age

0–17
7443 (6904–10050) 610 (566–822) 11 (10–15)

7252 623 12

18–44
88,526 (82,183–119,054) 9175 (8520–12,321) 716 (665–966)

86,413 9297 728

45–64
83,391 (77,466–111,818) 18,712 (17,388–25,054) 4217 (3923–5675)

81,125 18,958 4268

65–74
26,131 (24,271–35,046) 12,856 (11,947–17,216) 4889 (4557–6587)

27,221 12,434 4707

75+
23,098 (21,456–30,947) 16,712 (15,534–22,356) 10,070 (9408–13,569)

25,653 15,568 9298

Total
228,588 (212,280–306,916) 58,065 (53,954–77,769) 19,902 (18,564–26,812)

228,144 56,882 19,014

Sex

Female
114,649 (106,465–153,971) 24,215 (22,499–32,443) 7212 (6725–9719)

111,713 24,934 7638

Male
113,939 (105,815–152,945) 33,850 (31,455–45,326) 12,690 (11,839–17,094)

116,239 31,936 11,373
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Figure 3.   Left column: Model predictions and reported daily new infections for each NYC borough. Right 
column: Time-dependent transmission parameter estimated for the NYC each boroughs. Solid lines represent 
the model best fit predictions, and bars depict the 7-day moving average of the number of reported cases. 
Dashed lines divides the spread regime into uncontained and contained. The filled envelopes are the 90% CIs. 
The time series is from 29-Feb-2020 to 01-July-2020. Figure generated with MATLAB R2019b (mathworks.
com).

Table 3.   Model predictions and reported accumulated infections, hospitalizations, and deaths for the 
boroughs of NYC on 01-July-2020. Top rows represent predictions and bottom rows are reported cases. Inside 
the parentheses are the 90% CIs.

Borough Infections Hospitalizations Deaths

Manhattan
26,886 (26,793–28,994) 8560 (8540–9269) 2826 (2805–3052)

26,809 8081 2448

Bronx
47,870 (46,565–51,577) 13,618 (13,486–15,226) 4882 (4867–5629)

47,691 12,233 3830

Brooklyn
59,287 (58,357–63,889) 14,062 (13,900–15,177) 4855 (4741–5260)

59,037 15,351 5495

Queens
64,962 (63,939–70,092) 15,571 (15,318–16,786) 4917 (4829–5270)

64,797 16,977 5839

Staten Island
14,131 (14,131–15,421) 2287 (2287–2523) 840 (840–927)

13,961 2351 872
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Figure 4 presents a comparison between the predicted and the reported data for the forecasted period. Table 4 
presents the predicted and the reported values of accumulated infections, hospitalizations, and deaths from 
24-July-2020 to 12-Aug-2020.

As Fig. 4 and Table 4 show, the model predictions of infections, hospitalizations, and deaths once again 
show satisfactory accuracy. These results are explained by the model ability to incorporate the disease dynamics 
through the time-dependent parameters. Note that in these examples, the rates of hospitalizations and deaths 
are evaluated using appropriate ratios of reported data, as defined previously, until the last day of estimation. 
In the forecasted period, we repeat the rates for the days 19-Mar-2020 and 23-July-2020, respectively, for the 
corresponding data ranges studied.

Reopening scenarios.  We now apply the calibrated models from the previous sections to a number of 
plausible scenarios, such as the reopening of the entire NYC region, reopening of schools, and reopening of only 
one single borough, which we chose to be Staten Island. The predictions for these scenarios will illustrate the 
predictive capability of our model.

The entire NYC.  The aim of this example is to present possible scenarios for the COVID-19 epidemic for long 
periods without an effective vaccine or appropriate treatment. We consider two different scenarios. In the first 
scenario, the transmission parameters stay at the level of strict containment, as was observed in the period from 
04 to 14-June-2020. Thus, for any date t after 14-June-2020, the transmission coefficient β(t) is set as the mean 
for the estimated values of β(t) in the period from 04 to 14-June-2020, i.e., β(t) = 1.77 with 90% CI 0.27–4.69. 
In the second case, we simulate a controlled reopening by allowing the coefficient β(t) to reach twice the values 
obtained in the previous case, i.e., β(t) = 3.54 (0.53–9.38). However, if we impose the condition that whenever 
the number of daily new infections reaches 1000 cases, containment measures are undertaken, forcing β(t) to 
return to lower levels until it reaches the value 1.77 (0.27–4.69). On the other hand, after undertaking contain-
ment measures, if the number of daily new infections is below 200 cases, we permit reopening, and β(t) may 
increase again until it reaches 3.54 (0.53–9.38).

Figure 5 (left and center panels) present the curves of daily new infections for the aforementioned scenarios. 
Before 14-June-2020, we have the estimated curves. The forecasting is carried out from 15-June-2020 to 11-May-
2021. According to this example, the reopening without an effective vaccine or the achievement of herd immunity 
may give rise to new infection waves, even when the number of daily new cases is relatively low.

Figure 4.   Predictions for the daily reported new infections (left), new hospitalizations (center), and new 
deaths (right) for the periods 19 to 24-Mar-2020 (top row) and 24-July-2020 to 12-Aug-2020 (botton row). The 
solid lines represent the model predictions with best fit and the bars that depict the reported NYC data. The 
model forecasts are presented on the right side of the dashed lines. The filled envelopes are the 90% CIs. Figure 
generated with MATLAB R2019b (mathworks.com).

Table 4.   Model predictions and reported accumulated infections, hospitalizations, and deaths for the periods 
19 to 26-Mar-2020 and 24-July to 12-Aug-2020. Top rows represent predictions, while bottom rows are the 
reported cases. Between parentheses are the 90% CIs.

Period Infections Hospitalizations Deaths

19-Mar to 26-Mar
27,838 (8544–61,140) 5456 (2181–10,819) 245 (143–390)

25,876 6141 465

24-July to 12-Aug
6262 (5581–11,754) 602 (534–1057) 297 (193–393)

6654 736 147
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Reopening schools.  To simulate a controlled reopening of schools from 15-June-2020, we use the set of param-
eters estimated after 19-Mar-2020. To artificially increase the interaction between school-age individuals, the 
entries of the transmission matrix βM associated with the mildly infective individuals in the age range 0 to 17 
years old are multiplied by 2.5. In addition, the time-dependent transmission coefficient is set to 1.25 times the 
mean of the estimated values for the period 06 to 15-June-2020. For this specific age range, the transmission 
parameter values are similar to those obtained for the period before 19-Mar-2020. This result is expected since 
controlling the mixing in youth population at schools is difficult. Indeed, recent news indicates that the COVID-
19 transmission rate among people under 19 years old is similar to that in other age ranges38,39.

Figure 5 (right panel) presents model predictions of this “safe” reopening. Note that whenever the number 
of daily new infections reaches 1000 cases, containment measures are imposed again. Reopening occurs if the 
number of daily new cases falls below 200.

Therefore, even in an idealized situation, reopening schools may cause new infection waves among the entire 
population. Thus, monitoring transmission dynamics is of fundamental importance to set the appropriate time 
for relaxing or tightening containment measures. In Israel, the recent reopening of schools caused a secondary 
wave of new infections that forced the adoption of new containment measures39.

Reopening Staten island.  Two different scenarios are considered in this example: reopening Staten Island with 
and without restrictive measures. In the first scenario, containment measures are slightly relaxed, without allow-
ing people from different age ranges and boroughs to interact. Quantitatively, we keep the same parameter values 
estimated in the period 19-Mar-2020 onwards. The only change is in the transmission coefficient for Staten 
Island, which is set to twice the mean of the corresponding estimated values of β(t) for the period 22-June-2020 
to 01-July-2020, for dates t after 01-July-2020. During the forecasted period (02-Jul-2020 to 29-Oct-2020), the 
transmission coefficients for the other boroughs are kept equal to the mean of the estimated values for the period 
22-June-2020 to 01-July-2020.

In the second scenario, people from different boroughs and age ranges are allowed to interact, keeping 
some social distancing and simple containment measures. However, in Staten Island, only simple containment 
measures are undertaken. In other words, the time-independent transmission parameters assume the same 
values estimated in the period 29-Feb-2020 to 19-Mar-2020. In addition, we allow the time-dependent transmis-
sion coefficient for Staten Island to reach twice the mean of the estimated values for the period 22-June-2020 
to 01-July-2020, for dates t after 01-July-2020. Again, after 01-July-2020, the transmission coefficients for the 
other boroughs are kept equal to the mean of the estimated values for the period 22-June-2020 to 01-July-2020. 
Whenever the number of daily new infections reaches 1000 in NYC, containment measures are undertaken again. 
Therefore, the time-independent transmission parameters are brought back to the same values of the period 
after 19-Mar-2020, and the transmission coefficient for Staten Island is reset to the mean of the corresponding 
estimated values for the period 22-June-2020 to 01-July-2020. Reopening reoccurs whenever the number of daily 
new infections in NYC is below 100 reports.

Figures 6 and 7 present the curves of daily new infections for the first and second scenarios, respectively. 
They show the evolution for each borough and for the entire NYC. In the first case, doubling the mean of the 
transmission coefficient alone is not sufficient to cause secondary waves of infection. In other words, if restric-
tion of movement between boroughs is maintained and the interaction between age ranges remains contained 
through strict social distancing measures, infection will not return and the disease outbreak will die out. On the 
other hand, reopening a borough and allowing people of different ages and from different boroughs to interact, 
even while keeping some light containment and social distancing measures, can cause new waves of infection 
for large periods.

Discussion
We use a 7-day moving average to perform smoothing of the data. After calibration, the model predictions were 
adherent to the data of daily new infections and accurately predicted the number of daily new hospitalizations 
and deaths. The adjustment of the rates of hospitalization and death using appropriate ratios of reported data 
contributed to improving model predictions. While backtesting, forecasts for few days ahead under different 
contexts were found to be accurate. The model accurately identified the effects of the lockdown undertaken in 
NYC after 12-Mar-2020. A considerable change in the values of the transmission rates was observed. This change 
flattened the curve and kept the number of daily new infections low, as shown in27.

Figure 5.   Model predictions of daily new infections for reopening scenarios. Left: containment measures are 
maintained during the whole period. Center: Reopening is allowed until the daily number of new infections 
reaches 1000 or if it is below 200 (horizontal dashed lines). Right: Reopening schools. The filled envelopes 
represent the 90% CIs. Figure generated with MATLAB R2019b (mathworks.com).
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The rates of hospitalizations and deaths were lower by the end of August than in earlier periods of the COVID-
19 outbreak in NYC. This phenomenon may be caused by the changes in disease virulence or in the protocols 
used to address COVID-19, such as smaller onset to hospitalization mean time, more precise COVID-19 diag-
nosis, or the introduction of more effective treatments41. Moreover, in NYC, the number of COVID-19 daily tests 
has been increasing consistently since the beginning of the outbreak in the end of February 2020. To account for 
such changes in the aforementioned rates, the corresponding model parameters were adjusted using the ratios 
of reported data, incorporating this feature. This considerably increased the accuracy of the model predictions 
of hospitalizations and deaths, as shown by the results (Fig. 2 and Table 1).

With regard to reopening strategies, some simulated scenarios generated with calibrated parameters indicate 
that there is no completely safe method for reopening schools, boroughs, or the entire city unless people respect 
strict social distancing protocols, avoiding direct personal contact. As model predictions show, even when only 
a borough or only schools are reopened, new infection waves may occur, forcing public authorities to establish 
containment measures again. As long as infective individuals are present in a population, there is the risk of 
new infection waves in reopening strategies since it is not possible to guarantee that everyone will respect the 
containment protocols. This phenomenon was recently reported37,39. Thus, reopening must be undertaken with 
strict control of disease transmission, while applying massive testing and enforcing social distancing measures.

Although the role of children and teenagers in COVID-19 spread is still unknown, some recent events of dis-
ease spread among a youth population in an overnight camp in Georgia38 and in schools in Israel39 indicate that 
even though most individuals in this age group present mild symptoms, they can infect other people. Therefore, 
reopening schools also represents a risk of new infection waves.

Even New Zealand and China, which successfully contained COVID-19 spread and had long periods without 
registering community transmission, are now facing new cases35,36. All these reports corroborate our model 
predictions, suggesting that without strict control of COVID-19 through social distancing or after massive and 
effective vaccination, a completely safe reopening may be impossible.

It is important to mention that the present model is also suited to simulate and analyze vaccination strategies 
because it addresses the dependence of the disease outbreak on age and spatial distribution. This possibility will 
be addressed in a forthcoming article.

Figure 6.   Model predictions of daily new infections for the period 02-July-2020 to 29-Oct-2020 in NYC, when 
lockdown is slightly lifted, but keeping strict containment measures. The filled envelopes represent the 90% CIs. 
Figure generated with MATLAB R2019b (mathworks.com).

Figure 7.   Model predictions of daily new infections for the period 02-July-2020 to 29-Oct-2020 in NYC, 
when lockdown is lifted, with light containment measures. The filled envelopes represent the 90% CIs. Figure 
generated with MATLAB R2019b (mathworks.com).
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Tracking the reopening of NYC.  On May 2020, the State of New York initiated a four-phase reopening 
program. NYC entered the fourth phase on 20-July-2020. By 22-Aug-2020, schools and shopping malls were still 
closed, yet public transportation and a number of economic activities were already operational42,43. Strict social 
distancing measures were still enforced, and public authorities were closely following their observance. This 
approach kept the number of daily new infections stable.

Figure 2 shows the COVID-19 situation in NYC until 21-Aug-2020. The panel presents the comparison of 
model predictions and reports of daily new infections, as well as the time-dependent basic reproduction rate R(t). 
We observe that since 19-Mar-2020, R(t) stays near one, meaning that disease transmission is under control, but 
not eradicated, and that new infection waves may still occur. Even after reaching the fourth phase of controlled 
reopening, NYC authorities managed to keep transmission under control through social distancing measures 
by limiting the operational capacity of numerous services, disinfecting public transportation, and many other 
practices.

Note that even if COVID-19 is eradicated in NYC, as long as no effective vaccine is ready for worldwide use, 
containment measures inside NYC must be continued to avoid new outbreaks caused by the reintroduction of 
the disease from abroad.

Concluding remarks
SEIR-type models have been proposed by a number of authors to predict qualitative aspects of the dynamics of 
infectious diseases in general and of the COVID-19 pandemic in particular. See44 for a recent account of the SIR 
models and their connections to other models. However, to address the elusive aspects of the complex human 
interactions within the terrain, we think that it is necessary to forego parsimonious models. Functional and 
high-dimensional models have been used in a number of areas ranging from financial mathematics to population 
dynamics45,46. They are directly connected to the mathematical theory of inverse problems1,2,22,23.

The novelty of the work includes incorporating several aspects of the COVID-19 outbreak that have received 
little attention in the recent literature and provide sufficient flexibility for excellent adherence to real data. We 
consider time-dependent rates of transmission, hospitalization, and deaths, as well as the disease age- and sex-
dependent severity and transmission, while taking into account the spatial distribution of the population.

The model was extensively tested with real data from NYC and its boroughs. After calibration, the model pre-
dictions matched the curves of daily new infections, and the model provided accurate predictions for the number 
of daily hospitalizations and deaths. The relative error of the best-fit model infections was of the order of less than 
1% in all cases, indicating the excellent fitting of the models. The model also correctly detected the change in the 
transmission pattern on 19-Mar-2020 caused by containment measures undertaken on 12-Mar-2020. Moreover, 
it illustrated the stabilization of the time-dependent basic reproduction rate around the value 1 in NYC.

Concerning the prediction of new infections, the model was also evaluated while using real data and calibrated 
parameters. It generated accurate results under controlled and uncontrolled transmission contexts. Moreover, 
different scenarios such as reopening of schools and of an entire borough of NYC were examined. In both cases, 
transmission rates increased considerably, demanding new containment measures. In other words, without 
reaching herd immunity or complete disease eradication, we will always face the risk of new infection waves.

Our proposed model is sufficiently general to track transmission dynamics with dependence on age range, 
sex, and spatial distribution, while evaluating the disease impact on the population. Thus, it is a powerful tool 
to evaluate scenarios and build proper vaccination strategies.

Data Availability
The datasets analysed are available in the NYC Health website COVID-19: Data https://​www1.​nyc.​gov/​site/​doh/​
covid/​covid-​19-​data.​page.

Code Availability

The code that was used to obtain the findings of the present study is available from the corresponding author 
upon reasonable request.
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