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The ANTsX ecosystem 
for quantitative biological 
and medical imaging
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Daniel L. Gillen8, Michael A. Yassa9, James R. Stone1, James C. Gee2 & Brian B. Avants1

The Advanced Normalizations Tools ecosystem, known as ANTsX, consists of multiple open-source 
software libraries which house top-performing algorithms used worldwide by scientific and research 
communities for processing and analyzing biological and medical imaging data. The base software 
library, ANTs, is built upon, and contributes to, the NIH-sponsored Insight Toolkit. Founded in 
2008 with the highly regarded Symmetric Normalization image registration framework, the ANTs 
library has since grown to include additional functionality. Recent enhancements include statistical, 
visualization, and deep learning capabilities through interfacing with both the R statistical project 
(ANTsR) and Python (ANTsPy). Additionally, the corresponding deep learning extensions ANTsRNet 
and ANTsPyNet (built on the popular TensorFlow/Keras libraries) contain several popular network 
architectures and trained models for specific applications. One such comprehensive application is 
a deep learning analog for generating cortical thickness data from structural T1-weighted brain 
MRI, both cross-sectionally and longitudinally. These pipelines significantly improve computational 
efficiency and provide comparable-to-superior accuracy over multiple criteria relative to the existing 
ANTs workflows and simultaneously illustrate the importance of the comprehensive ANTsX approach 
as a framework for medical image analysis.

The ANTsX ecosystem: a brief overview
Image registration origins.  The Advanced Normalization Tools (ANTs) is a state-of-the-art, open-source 
software toolkit for image registration, segmentation, and other functionality for comprehensive biological and 
medical image analysis. Historically, ANTs is rooted in advanced image registration techniques which have been 
at the forefront of the field due to seminal contributions that date back to the original elastic matching method 
of Bajcsy and co-investigators1,2,3. Various independent platforms have been used to evaluate ANTs tools since 
their early development. In a landmark paper4, the authors reported an extensive evaluation using multiple 
neuroimaging datasets analyzed by fourteen different registration tools, including the Symmetric Normalization 
(SyN) algorithm5, and found that “ART, SyN, IRTK, and SPM’s DARTEL Toolbox gave the best results accord-
ing to overlap and distance measures, with ART and SyN delivering the most consistently high accuracy across 
subjects and label sets.” Participation in other independent competitions6,7 provided additional evidence of the 
utility of ANTs registration and other tools8,9,10, Despite the extremely significant potential of deep learning for 
image registration algorithmic development11, ANTs registration tools continue to find application in the vari-
ous biomedical imaging research communities.

Current developments.  Since its inception, though, ANTs has expanded significantly beyond its image 
registration origins. Other core contributions include template building12, segmentation13, image preprocessing 
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(e.g., bias correction14 and denoising15), joint label fusion16,17, and brain cortical thickness estimation18,19 (cf 
Table 1). Additionally, ANTs has been integrated into multiple, publicly available workflows such as fMRIprep20 
and the Spinal Cord Toolbox21. Frequently used ANTs pipelines, such as cortical thickness estimation19, have 
been integrated into Docker containers and packaged as Brain Imaging Data Structure (BIDS)22 and FlyWheel 
applications (i.e., “gears’ ’). It has also been independently ported for various platforms including Neurodebian23 
(Debian OS), Neuroconductor24 (the R statistical project), and Nipype25 (Python). Additionally, other widely used 
software, such as FreeSurfer26, have incorporated well-performing and complementary ANTs components14,15 
into their own libraries. According to GitHub, recent unique “clones” have averaged 34 per day with the total 
number of clones being approximately twice that many. 50 unique contributors to the ANTs library have made a 
total of over 4500 commits. Additional insights into usage can be viewed at the ANTs GitHub website.

Over the course of its development, ANTs has been extended to complementary frameworks resulting in 
the Python- and R-based ANTsPy and ANTsR toolkits, respectively. These ANTs-based packages interface with 
extremely popular, high-level, open-source programming platforms which have significantly increased the user 
base of ANTs. The rapidly rising popularity of deep learning motivated further recent enhancement of ANTs 
and its extensions. Despite the existence of an abundance of online innovation and code for deep learning algo-
rithms, much of it is disorganized and lacks a uniformity in structure and external data interfaces which would 
facilitate greater uptake. With this in mind, ANTsR spawned the deep learning ANTsRNet package35 which is 
a growing Keras/TensorFlow-based library of popular deep learning architectures and applications specifically 
geared towards medical imaging. Analogously, ANTsPyNet is an additional ANTsX complement to ANTsPy. 
Both, which we collectively refer to as “ANTsXNet”, are co-developed so as to ensure cross-compatibility such 
that training performed in one library is readily accessible by the other library. In addition to a variety of popular 

Figure 1.   An illustration of the tools and applications available as part of the ANTsRNet and ANTsPyNet 
deep learning toolkits. Both libraries take advantage of ANTs functionality through their respective language 
interfaces—ANTsR (R) and ANTsPy (Python). Building on the Keras/TensorFlow language, both libraries 
standardize popular network architectures within the ANTs ecosystem and are cross-compatible. These 
networks are used to train models and weights for such applications as brain extraction which are then 
disseminated to the public.

Table 1.   The significance of core ANTs tools in terms of their number of citations (from October 17, 2020).

Functionality Citations

SyN registration27 2616

Bias field correction28 2188

ANTs registration evaluation29 2013

Joint label fusion30 669

Template generation9 423

Cortical thickness: implementation31 321

MAP-MRF segmentation32 319

ITK integration33 250

Cortical thickness: theory34 180
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network architectures (which are implemented in both 2-D and 3-D), ANTsXNet contains a host of functionality 
for medical image analysis that have been developed in-house and collected from other open-source projects. For 
example, an extremely popular ANTsXNet application is a multi-modal brain extraction tool that uses different 
variants of the popular U-net36 architecture for segmenting the brain in multiple modalities. These modalities 
include conventional T1-weighted structural MRI as well as T2-weighted MRI, FLAIR, fractional anisotropy, and 
BOLD data. Demographic specialization also includes infant T1-weighted and/or T2-weighted MRI. Additionally, 
we have included other models and weights into our libraries such as a recent BrainAGE estimation model37, 
based on > 14, 000 individuals; HippMapp3r38, a hippocampal segmentation tool; the winning entry of the 
MICCAI 2017 white matter hyperintensity segmentation competition39; MRI super resolution using deep back-
projection networks40; and NoBrainer, a T1-weighted brain extraction approach based on FreeSurfer (see Fig. 1).

The ANTsXNet cortical thickness pipeline.  The most recent ANTsX innovation involves the develop-
ment of deep learning analogs of our popular ANTs cortical thickness cross-sectional19 and longitudinal41 pipe-
lines within the ANTsXNet framework. Figure 2, adapted from our previous work19, illustrates some of the major 
changes associated with the single-subject, cross-sectional pipeline. The resulting improvement in efficiency 
derives primarily from eliminating deformable image registration from the pipeline—a step which has histori-
cally been used to propagate prior, population-based information (e.g., tissue maps) to individual subjects for 
such tasks as brain extraction42 and tissue segmentation13 which is now configured within the neural networks 
and trained weights.

These structural MRI processing pipelines are currently available as open-source within the ANTsXNet 
libraries. Evaluations using both cross-sectional and longitudinal data are described in subsequent sections and 
couched within the context of our previous publications19,41. Related work has been recently reported by external 
groups43,44 and provides a context for comparison to motivate the utility of the ANTsX ecosystem.

Results
Cross‑sectional performance evaluation.  Due to the absence of ground-truth, we utilize the evaluation 
strategy from our previous work19 where we used cross-validation to build and compare age prediction models 
from data derived from both the proposed ANTsXNet pipeline and the established ANTs pipeline. Specifically, 
we use “age” as a well-known and widely-available demographic correlate of cortical thickness45 and quantify the 
predictive capabilities of corresponding random forest classifiers34 of the form:

with covariates GENDER and VOLUME (i.e., total intracranial volume). T(DKTi) is the average thickness value 
in the ith Desikian-Killiany-Tourville (DKT) region46 (cf Table 2). Root mean square error (RMSE) between the 
actual and predicted ages are the quantity used for comparative evaluation. As we have explained previously19, we 

(1)AGE ∼ VOLUME + GENDER +

62∑

i=1

T(DKTi)

Figure 2.   Illustration of the ANTsXNet cortical thickness pipeline and the relationship to its traditional ANTs 
analog. The hash-designated sections denote pipeline steps which have been obviated by the deep learning 
approach. These include template-based brain extraction, template-based n-tissue segmentation, and joint 
label fusion for cortical labeling. In our prior work, execution time of the thickness pipeline was dominated by 
registration. In the deep version of the pipeline, it is dominated by DiReCT. However, we note that registration 
and DiReCT execute much more quickly than in the past in part due to major improvements in the underlying 
ITK multi-threading strategy.
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find these evaluation measures to be much more useful than other commonly applied criteria as they are closer 
to assessing the actual utility of these thickness measurements as biomarkers for disease47 or growth. In recent 
work44 the authors employ correlation with FreeSurfer thickness values as the primary evaluation for assessing 
relative performance with ANTs cortical thickness19. This evaluation, unfortunately, is fundamentally flawed in 
that it is a prime example of a type of circularity analysis48 whereby data selection is driven by the same criteria 
used to evaluate performance. Specifically, the underlying DeepSCAN network used for the tissue segmenta-
tion step employs training based on FreeSurfer results which directly influences thickness values as thickness/
segmentation are highly correlated and vary characteristically between software packages. Relative performance 
with ANTs thickness (which does not use FreeSurfer for training) is then assessed by determining correlations 
with FreeSurfer thickness values. Almost as problematic is their use of repeatability, which they confusingly label 
as “robustness,” as an additional ranking criterion. Repeatability evaluations should be contextualized within 
considerations such as the bias-variance tradeoff and quantified using relevant metrics, such as the intra-class 
correlation coefficient which takes into account both inter- and intra-observer variability.

In addition to the training data listed above, to ensure generalizability, we also compared performance using 
the SRPB data set32 comprising over 1600 participants from 12 sites. Note that we recognize that we are processing 
a portion of the evaluation data through certain components of the proposed deep learning-based pipeline that 
were used to train the same pipeline components. Although this does not provide evidence for generalizability 
(which is why we include the much larger SRPB data set), it is still interesting to examine the results since, in 
this case, the deep learning training can be considered a type of noise reduction on the final results. It should be 
noted that training did not use age prediction (or any other evaluation or related measure) as a criterion to be 
optimized during network model training (i.e., circular analysis)48.

The results are shown in Fig. 3 where we used cross-validation with 500 permutations per model per data 
set (including a “combined” set) and an 80/20 training/testing split. The ANTsXNet deep learning pipeline 
outperformed the classical pipeline19 in terms of age prediction in all data sets except for IXI. This also includes 
the cross-validation iteration where all data sets were combined. Additionally, repeatability assessment on the 
regional cortical thickness values of the MMRR data set yielded ICC values (“average random rater”) of 0.99 
for both pipelines.

A comparative illustration of regional thickness measurements between the ANTs and ANTsXNet pipelines 
is provided in Fig. 4 for three different ages spanning the lifespan. Linear models of the form

were created for each of the 62 DKT regions for each pipeline. These models were then used to predict 
thickness values for each gender at ages of 25 years, 50 years, and 75 years and subsequently plotted rela-
tive to the absolute maximum predicted thickness value (ANTs: right entorhinal cortex at 25 years, male). 
Although there appear to be systematic differences between specific regional predicted thickness values (e.g., 
T(ENT)ANTs > T(ENT)ANTsXNet , T(pORB)ANTs < T(pORB)ANTsXNet)), a pairwise t-test evidenced no statisti-
cally significant difference between the predicted thickness values of the two pipelines.

Longitudinal performance evaluation.  Given the excellent performance and superior computational 
efficiency of the proposed ANTsXNet pipeline for cross-sectional data, we evaluated its performance on longi-
tudinal data using the longitudinally-specific evaluation strategy and data we employed with the introduction 
of the longitudinal version of the ANTs cortical thickness pipeline41. We also evaluated an ANTsXNet-based 
pipeline tailored specifically for longitudinal data. In this variant, an SST is generated and processed using the 

(2)T(DKTi) ∼ GENDER + AGE

Table 2.   The 31 cortical labels (per hemisphere) of the Desikan–Killiany–Tourville atlas. The ROI 
abbreviations from the R brainGraph package are given in parentheses and used in later figures.

(1) Caudal anterior cingulate (cACC​) (17) Pars orbitalis (pORB)

(2) Caudal middle frontal (cMFG) (18) Pars triangularis (pTRI)

(3) Cuneus (CUN) (19) Pericalcarine (periCAL)

(4) Entorhinal (ENT) (20) Postcentral (postC)

(5) Fusiform (FUS) (21) Posterior cingulate (PCC)

(6) Inferior parietal (IPL) (22) Precentral (preC)

(7) Inferior temporal (ITG) (23) Precuneus (PCUN)

(8) Isthmus cingulate (iCC) (24) Rosterior anterior cingulate (rACC​)

(9) Lateral occipital (LOG) (25) Rostral middle frontal (rMFG)

(10) Lateral orbitofrontal (LOF) (26) Superior frontal (SFG)

(11) Lingual (LING) (27) Superior parietal (SPL)

(12) Medial orbitofrontal (MOF) (28) Superior temporal (STG)

(13) Middle temporal (MTG) (29) Supramarginal (SMAR)

(14) Parahippocampal (PARH) (30) Transverse temporal (TT)

(15) Paracentral (paraC) (31) Insula (INS)

(16) Pars opercularis (pOPER)
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previously described ANTsXNet cross-sectional pipeline which yields tissue spatial priors. These spatial priors 
are used in our traditional brain segmentation approach13. The computational efficiency of this variant is also 
significantly improved, in part, due to the elimination of the costly SST prior generation which uses multiple 
registrations combined with joint label fusion16.

Figure 3.   Distribution of mean RMSE values (500 permutations) for age prediction across the different 
data sets between the traditional ANTs and deep learning-based ANTsXNet pipelines. Total mean values are 
as follows: Combined—9.3 years (ANTs) and 8.2 years (ANTsXNet); IXI—7.9 years (ANTs) and 8.6 years 
(ANTsXNet); MMRR—7.9 years (ANTs) and 7.6 years (ANTsXNet); NKI—8.7 years (ANTs) and 7.9 years 
(ANTsXNet); OASIS—9.2 years (ANTs) and 8.0 years (ANTsXNet); and SRPB—9.2 years (ANTs) and 8.1 years 
(ANTsXNet).

Figure 4.   Radar plots enabling comparison of relative thickness values between the ANTs and ANTsXNet 
cortical thickness pipelines at three different ages sampling the life span. See Table 2 for region abbreviations.



6

Vol:.(1234567890)

Scientific Reports |         (2021) 11:9068  | https://doi.org/10.1038/s41598-021-87564-6

www.nature.com/scientificreports/

The ADNI-1 data used for our longitudinal performance evaluation41 consists of over 600 subjects (197 
cognitive normals, 324 LMCI subjects, and 142 AD subjects) with one or more follow-up image acquisition 
sessions every 6 months (up to 36 months) for a total of over 2500 images. In addition to the ANTsXNet pipe-
lines (“ANTsXNetCross” and “ANTsXNetLong”) for the current evaluation, our previous work included the 
FreeSurfer26 cross-sectional (“FSCross”) and longitudinal (“FSLong”) streams, the ANTs cross-sectional pipeline 
(“ANTsCross”) in addition to two longitudinal ANTs-based variants (“ANTsNative” and “ANTsSST”). Two evalua-
tion measurements, one unsupervised and one supervised, were used to assess comparative performance between 
all seven pipelines. We add the results of the ANTsXNet pipeline cross-sectional and longitudinal evaluations in 
relation to these other pipelines to provide a comprehensive overview of relative performance.

First, linear mixed-effects (LME)31 modeling was used to quantify between-subject and residual variabilities, 
the ratio of which provides an estimate of the effectiveness of a given biomarker for distinguishing between sub-
populations. In order to assess this criteria while accounting for changes that may occur through the passage of 
time, we used the following Bayesian LME model:

where Yk
ij denotes the ith individual’s cortical thickness measurement corresponding to the kth region of interest 

at the time point indexed by j and specification of variance priors to half-Cauchy distributions reflects com-
monly accepted best practice in the context of hierarchical models49. The ratio of interest, rk , per region of the 
between-subject variability, τk , and residual variability, σk is

where the posterior distribution of rk was summarized via the posterior median.
Second, the supervised evaluation employed Tukey post-hoc analyses with false discovery rate (FDR) adjust-

ment to test the significance of the LMCI-CN, AD-LMCI, and AD-CN diagnostic contrasts. This is provided by 
the following LME model

Here, �Y  is the change in thickness of the kth DKT region from baseline (bl) thickness Ybl with random intercepts 
for both the individual subject ( ID ) and the acquisition site. The subject-specific covariates AGE , APOE status, 
GENDER , DIAGNOSIS , ICV  , and VISIT were taken directly from the ADNIMERGE package.

Results for all pipelines with respect to the longitudinal evaluation criteria are shown in Figs. 5 and 6. Fig-
ure 5(a) provides the 95% confidence intervals of the variance ratio for all 62 regions of the DKT cortical labe-
ling where ANTsSST consistently performs best with ANTsXNetLong also performing well. These quantities 
are summarized in Fig. 5(b). The second evaluation criteria compares diagnostic differentiation via LMEs. Log 
p-values are provided in Fig. 6 which demonstrate excellent LMCI-CN and AD-CN differentiation for both 
deep learning pipelines.

Discussion
The ANTsX software ecosystem provides a comprehensive framework for quantitative biological and medical 
imaging. Although ANTs, the original core of ANTsX, is still at the forefront of image registration technology, 
it has moved significantly beyond its image registration origins. This expansion is not confined to technical 
contributions (of which there are many) but also consists of facilitating access to a wide range of users who can 
use ANTsX tools (whether through bash, Python, or R scripting) to construct tailored pipelines for their own 
studies or to take advantage of our pre-fabricated pipelines. And given the open-source nature of the ANTsX 
software, usage is not limited, for example, to non-commercial use—a common constraint characteristic of other 
packages such as the FMRIB Software Library (https://​fsl.​fmrib.​ox.​ac.​uk/​fsl/​fslwi​ki/​Licen​ce).

One of our most widely used pipelines is the estimation of cortical thickness from neuroimaging. This is 
understandable given the widespread usage of regional cortical thickness as a biomarker for developmental or 
pathological trajectories of the brain. In this work, we used this well-vetted ANTs tool to provide training data for 
producing alternative variants which leverage deep learning for improved computational efficiency and also pro-
vides superior performance with respect to previously proposed evaluation measures for both cross-sectional19 
and longitudinal scenarios41, In addition to providing the tools which generated the original training data for 
the proposed ANTsXNet pipeline, the ANTsX ecosystem provides a full-featured platform for the additional 
steps such as preprocessing (ANTsR/ANTsPy); data augmentation (ANTsR/ANTsPy); network construction and 
training (ANTsRNet/ANTsPyNet); and visualization and statistical analysis of the results (ANTsR/ANTsPy).

Using ANTsX, various steps in the deep learning training processing (e.g., data augmentation, preprocess-
ing) can all be performed within the same ecosystem where such important details as header information for 
image geometry are treated the same. In contrast, related work44 described and evaluated a similar thickness 
measurement pipeline. However, due to the lack of a complete processing and analysis framework, training data 
was generated using the FreeSurfer stream, deep learning-based brain segmentation employed DeepSCAN50 
(in-house software), and cortical thickness estimation18 was generated using the ANTs toolkit. The interested 

(3)

Yk
ij ∼ N(αk

i + βk
i tij , σ

2
k )

αk
i ∼ N(αk

0 , τ
2
k ) βk

i ∼ N(βk
0 , ρ

2
k )

αk
0 ,β

k
0 ∼ N(0, 10) σk , τk , ρk ∼ Cauchy+(0, 5)

(4)rk =
τk

σk
, k = 1, . . . , 62

(5)
�Y ∼Ybl + AGEbl + ICVbl + APOEbl + GENDER + DIAGNOSISbl

+ VISIT : DIAGNOSISbl + (1|ID)+ (1|SITE).
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researcher must ensure the consistency of the input/output interface between packages (a task for which the 
Nipype development team is quite familiar.)

Although potentially advantageous in terms of such issues as computational efficiency and other performance 
measures, there are a number of limitations associated with the ANTsXNet pipeline that should be mentioned 
both to guide potential users and possibly motivate future related research. As is the case with many deep learn-
ing models, usage is restricted based on training data. For example, much of the publicly available brain data has 
been anonymized through various defacing protocols. That is certainly the case with the training data used for 
the ANTsXNet pipeline which has consequences specific to the brain extraction step which could lead to poor 
performance. We are currently aware of this issue and have provided a temporary workaround while simulta-
neously resuming training on whole head data to mitigate this issue. Also, although the ANTsXNet pipeline 
performs relatively well as assessed across lifespan data, performance might be hampered for specific age ranges 
(e.g., neonates), whereas the traditional ANTs cortical thickness pipeline is more flexible and might provide better 

Figure 5.   Performance over longitudinal data as determined by the variance ratio. (a) Region-specific 95% 
confidence intervals of the variance ratio showing the superior performance of the longitudinally tailored 
ANTsX-based pipelines, including ANTsSST and ANTsXNetLong. (b) Residual variability, between subject, and 
variance ratio values per pipeline over all DKT regions.
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age-targeted performance. This is the subject of ongoing research. Additionally, application of the ANTsXNet 
pipeline would be limited with high-resolution acquisitions. Due to the heavy memory requirements associated 
with deep learning training, the utility of any resolution greater than ~1 mm isotropic would not be leveraged 
by the existing pipeline. However, there is a potential pipeline variation (akin to the longitudinal variant) that 
would be worth exploring where Deep Atropos is used only to provide the priors for a subsequent traditional 
Atropos segmentation on high-resolution data. Although direct evaluation by the principal co-authors of the 
ANTs toolkit, the similarity in resulting cortical thickness values, as indicated by Fig. 4, and considerations of the 
training data origins all strongly suggest similarity between Atropos and Deep Atropos output, further evaluation 
is certainly warranted and would benefit other potential applications.

In terms of additional future work, the recent surge and utility of deep learning in medical image analysis has 
significantly guided the areas of active ANTsX development. As demonstrated in this work with our widely used 
cortical thickness pipelines, there are many potential benefits of deep learning analogs to existing ANTs tools as 
well as the development of new ones. Performance is mostly comparable-to-superior relative to existing pipelines 
depending on the evaluation metric. Specifically, the ANTsXNet cross-sectional pipeline does well for the age 
prediction performance framework and in terms of the ICC. Additionally, this pipeline performs relatively well 
for longitudinal ADNI data for disease differentiation but not so much in terms of the generic variance ratio 
criterion. However, for such longitudinal-specific studies, the ANTsXNet longitudinal variant performs well for 
both performance measures. We see possible additional longitudinal extensions incorporating subject ID and 
months as additional network inputs.

Methods
The original ANTs cortical thickness pipeline.  The original ANTs cortical thickness pipeline19 consists 
of the following steps:

•	 Preprocessing: denoising15 and bias correction51;
•	 Brain extraction42;
•	 Brain segmentation with spatial tissue priors13 comprising the

•	 Cerebrospinal fluid (CSF),
•	 Gray matter (GM),
•	 White matter (WM),
•	 Deep gray matter,
•	 Cerebellum, and
•	 Brain stem; and

•	 Cortical thickness estimation18.

Our recent longitudinal variant41 incorporates an additional step involving the construction of a single subject 
template (SST)12 coupled with the generation of tissue spatial priors of the SST for use with the processing of the 
individual time points as described above.

Although the resulting thickness maps are conducive to voxel-based52 and related analyses53, here we employ 
the well-known Desikan-Killiany-Tourville (DKT)46 labeling protocol (31 labels per hemisphere) to parcellate 
the cortex for averaging thickness values regionally (cf Table 2). This allows us to 1) be consistent in our evalu-
ation strategy for comparison with our previous work19,41 and 2) leverage an additional deep learning-based 
substitution within the proposed pipeline.

Figure 6.   Measures for the supervised evaluation strategy where log p-values for diagnostic differentiation of 
LMCI-CN, AD-LMCI, and AD-CN subjects are plotted for all pipelines over all DKT regions.
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Overview of cortical thickness via ANTsXNet.  The entire analysis/evaluation framework, from pre-
processing to statistical analysis, is made possible through the ANTsX ecosystem and simplified through the 
open-source R and Python platforms. Preprocessing, image registration, and cortical thickness estimation are 
all available through the ANTsPy and ANTsR libraries whereas the deep learning steps are performed through 
networks constructed and trained via ANTsRNet/ANTsPyNet with data augmentation strategies and other utili-
ties built from ANTsR/ANTsPy functionality.

The brain extraction, brain segmentation, and DKT parcellation deep learning components were trained 
using data derived from our previous work19. Specifically, the IXI30, MMRR54, NKI55, and OASIS28 data sets, 
and the corresponding derived data, comprising over 1200 subjects from age 4 to 94, were used for network 
training. Brain extraction employs a traditional 3-D U-net network36 with whole brain, template-based data 
augmentation35 whereas brain segmentation and DKT parcellation are processed via 3-D U-net networks with 
attention gating56 on image octant-based batches. Additional network architecture details are given below. We 
emphasize that a single model (as opposed to ensemble approaches where multiple models are used to produce 
the final solution)39 was created for each of these steps and was used for all the experiments described below.

Implementation.  Software, average DKT regional thickness values for all data sets, and the scripts to 
perform both the analysis and obtain thickness values for a single subject (cross-sectionally or longitudinally) 
are provided as open-source. Specifically, all the ANTsX libraries are hosted on GitHub (https://​github.​com/​
ANTsX). The cross-sectional data and analysis code are available as .csv files and R scripts at the GitHub reposi-
tory dedicated to this paper (https://​github.​com/​ntust​ison/​Paper​ANTsX) whereas the longitudinal data and 
evaluation scripts are organized with the repository associated with our previous work41 (https://​github.​com/​
ntust​ison/​Cross​Long).

In Listing 1, we show the ANTsPy/ANTsPyNet code snippet for cross-sectional processing a single subject 
which starts with reading the T1-weighted MRI input image, through the generation of the Atropos-style six-
tissue segmentation and probability images, application of ants.kelly_kapowski (i.e., DiReCT), DKT 
cortical parcellation, subsequent label propagation through the cortex, and, finally, regional cortical thickness 
tabulation. The cross-sectional and longitudinal pipelines are encapsulated in the ANTsPyNet functions ant-
spynet.cortical_thickness and antspynet.longitudinal_cortical_thickness, 
respectively. Note that there are precise, line-by-line R-based analogs available through ANTsR/ANTsRNet.

Both the ants.deep_atropos and antspynet.desikan_killiany_tourville_labe-
ling functions perform brain extraction using the antspynet.brain_extraction function. Internally, 
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antspynet.brain_extraction contains the requisite code to build the network and assign the appro-
priate hyperparameters. The model weights are automatically downloaded from the online hosting site https://​
figsh​are.​com (see the function get_pretrained_network in ANTsPyNet or getPretrainedNet-
work in ANTsRNet for links to all models and weights) and loaded to the constructed network. antspynet.
brain_extraction performs a quick translation transformation to a specific template (also downloaded 
automatically) using the centers of intensity mass, a common alignment initialization strategy. This is to ensure 
proper gross orientation. Following brain extraction, preprocessing for the other two deep learning components 
includes ants.denoise_image and ants.n4_bias_correction and an affine-based reorientation 
to a version of the MNI template57.

We recognize the presence of some redundancy due to the repeated application of certain preprocessing steps. 
Thus, each function has a do_preprocessing option to eliminate this redundancy for knowledgeable users 
but, for simplicity in presentation purposes, we do not provide this modified pipeline here. Although it should be 
noted that the time difference is minimal considering the longer time required by ants.kelly_kapowski. 
ants.deep_atropos returns the segmentation image as well as the posterior probability maps for each 
tissue type listed previously. antspynet.desikan_killiany_tourville_labeling returns only 
the segmentation label image which includes not only the 62 cortical labels but the remaining labels as well. The 
label numbers and corresponding structure names are given in the program description/help. Because the DKT 
parcellation will, in general, not exactly coincide with the non-zero voxels of the resulting cortical thickness 
maps, we perform a label propagation step to ensure the entire cortex, and only the non-zero thickness values 
in the cortex, are included in the tabulated regional values.

As mentioned previously, the longitudinal version, antspynet.longitudinal_cortical_thick-
ness, adds an SST generation step which can either be provided as a program input or it can be constructed 
from spatial normalization of all time points to a specified template. ants.deep_atropos is applied to the 
SST yielding spatial tissues priors which are then used as input to ants.atropos for each time point. ants.
kelly_kapowski is applied to the result to generate the desired cortical thickness maps.

Computational time on a CPU-only platform is approximately 1 hour primarily due to ants.kelly_
kapowski processing. Other preprocessing steps, i.e., bias correction and denoising, are on the order of a 
couple minutes. This total time should be compared with 4− 5 hours using the traditional pipeline employing the 
quick registration option or 10− 15 hours with the more comprehensive registration parameters employed). As 
mentioned previously, elimination of the registration-based propagation of prior probability images to individual 
subjects is the principal source of reduced computational time. For ROI-based analyses, this is in addition to the 
elimination of the optional generation of a population-specific template. Additionally, the use of antspynet.
desikan_killiany_tourville_labeling, for cortical labeling (which completes in less than five 
minutes) eliminates the need for joint label fusion which requires multiple pairwise registrations for each subject 
in addition to the fusion algorithm itself.

Training details.  Training differed slightly between models and so we provide details for each of these com-
ponents below. For all training, we used ANTsRNet scripts and custom batch generators. Although the network 
construction and other functionality is available in both ANTsPyNet and ANTsRNet (as is model weights com-
patibility), we have not written such custom batch generators for the former (although this is on our to-do list). 
In terms of hardware, all training was done on a DGX (GPUs: 4X Tesla V100, system memory: 256 GB LRDIMM 
DDR4).

T1‑weighted brain extraction.   A whole-image 3-D U-net model36 was used in conjunction with multiple train-
ing sessions employing a Dice loss function followed by categorical cross entropy. Training data was derived 
from the same multi-site data described previously processed through our registration-based approach42. A 
center-of-mass-based transformation to a standard template was used to standardize such parameters as orienta-
tion and voxel size. However, to account for possible different header orientations of input data, a template-based 
data augmentation scheme was used35 whereby forward and inverse transforms are used to randomly warp 
batch images between members of the training population (followed by reorientation to the standard template). 
A digital random coin flipping for possible histogram matching58 between source and target images further 
increased data augmentation. The output of the network is a probabilistic mask of the brain. The architecture 
consists of four encoding/decoding layers with eight filters at the base layer which doubled every layer. Although 
not detailed here, training for brain extraction in other modalities was performed similarly.

Deep atropos.  Dealing with 3-D data presents unique barriers for training that are often unique to medical 
imaging. Various strategies are employed such as minimizing the number of layers and/or the number of filters at 
the base layer of the U-net architecture (as we do for brian extraction). However, we found this to be too limiting 
for capturing certain brain structures such as the cortex. 2-D and 2.5-D approaches are often used with varying 
levels of success but we also found better performance using full 3-D information. This led us to try randomly 
selected 3-D patches of various sizes. However, for both the six-tissue segmentations and DKT parcellations, we 
found that an octant-based patch strategy yielded the desired results. Specifically, after a brain extracted affine 
normalization to the MNI template, the normalized image is cropped to a size of [160, 190, 160]. Overlapping 
octant patches of size [112, 112, 112] were extracted from each image and trained using a batch size of 12 such 
octant patches with weighted categorical cross entropy as the loss function. The architecture consists of four 
encoding/decoding layers with 16 filters at the base layer which doubled every layer.

As we point out in our earlier work19, obtaining proper brain segmentation is perhaps the most critical step 
to estimating thickness values that have the greatest utility as a potential biomarker. In fact, the first and last 
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authors (NT and BA, respectively) spent much time during the original ANTs pipeline development19 trying to 
get the segmentation correct which required manually looking at many images and adjusting parameters where 
necessary. This fine-tuning is often omitted or not considered when other groups44,59,60 use components of our 
cortical thickness pipeline which can be potentially problematic61. Fine-tuning for this particular workflow 
was also performed between the first and last authors using manual variation of the weights in the weighted 
categorical cross entropy. Specifically, the weights of each tissue type were altered in order to produce segmen-
tations which most resemble the traditional Atropos segmentations. Ultimately, we settled on a weight vec-
tor of (0.05, 1.5, 1, 3, 4, 3, 3) for the CSF, GM, WM, Deep GM, brain stem, and cerebellum, respectively. Other 
hyperparameters can be directly inferred from explicit specification in the actual code. As mentioned previ-
ously, training data was derived from application of the ANTs Atropos segmentation13 during the course of our 
previous work19, Data augmentation included small affine and deformable perturbations using antspynet.
randomly_transform_image_data and random contralateral flips.

Desikan‑Killiany‑Tourville parcellation.  Preprocessing for the DKT parcellation training was similar to the 
Deep Atropos training. However, the number of labels and the complexity of the parcellation required deviation 
from other training steps. First, labeling was split into an inner set and an outer set. Subsequent training was 
performed separately for both of these sets. For the cortical labels, a set of corresponding input prior probabil-
ity maps were constructed from the training data (and are also available and automatically downloaded, when 
needed, from https://​figsh​are.​com). Training occurred over multiple sessions where, initially, categorical cross 
entropy was used and then subsquently refined using a Dice loss function. Whole-brain training was performed 
on a brain-cropped template size of [96, 112, 96]. Inner label training was performed similarly to our brain 
extraction training where the number of layers at the base layer was reduced to eight. Training also occurred 
over multiple sessions where, initially, categorical cross entropy was used and then subsquently refined using 
a Dice loss function. Other hyperparameters can be directly inferred from explicit specification in the actual 
code. Training data was derived from application of joint label fusion17 during the course of our previous work19. 
When calling antspynet.desikan_killiany_tourville_labeling, inner labels are estimated 
first followed by the outer cortical labels.

Other softwares.  Several R62 packages were used in preparation of this manuscript including R 
Markdown33,63, 64, lme465 RStan29, ggplot266, and ggradar267. Other packages used include Apple Pages68, ITK-
SNAP69, LibreOffice70, and diagrams.net27.
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