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Abstract

Background: Fetal growth is predictive of health later in life. Both toxic and essential metals 

influence fetal growth, but most studies have focused on these elements individually and used birth 

weight as an indicator of fetal growth. The objective of the current study was to investigate the 

impact of a mixture of metals on fetal size in mid-pregnancy in a predominately lower income 

Hispanic pregnancy cohort in Los Angeles.

Methods: For our primary analysis, we focused on six elements that have previously been 

associated individually with fetal size, including arsenic (As), barium (Ba), cadmium (Cd), 

mercury (Hg), molybdenum (Mo), and tin (Sn), measured in maternal urine samples collected in 

early pregnancy (median: 12.4 weeks gestation). In an exploratory analysis, we additionally 

included cobalt (Co), nickel (Ni), antimony (Sb), and thallium (Tl). Using covariate-adjusted 

Bayesian Kernel Machine Regression (BKMR) as our main mixture modeling approach, we 

examined the impact of these metals on fetal biometry measures obtained between 18 and 22 

weeks gestation, with a focus on estimated fetal weight (EFW).

Results: BKMR identified Mo and Ba as the mixture components that contributed most to 

associations with EFW. Linear associations were observed for both metals. An increase in Mo 

from the 25th to 75th percentile was associated with a 0.114 (95% credible interval (CI): −0.019, 

0.247) SD higher EFW, equivalent to a 7.4 g difference. Similar associations were observed 

between Mo and the other fetal measures evaluated. In contrast, an increase in Ba from the 25th to 

75th percentile was associated with a −0.076 (95% CI: −0.217, 0.066) SD lower EFW, equivalent 

to a 4.9 g difference. Similar inverse associations were observed for Ba in relation to abdominal 

circumference and biparietal diameter. BKMR also identified a possible interaction between Ba 

and Mo in relation to head circumference, suggesting that the positive associations between Mo 

and this outcome may be attenuated at high levels of Ba, which was consistent with findings from 

linear regression (Pinteraction=0.03). In an exploratory analysis accounting for a larger mixture of 

metals, Mo and Ba consistently contributed most to associations with EFW. An inverse association 

was also identified between Sb and EFW.

Conclusions: Our results suggest that Mo may promote fetal growth, while Ba and Sb may 

reduce fetal growth, in this population.
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1. Introduction

Fetal growth is an important determinant of health later in life.1 In particular, reduced fetal 

growth has been associated with numerous adverse health outcomes, including increased 

risk for morbidity and mortality in infancy, cardiovascular disease and metabolic 

dysfunction, and cognitive deficits.2–4 Traditionally, fetal growth has been evaluated using 

birth weight (BW),5,6 an indicator of cumulative fetal growth that correlates most strongly 
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with growth in the third trimester.7 Yet, fetal growth in earlier stages of pregnancy can also 

impact postnatal physiology and may be differentially impacted by disturbances to the in 
utero environment.5,6,8,9

A growing number of studies have reported associations between maternal exposure to toxic 

metals and metalloids (hereafter, referred to as “metals” for simplicity) and reduced fetal 

growth.9–21 Protective and complex non-linear relationships have also been observed for 

certain essential elements and fetal growth.21–23 Although the majority of studies have 

focused on the impacts of individual metals, several recent studies have reported adverse 

impacts of metal mixtures, which are more representative of human exposures, on fetal 

growth.21,24–27 However, the majority of these studies focused on BW.24–27 Several recent 

studies have also begun investigating relationships between metals and fetal ultrasound 

measurements, but most of these studies evaluated elements individually using traditional 

regression approaches.9,19–21 Much less is known about the impacts of complex metal 

mixtures on fetal size, and this has been particularly understudied among lower income and 

minority populations, which may be more susceptible to multipollutant burdens.28,29

For the current study, we utilized fetal biometry measurements obtained during routine 

anatomy ultrasounds to investigate the impact of a complex mixture of metals on fetal size in 

mid-pregnancy in the Maternal and Developmental Risks from Environmental and Social 

Stressors (MADRES) study, a predominately lower income Hispanic pregnancy cohort in 

Los Angeles.30 Our objectives were to identify 1) toxic and essential elements that are 

associated with fetal size in mid-pregnancy after accounting for metal co-exposures, 2) 

potential inflection points for essential elements, and 3) possible synergistic and antagonistic 

interactions between metal pairs. We therefore used Bayesian Kernel Machine Regression 

(BKMR), a flexible mixture modeling approach that can rank the importance of correlated 

mixture components, investigate non-linear associations, and identify potential interactions 

between mixture components.31

2. Methods

2.1. Study Population

MADRES is an ongoing, prospective pregnancy cohort, which began enrolling participants 

in November 2015 and has been described previously.30 Briefly, participants are recruited 

from four prenatal care providers in Los Angeles, California, which include two community 

health clinics, one county hospital prenatal clinic, and one private obstetrics and gynecology 

practice. Most of the participating clinics serve predominately lower income Hispanic 

populations. Women are eligible to participate in MADRES if their pregnancy is at <30 

weeks gestation at the time of recruitment, they are ≥18 years of age, and they can speak 

English or Spanish fluently. Exclusion criteria include: 1) HIV positive status; 2) having a 

physical, mental, or cognitive disability that would prevent participation in the study or the 

ability to provide informed consent; 3) current incarceration; and 4) multiple gestation. 

Informed consent was obtained from each participant at study entry, and the study protocol 

was approved by the University of Southern California’s Institutional Review Board. Given 

the objectives of the study, analyses were restricted to participants who 1) enrolled prior to 

20 weeks gestation; 2) provided a urine sample at their first study visit, prior to urine metals 
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analysis (Fall 2019); and 3) provided a urine sample that was collected prior to a routine 

anatomy ultrasound scan falling between 18 and 22 weeks gestation. A total of 195 

participants met these criteria and had complete covariate information. Two of these 

participants were excluded from the current study because they had unusually low Mo 

concentrations. Characteristics of the remaining 193 participants were generally similar to 

all MADRES participants who enrolled prior to 20 weeks gestation and prior to Fall 2019 

when urinary metals assessment occurred (Table S1).

2.2. Urine Metals Analysis

Spot urine samples were collected by participants during their first study visit in a 90 mL 

sterile specimen container (VWR, catalog number: A11A2181). The median (range) 

gestational age (GA) at collection was 12.4 (6.4–21.6) weeks. Samples were transported on 

ice to the laboratory within one hour for processing. 1.5 mL aliquots were then stored at −80 

°C in sterile cryovials (VWR, catalog number: 89092–260).

Urine metals analysis was performed by NSF International in collaboration with the 

Children’s Health Exposure Analysis Resource (CHEAR). Metals were measured using 

inductively coupled plasma mass spectrometry (ICP-MS) based on the Centers for Disease 

Control method 3018.3, with modifications for the expanded metals panel and the Thermo 

Scientific iCAP RQ instrument (serial number RQ0029). The elements measured for this 

panel include: antimony (Sb), arsenic (As), barium (Ba), beryllium, cadmium (Cd), cesium, 

cobalt (Co), copper, chromium, mercury (Hg), manganese, molybdenum (Mo), nickel (Ni), 

lead, platinum, tin (Sn), thallium (Tl), tungsten, uranium, vanadium, and zinc. All quality 

control samples, blanks, and urine samples were diluted 10-fold in a diluent consisting of 

2% HNO3 solution containing the internal standards and gold. Standards were prepared in 

1% trace metal grade nitric acid and diluted 10-fold with a diluent consisting of 2% HNO3 

solution containing the internal standards to minimize any matrix effect. The rinse solution 

for the instrument was 1% trace metal grade nitric acid. The samples were analyzed in two 

analysis modes: 1) standard (default) for the majority of metals and 2) kinetic energy 

discrimination for vanadium, chromium, As, Cd, and Mo. %CVs were between 0.8% and 

7.0% for all elements. Five empty cryovials were also sent to NSF International for testing to 

evaluate possible metal contamination; 96% of all metal measures were below the limits of 

detection (LOD). The CHEAR Lab Hub reviewed all measures to ensure that they 

conformed to acceptable quality standards.

For the current study, we focused on six metals (As, Ba, Cd, Hg, Mo, Sn), which were 

selected because they met three criteria: 1) they were above the LOD for ≥60% of 

participants, 2) there is evidence that urine is an acceptable matrix for assessing their 

exposure,32–37 and 3) they have previously been associated with fetal ultrasound measures.
9,19–21 Beryllium, chromium, platinum, uranium, vanadium, and tungsten were excluded 

because they did not meet criterion 1 (above the LOD for ≥60% of participants), while 

cesium, copper, lead, manganese, and zinc were excluded because they did not meet 

criterion 2 (urine as an acceptable matrix). Co, Ni, Sb, and Tl were excluded from the 

primary analysis because they did not meet criterion 3 (prior associations with fetal 

biometry). However, in an exploratory analysis we investigated associations including these 
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four additional metals. Importantly, the As measure from the CHEAR panel is total As, 

which is comprised of many different As species and metabolites, including arsenobetaine 

(AsB), which is a non-toxic form of As derived from fish and seafood.38 We therefore 

replaced the total As measure from this panel with speciated urinary As data, described in 

more detail below. LOD ranges for metals retained from the CHEAR panel were: 0.121–

0.200 μg/L for Ba, 0.0656–0.1200 μg/L for Cd, 0.0606–0.1000 μg/L for Co, 0.0606–0.1000 

μg/L for Hg, 0.328–0.600 μg/L for Mo, 0.969–1.600 μg/L for Ni, 0.0485–0.0800 μg/L for 

Sb, 0.121–0.200 μg/L for Sn, and 0.0242–0.0400 μg/L for Tl. The number (%) of samples 

below the LOD for these 9 elements were as follows: Ba: 0 (0%), Cd: 57 (30.3%), Co: 4 

(2.2%), Hg: 3 (1.6%), Mo: 0 (0%), Ni: 20 (10.9%), Sb: 67 (36.4%), Sn: 30 (16.0%), Tl: 40 

(21.7%). Values below the LOD were replaced with the LOD/√2.

2.3. Speciated Urinary Arsenic

Speciated urinary As was measured by the Arizona Laboratory for Emerging Contaminants, 

using methods previously described by the Centers for Disease Control and Prevention.39 

Briefly, arsenite (AsIII), arsenate (AsV), monomethyl arsenic (MMA), dimethyl arsenic 

(DMA), and AsB were measured by High Performance Liquid Chromatography, using the 

Hamilton PRP-X100 column, coupled to ICP-MS. Working calibration standards were 

prepared daily for each As species at concentrations ranging from 0.2 to 10 μg/L. For quality 

control, a mid-range calibration check sample was prepared using 2 μg/L mixed species 

standard. For each batch of 30 samples, at least three samples were spiked with a low-to-mid 

range standard to monitor As recovery for each species. Evaluation of recovery was 

calculated by comparing the sum of the individual species to the reported total As measure. 

Measures were considered acceptable if they were within ±10% of the total As 

concentration. LODs across four analytical runs ranged from: 0.011 to 0.040 μg/L for AsIII, 

0.020 to 0.143 μg/L for AsV, 0.020 to 0.086 μg/L for MMA, and 0.014 to 0.169 μg/L for 

DMA. The number (%) of values below the LOD were 111 (59.0%) for AsIII, 79 (42.0%) for 

AsV, 44 (23.4%) for MMA, and 2 (1.1%) for DMA. Values below the LOD were set to the 

LOD/√2. Total speciated urinary arsenic, excluding AsB, was calculated by summing the 

inorganic As metabolites (AsIII + AsV), MMA, and DMA. This variable was used as the 

primary As measure for all statistical analyses.

2.4. Specific Gravity

Urine specific gravity (SG) was measured by a refractometer (Itago), and urinary metal 

concentrations were adjusted for SG to account for urine dilution in primary analyses, using 

the formula: Ac = A × [(SGmean−1)/(SG−1)], where Ac = the SG-adjusted metal 

concentration, SGmean = the mean SG value for the study sample, and SG = the SG value of 

the participant.40

2.5. Fetal Biometry Measures

Fetal biometry measurements, including estimated fetal weight (EFW), abdominal 

circumference (AC), head circumference (HC), biparietal diameter (BPD), and femur length 

(FL) were abstracted from maternal medical records. Analyses were restricted to fetal 

measurements obtained between 18 and 22 weeks gestation, as this is the recommended 

window for routine anatomic scans. If more than one ultrasound record was available for a 
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participant during this window, the ultrasound closest to 20 weeks was selected. However, in 

one case, the ultrasound closest to 20 weeks gestation preceded the participant’s urine 

collection. To ensure that all analyses were prospective, we selected a later ultrasound record 

for this participant from the 18–22 week window (21.6 weeks gestation) which occurred 

after her first visit urine sample had been collected (20.1 weeks gestation). The median 

(range) GA at ultrasound for the study sample was 20.4 (18.1–22.0) weeks. Distributions of 

each fetal measure were inspected using histograms, both on their original scale and after 

mean-centering and standard deviation scaling the measures, as was performed for statistical 

analyses. These distributions were relatively normal (Figure S1), and no extreme outliers 

were identified on either scale (p-value>0.05 for Rosner’s test41). To determine if the fetal 

measures were appropriate for their GA, they were compared with GA-specific fetal 

measures previously published for the Brigham and Women’s Hospital Standard Population.
42 The fetal measures were very similar across the two populations (Table S2).

2.6. Covariates

Questionnaires were verbally administered to participants during the first study visit in either 

English or Spanish, depending on the preferred language, to obtain information on pre-

pregnancy weight, race, ethnicity, birth country, smoking status during the pregnancy, 

education level, and prenatal vitamin use. Participants were also asked if they resided with a 

smoker during their pregnancy. Maternal standing height was measured twice by stadiometer 

(Perspectives Enterprises Model PE-AIM190 101). Maternal pre-pregnancy BMI was 

calculated using the self-reported pre-pregnancy weight and measured height values (kg/m2). 

Each participant’s age was determined using the date that she consented and her birth date. 

A combined variable indicating race by ethnicity and birthplace was created based on the 

participant’s self-reported race (white, Asian, black or African American, Native Hawaiian 

or other Pacific Islander, American Indian or Alaska Native, more than one race), ethnicity 

(Hispanic or non-Hispanic), and birth country (U.S. or other). This variable was collapsed 

into five categories: non-Hispanic white, non-Hispanic black, non-Hispanic other, Hispanic 

born in the U.S., and Hispanic born outside the U.S. and was compared with a variable that 

was further collapsed into three categories: Hispanic born in the U.S., Hispanic born outside 

the U.S., and non-Hispanic. A combined variable was also created for any tobacco smoke 

exposure during the pregnancy, which was based on self-reported maternal smoking or the 

participant reporting that she shared a residence with a smoker. Information on newborn sex 

was abstracted from medical records. If this information was missing from the maternal 

medical records, it was obtained from a questionnaire administered to the mothers 7–14 days 

after birth. Maternal hemoglobin and hematocrit measures were also abstracted from 

medical records for the pregnancy period. Using GA-specific cutoffs for these measures,43 

participants were classified as ever versus never being anemic prior to the fetal ultrasound 

date. The GA at the ultrasound and the GA at urine collection were calculated using the best 

estimate of GA at birth, which has been described previously.11

2.7. Statistical Analyses

Statistical analyses were conducted in R (version 3.6.2)44. A priori, we hypothesized that 

toxic (e.g., As, Ba, Cd, Hg, Sn) and essential (Mo) elements would act in opposing 

directions. We therefore used Bayesian Kernel Machine Regression (BKMR) for our 
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mixture approach, because it is a flexible method that does not constrain associations to a 

single direction.31 It can also rank the importance of correlated mixture components, 

accommodate non-linear associations between exposures and outcomes, and evaluate all 

possible synergistic and antagonistic relationships between mixture components without 

specifying these a priori. Using the “bkmr” R package,31 we chose the variable selection 

option and ran 200,000 Markov chain Monte Carlo iterations. The first half of iterations was 

used as burn-in. To reduce potential autocorrelation, we thinned the chains, selecting every 

10th iteration. Model convergence was inspected visually using trace plots.

For our primary analysis, we collectively evaluated the six selected urinary elements (As, 

Ba, Cd, Hg, Mo, Sn) in relation to each fetal measure, using the following model: Yi=h(Asi, 

Bai, Cdi, Hgi, Moi, Sni) + βTCi + εi, where h(·) represents the exposure-response surface 

estimated using the Gaussian kernel function, coefficients βT represent effect estimates for 

the Cth covariate for the ith individual, and εi represents the model residuals. Our primary 

outcome of interest was EFW. In secondary analyses, we additionally evaluated AC, FL, HC, 

and BPD. Fetal measures were mean-centered and standard deviation scaled prior to their 

inclusion in BKMR. In an exploratory analysis, we additionally included Co, Ni, Sb, and Tl 

in the kernel function for the EFW model.

Metals were right-skewed and therefore log2-transformed. Extreme metal outliers were 

identified on the log-scale using Rosner’s test41 and were excluded from the primary model 

(N=1 for As, N=4 for Sn) and also from the exploratory analysis (N=1 for As, N=1 for Co, 

N=1 for Ni, N=2 for Sb, N=4 for Sn). Hypothesized confounders and precision variables 

were identified using directed acyclic graphs45 (Figure S2). These included GA at 

ultrasound, recruitment site, maternal age, pre-pregnancy BMI, maternal race by ethnicity 

and birthplace, maternal education, infant sex, maternal anemia, prenatal vitamin use prior to 

and during the pregnancy, parity, in utero tobacco smoke exposure (maternal or other), and 

urinary AsB, a biomarker of fish and seafood consumption.46 In preliminary analyses, using 

generalized additive models, associations were visually similar with and without additional 

adjustment for maternal anemia, parity, prenatal vitamin use, and in utero tobacco smoke 

exposure. These covariates were therefore excluded from the final BKMR models. 

Furthermore, results were similar when the five-category maternal race by ethnicity and 

birthplace variable was collapsed into a three-category ethnicity by birthplace variable. The 

final BKMR models therefore included this collapsed variable. Because urinary AsB was 

right-skewed, it was log2-transformed to reduce the influence of extreme values. All metals 

and continuous covariates were mean-centered and scaled prior to being entered into the 

BKMR.

In a sensitivity analysis, we re-ran the BKMR model replacing the abstracted EFW measure 

with an EFW measure that we calculated based on the abstracted HC, AC, and FL measures 

using the Hadlock Formula 3.47 We also ran a sensitivity analysis for the BKMR model to 

address residual confounding from fish/seafood consumption by replacing the total speciated 

As measure with a calibrated As measure. We created this calibrated measure using residual 

regression to remove variance in the individual As species (iAs, MMA, and DMA) explained 

by AsB and then summing the residuals from each model to create a new biomarker 

reflecting As exposure not derived from fish/seafood intake, as described previously.48
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The default BKMR prior specifications were used for the primary model (EFW)31. The 

default specifications were also used for AC, HC, and BPD. However, for FL there was 

evidence of overfitting for some of the metals when using the default specifications. We 

therefore specified a higher degree of smoothness (b=200) for this outcome. In sensitivity 

analyses, we also investigated the influence of prior specification for the primary model 

(EFW) by fitting the BKMR with two alternative prior assumptions, which allowed for 

different degrees of smoothness (b=50 and b=1000, compared with the default b=100). 

Additionally, results from the primary model (N=188) were compared with a model that 

included the extreme metal outliers for As and Sn (N=193).

Metals that ranked highly based on their BKMR posterior inclusion probabilities (PIPs) 

were further investigated using traditional linear regression models, adjusting for the same 

set of covariates. We also used linear regression models to determine if the main findings 

identified by BKMR were robust after 1) additionally adjusting for the GA at urine 

collection, 2) adjusting for SG as a covariate rather than directly correcting the urinary metal 

concentrations for SG, and 3) using machine values for metal concentrations falling below 

the LOD rather than setting these values to the LOD/√2. Additionally, we further 

investigated pairwise interactions identified by BKMR, which were confirmed by linear 

regression models, using a third method (NLinteraction). Similar to BKMR, NLinteraction 

is a flexible mixture modeling approach. However, an advantage of this novel method is that 

it can generate PIPs for interactions between mixture components in addition to main effect 

PIPs.49 To conduct this analysis, we used the “NLinteraction” R package49, using the default 

threshold and prior specifications. We ran 200,000 MCMC iterations (half of which were 

removed for burn-in). Unlike BKMR, which uses a Gaussian kernel, the NLinteraction 

approach models exposure-response relationships using natural cubic splines. We selected 1 

degree of freedom for these splines based on the Watanabe-Akaike information criterion. 

Importantly, the NLinteraction results are sensitive to a threshold parameter (τh), which 

influences the likelihood of an exposure being included in the function. We therefore 

compared results after varying this parameter from the default value of 0.10 to a smaller 

(more conservative) value of 0.05 and to a larger (less conservative) value of 0.25.

3. Results

3.1. Participant Characteristics and Urinary Metal Concentrations

Participant characteristics are shown in Table 1. Participants were between 18–45 years of 

age, with a median pre-pregnancy BMI of 27.1 kg/m2. The majority (76.6%) of participants 

were Hispanic, and 41.5% of participants were Hispanic and born outside of the U.S. 

Approximately one quarter of the participants (26.6%) did not complete high school. 

Urinary AsB concentrations ranged from <LOD to 483.7 μg/L with a median of 0.7 μg/L. 

The EFW measures abstracted from the medical records were highly correlated with the 

EFW measures that we calculated using the Hadlock 3 formula (rho>0.99, P<2.2 × 10−16) 

(Figure S3). Maternal urinary metal concentrations are shown in Table 2, and Pearson 

correlations between urinary metals are shown in Figure 1. Correlations between metal pairs 

were weak to moderate, ranging from ±0.03 to ±0.36.
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3.2. BKMR Results

PIPs for each metal are shown for the primary EFW model in Table 3. Of the six metals 

evaluated, Mo ranked most highly as a predictor of EFW followed by Ba. A positive linear 

association was observed between Mo and EFW (Figure 2). Setting other metals to their 

median, an increase in Mo from the 25th to 75th percentile was associated with a 0.114 

(95% CI: −0.019, 0.247) SD higher EFW, equivalent to an approximately 7.4 g higher EFW. 

In contrast, an inverse linear association was observed between Ba and EFW (Figure 2). 

Setting other metals to their median, an increase in Ba from the 25th to 75th percentile was 

associated with a −0.076 (95% CI: −0.217, 0.066) SD lower EFW, equivalent to an 

approximately 4.9 g lower EFW. Results were similar for the EFW measure calculated using 

the Hadlock 3 formula (Table S3, Figure S4, Figure S5) and when using the calibrated As 

measure derived using residual regression to remove variance from AsB (Table S4, Figure 

S6). Results were also similar after evaluating alternative prior assumptions for the BKMR, 

allowing for different degrees of smoothness, and when we included the five extreme metal 

outliers (data not shown).

Mo consistently contributed most to the associations with other fetal measures evaluated 

(AC, FL, HC, BPD), based on PIPs, while Ba contributed most to associations with AC and 

BPD only (Table S5, Figure S7). Although Hg did not rank highly as a predictor of EFW, it 

ranked highly as a predictor of reduced HC. Additionally, while Cd did not rank highly as a 

predictor of EFW, it ranked highly as a predictor of increased FL (Table S5, Figure S7). As 

and Sn did not rank highly for any of the fetal measures (Table S5).

Examining bivariate relationships between the mixture components using BKMR, a possible 

pairwise interaction was identified visually between Mo and Ba in relation to EFW, such that 

the positive association between Mo and EFW appeared to be attenuated at higher levels of 

Ba (Figure 3). A similar interaction was also identified visually between Mo and Ba in 

relation to HC (Figure S8).

3.3. Confirmatory and Sensitivity Analyses

Given that Mo and Ba were identified as the mixture components most strongly associated 

with EFW, we subsequently examined the associations between each of these metals and 

EFW using traditional linear regression models and investigated whether the results were 

robust to a series of sensitivity analyses. Similar to the BKMR results, a positive association 

was identified between Mo and EFW and a negative association was identified between Ba 

and EFW (Table S6). An interquartile range increase in Mo was associated with a 0.118 

(95% CI: 0.017, 0.219; P=0.02) SD higher EFW, equivalent to a 7.7 g difference, and an 

interquartile range increase in Ba was associated with a −0.106 (95% CI: −0.226, 0.014; 

P=0.08) SD lower EFW, equivalent to a 6.9 g difference (Table S6). Results were similar 

after 1) additionally adjusting for the GA at urine collection, 2) including SG as a covariate 

in the model rather than correcting the metal concentrations for SG, and 3) using the 

machine values for metal concentrations falling below the LOD.

The pairwise interaction identified visually between Ba and Mo by BKMR for EFW and HC 

was also evident for HC using traditional linear regression (Pinteraction=0.03) but was not 
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statistically significant for EFW (Pinteraction=0.22). The association between Mo and HC was 

strongest and only statistically significant (P=0.02) among those in the lowest tertile for Ba 

(Table S7); an interquartile range change in Mo was associated with a 0.30 (95% CI: 0.05, 

0.56) SD difference in HC (Table S6). For HC, the interaction between Mo and Ba also 

ranked highest of all possible pairwise interactions when using the NLinteraction approach 

(Table S8). This ranking was stable after varying the threshold parameter τh from the default 

of 0.10 to a less conservative value of 0.25 (Table S9) and also to a more conservative value 

of 0.05 (Tables S10).

3.4 Exploratory Analysis

In an exploratory BKMR analysis, which additionally included Co, Ni, Sb, and Tl in the 

kernel function, Mo and Ba consistently ranked highest in relative importance for EFW 

(Table 3). Among the four new metals included in this analysis, Sb ranked highest for its 

association with EFW. Although this metalloid only ranked fourth overall, an inverse and 

linear association was observed with EFW (Figure 4). Associations for Co, Ni, and Tl 

appeared null. The bivariate relationships for Ba and Mo were also consistent after 

accounting for these additional metal co-exposures (Figures S9 and S10), and potential 

interactions were identified visually between each of these metals and Sb (Figure S9).

4. Discussion

Using a novel mixture modeling method, we investigated the impact of a complex mixture of 

metals on fetal size in mid-pregnancy. Our objectives were to identify 1) toxic and essential 

elements that are associated with fetal size in mid-pregnancy, accounting for metal co-

exposures; 2) potential inflection points for essential elements; and 3) possible synergistic 

and antagonistic interactions between metal pairs. In our primary BKMR analysis, we 

identified Mo and Ba as the mixture components most strongly associated with EFW, 

accounting for co-exposure to As, Cd, Hg, and Sn. We did not observe strong evidence of 

non-linearity for any of the metal-fetal biometry associations. Mo was positively associated 

with EFW, and similar associations were observed for AC, FL, BPD, and HC. In contrast, 

Ba was inversely associated with EFW, and similar associations were observed for AC and 

BPD. A possible interaction was also identified visually between Ba and Mo in relation to 

EFW and HC when using BKMR, suggesting that the positive association between Mo and 

these outcomes may be attenuated at high levels of Ba. For HC, the interaction between this 

metal pair was also statistically significant in a linear regression model and ranked highest of 

all possible pairwise interactions when using a novel mixture modeling approach 

(NLinteraction). In an exploratory analysis which investigated a larger set of metals, findings 

for Mo and Ba were robust, and we additionally identified an inverse association between Sb 

and EFW.

Few studies have examined associations between Mo and fetal biometry measures. However, 

a recent study in the LIFECODES birth cohort reported a positive association between 

urinary Mo and FL,21 consistent with our results. This study similarly evaluated Mo as part 

of a complex metal mixture. However, they used principal component analysis, which unlike 

BKMR cannot explicitly investigate interactions between mixture components. Bivariate 
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relationships for metal pairs were therefore not reported. A pilot study in the Michigan 

Mother-Infant Pairs (MMIP) study has also examined urinary Mo in relation to fetal 

biometry measures but using traditional regression approaches. While positive associations 

were observed between Mo and most of the fetal measures evaluated, these associations 

were not statistically significant, possibly due to the small sample size (N=56).20 The 

positive associations observed between Mo and fetal size are consistent with Mo’s role as an 

essential element.50 Although the major sources of Mo exposure in MADRES are currently 

unknown, diet is the main contributor for most populations.36,50 Legumes are a particularly 

rich source of this element.36 However, a recent study also identified chili pepper 

consumption as an important predictor of urinary Mo among pregnant women in Mexico.51 

Mo exposure can also occur from anthropogenic sources, such as fossil fuel combustion, and 

there is evidence that Mo may be toxic at high concentrations.36,50 However, we did not 

observe evidence of this in MADRES, as we did not identify any inflection points for this 

metal. The positive associations between Mo and fetal size were linear across the full range 

of exposures, despite Mo levels being higher than concentrations reported for pregnant 

women in the National Health and Nutrition Examination Survey (NHANES) and other 

pregnancy cohorts in the U.S.20,21,52 Importantly, the magnitude of the BKMR effect 

estimate for Mo and EFW (a 7.4 g difference for an increase from 25th to 75th percentile in 

Mo) was very similar to the linear regression effect estimate (a 7.7 g difference for an 

interquartile range change in Mo), indicating minimal confounding from metal co-exposures 

for this particular association.

In contrast, the BKMR effect estimate for Ba and EFW (a 4.9 g lower EFW for an increase 

from 25th to 75th percentile in Ba) was smaller in magnitude than that from linear 

regression (a 6.9 g lower EFW for an interquartile range increase in Ba). This suggests that 

BKMR was better able to account for potential confounding by metal co-exposures when 

estimating associations between Ba and fetal size. The health effects of Ba at 

environmentally relevant exposures have been largely understudied.53 To our knowledge, 

only two studies have investigated relationships between Ba exposure and fetal biometry.20 

Similar to our findings, the MMIP pilot study reported inverse associations between urinary 

Ba and multiple fetal biometry measures.20 However, only the Ba-FL association was found 

to be statistically significant,20 whereas FL was one of the fetal measures for which Ba did 

not rank highly as a predictor in MADRES. Given that urinary Ba concentrations were 

similar for these two populations (geometric mean: 5 μg/L in the MMIP, compared with 4 

μg/L in MADRES), this discrepancy is likely due to other population differences.20 The 

LIFECODES study also investigated urinary Ba in relation to fetal biometry, but results were 

null for all measures.21 Prior studies have also investigated Ba in relation to birth size, but 

findings have been mixed.16,54 Additional studies are therefore needed to better understand 

the potential impact of this understudied metal on fetal growth. Importantly, the urinary Ba 

concentrations in MADRES were higher (geometric mean (95% CI): 3.5 (3.0–4.1) μg/L) 

than concentrations reported for pregnant women in NHANES (geometric mean (95% CI): 

2.0 (1.7–2.4) μg/L).52 Although the main sources of Ba exposure are currently unknown for 

MADRES, possible sources to investigate in future studies include traffic-related pollution 

and pollution related to oil drilling.53
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Urinary Hg concentrations were also higher in MADRES (geometric mean (95% CI): 0.84 

(0.71–0.98) μg/L) compared with levels reported for pregnant women in NHANES 

(geometric mean (95% CI): 0.49 (0.41–0.58) μg/L). Although Hg did not rank highly as a 

predictor of EFW, it did rank highly as a predictor of HC and was inversely associated with 

this outcome. We are aware of two previous studies which also examined urinary Hg in 

relation to fetal biometry: the LIFECODES birth cohort and the MMIP pilot study.20,21 The 

LIFECODES birth cohort similarly observed an inverse association between urinary Hg and 

HC. However, associations were null in the MMIP pilot study, potentially due to lower 

urinary Hg concentrations in this population (median: 0.06 μg/L, compared with a median of 

0.91 μg/L in MADRES and a median of 0.51 μg/L in LIFECODES). Results for Cd were 

also generally null in MADRES, although this metal did rank highly as a contributor to the 

association with FL. A positive and linear association was observed between Cd and FL. 

While this finding is surprising, given the established toxicity of Cd,33 it is consistent with a 

previous study of a more highly exposed population in Bangladesh,9 which reported an 

inverse u-shaped relationship between Cd and fetal size. They identified an inflection point 

at 1.5 ug/L,9 which exceeds the highest urinary Cd concentration observed in MADRES 

(0.87 ug/L). One potential explanation for the positive associations observed at low levels of 

exposure may be unmeasured confounding from vegetable intake, which is the predominant 

source of Cd exposure among non-smokers.33

Although prior evidence suggests that Sn and As may adversely affect fetal growth,
10,11,1819,21 results for these metals were consistently null in MADRES. For Sn, the low 

concentrations in MADRES may be one explanation, as levels were comparable with 

concentrations reported for adult participants in NHANES.55 In contrast, higher Sn 

concentrations were observed in LIFECODES (median: 0.62 μg/L, compared with 0.47 μg/L 

in MADRES), which reported an inverse association between this metal and fetal HC.21 

Although speciated urinary As concentrations were also relatively low among MADRES 

participants, several studies, including the LIFECODES birth cohort, the MMIP, and the 

New Hampshire Birth Cohort have reported inverse associations between urinary As and 

fetal size, despite As concentrations being in the low-to-moderate range.19–21 An alternative 

explanation for the null As results may be confounding from diet. Fish/seafood consumption 

is a particularly important potential confounder, as some As species may reflect metabolized 

arsenosugars or arsenolipids derived from fish/seafood in addition to metabolized iAs.56 

However, most MADRES participants do not report consuming fish/seafood regularly,57 

which is reflected by the relatively low urinary AsB concentrations in this population 

(median: 0.7 μg/L). Models were also adjusted for AsB to account for recent fish/seafood 

consumption. Furthermore, results were similarly null after using residual regression to 

remove any variance in the speciated urinary As measure that could be explained by AsB.48 

Confounding from fish/seafood is therefore unlikely to explain these null results. 

Nevertheless, we cannot rule out the possibility of confounding from another dietary source, 

such as rice.58

Importantly, the associations for Mo and Ba were robust in an exploratory analysis, which 

included four additional metals (Co, Ni, Sb, and Tl) in the BKMR model. While results for 

Co, Ni, and Tl were null, a potential inverse association was identified between Sb and EFW. 

Urinary Sb concentrations in MADRES were comparable (geometric mean (95% CI): 0.072 
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(0.066–0.080) μg/L) to concentrations reported for pregnant women in NHANES (geometric 

mean (95% CI): 0.079 (0.070–0.089) μg/L).52 Thus, even at relatively low levels of 

exposure, we observed evidence that this metalloid may adversely impact fetal growth. Very 

little is known about the impacts of Sb on fetal growth, especially in early or mid-pregnancy, 

and associations with birth anthropometry have been mixed.18,59 For example, a small study 

in Japan (N=78), which reported very low urinary Sb concentrations (geometric mean < 

LOD), did not find Sb to be a significant predictor of birth size.18 However, a larger study 

(N=471) in the Canary Islands reported an association between cord blood Sb and low birth 

weight.59 While the major sources of Sb exposure are currently unknown for MADRES, 

traffic-related air pollution has been identified as a possible source of exposure for pregnant 

women in urban areas,60 which merits future investigation for this population.

The current study has many strengths, including the prospective design; the measurement of 

a multi-metals panel to evaluate complex metal mixture exposures in early pregnancy; 

focusing on an understudied population at higher risk for multipollutant burdens;28,29 the 

use of a mixture modeling approach that simultaneously accounts for non-linear 

relationships and synergistic and antagonistic relationships;31 and the application of a novel 

method that formally investigates interactions between mixture components.49 This was also 

among the first studies to examine the impact of a complex metal mixture on fetal size in 

mid-pregnancy. Most prior studies of metals and fetal growth have focused on BW and 

evaluated metals individually. Understanding metal impacts on fetal size in mid-pregnancy is 

important, as growing evidence suggests that certain in utero exposures may differentially 

impact fetal growth in early versus late pregnancy.5,8 Thus, studies focusing on BW may not 

capture important effects of environmental exposures that occur in earlier stages of 

pregnancy, which can also influence subsequent health6. Investigating metals in the context 

of a mixture is also critical, as humans are exposed simultaneously to multiple metals, which 

are often correlated and may be interact in complex ways to impact health.

Our study also had several important limitations, including the small sample size, which 

precluded our ability to evaluate possible differences by fetal sex or potential mediators, 

such as hypertensive disorders, which merit investigation in future studies. The current 

findings may have also been impacted by unmeasured or residual confounding, particularly 

from diet, as detailed dietary information was not obtained for MADRES participants in 

early pregnancy. Finally, it is important to note that fetal biometry measures are susceptible 

to measurement error.61 Although we did adjust for recruitment site to account for possible 

clinic-associated differences in fetal measurements, we were unable to adjust for differences 

in the ultrasound machine used, as this information was not available in the medical records. 

We also lacked information on the technician who performed the ultrasound. However, a 

previous study reported high inter-observer reproducibility for fetal biometry measurements.
61

Identifying modifiable factors that influence fetal growth is essential, as reduced fetal 

growth has been associated with a broad range of health consequences later in life.1 Of the 

six elements that we focused on in the current study, urinary Mo was the most predictive of 

fetal size after accounting for metal co-exposures. Our results therefore suggest that Mo may 

be important for promoting fetal growth in mid-pregnancy. In contrast, Ba was predictive of 
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reduced fetal size in mid-pregnancy after accounting for metal co-exposures. We also 

identified a possible antagonistic relationship between Ba and Mo which merits additional 

investigation. Although the health consequences of Ba exposure have been largely 

understudied, our results suggest that this metal may adversely impact fetal growth at 

environmentally relevant concentrations. In an exploratory analysis, we also identified Sb as 

a potential element of concern due to its inverse association with EFW. These findings 

highlight the need for future studies, focused on identifying major sources of Ba and Sb 

exposures for this population.
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Refer to Web version on PubMed Central for supplementary material.
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Abbreviations:

As arsenic

AsIII arsenite

AsV arsenate

AsB arsenobetaine

AC abdominal circumference

Ba barium

BKMR Bayesian Kernel Machine Regression

BPD biparietal diameter

BW birth weight

Cd cadmium

Co cobalt

CHEAR Children’s Health Exposure Analysis Resource
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DMA dimethyl arsenicals

EFW estimated fetal weight

FL femur length

GA gestational age

HC head circumference

Hg mercury

ICP-MS inductively coupled plasma mass spectrometry

LOD limit of detection

MADRES Maternal and Developmental Risks from Environmental and Social 

Stressors

MMA monomethyl arsenicals

MMIP Michigan Mother-Infant Pairs

Mo molybdenum

Ni nickel

Pb lead

PIP posterior inclusion probability

Sb antimony

SG specific gravity

Sn tin

Tl thallium
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Highlights:

• Molybdenum was associated with a larger fetal size in mid-pregnancy

• Barium was associated with a smaller fetal size in mid-pregnancy

• A potential interaction was identified between molybdenum and barium

• In exploratory analyses, antimony was inversely associated with fetal size
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Figure 1. 
Pearson Correlations between Urinary Metals included in Primary Analysis (N=188). 

Stronger correlations are indicated by darker shades and larger circles. Positive correlations 

are indicated in blue shades and negative correlations are indicated in red shades. *p-value < 

0.05. Metals were log2-transformed, mean-centered, and standard deviation scaled. 

Abbreviations Used: As, arsenic; Ba, barium; Cd, cadmium; Hg, mercury; Mo, 

molybdenum; Sn, tin.
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Figure 2. 
BKMR Univariate Exposure–Response Functions for Primary Analysis of EFW (N=188). 

Associations between each metal and EFW (with corresponding 95% credible intervals) are 

shown setting all other metals to their median, adjusting for GA at ultrasound, recruitment 

site, maternal age, pre-pregnancy BMI, maternal ethnicity by birthplace, maternal education, 

infant sex, and urinary arsenobetaine. Urinary metal and arsenobetaine concentrations were 

log2-transformed. Metals, EFW, and continuous covariates were also mean-centered and 

standard deviation scaled. Abbreviations Used: As, arsenic; Ba, barium; Cd, cadmium; EFW, 

estimated fetal weight; Hg, mercury; Mo, molybdenum; Sn, tin.
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Figure 3. 
BKMR Bivariate Exposure–Response Functions for Primary Analysis of EFW (N=188). 

Associations between each metal (columns) and EFW are shown setting a second metal 

(rows) to its 25th, 50th, and 75th percentile and all other elements to their median, adjusting 

for GA at ultrasound, recruitment site, maternal age, pre-pregnancy BMI, maternal ethnicity 

by birthplace, maternal education, infant sex, and urinary arsenobetaine. Urinary metal and 

arsenobetaine concentrations were log2-transformed. Metals, EFW, and continuous 

covariates were also mean-centered and standard deviation scaled. Abbreviations Used: As, 

arsenic; Ba, barium; Cd, cadmium; EFW, estimated fetal weight; Hg, mercury; Mo, 

molybdenum; Sn, tin.
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Figure 4. 
BKMR Univariate Exposure–Response Functions for Exploratory Analysis of EFW 

(N=184). Associations between each metal and EFW (with corresponding 95% credible 

intervals) are shown setting all other metals to their median, adjusting for GA at ultrasound, 

recruitment site, maternal age, pre-pregnancy BMI, maternal ethnicity by birthplace, 

maternal education, infant sex, and urinary arsenobetaine. Urinary metal and arsenobetaine 

concentrations were log2-transformed. Metals, EFW, and continuous covariates were also 

mean-centered and standard deviation scaled. Abbreviations Used: As, arsenic; Ba, barium; 

Cd, cadmium; Co, cobalt; EFW, estimated fetal weight; Hg, mercury; Mo, molybdenum; Ni, 

nickel; Sb, antimony; Sn, tin; Tl, thallium
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Table 1.

Participant Characteristics (N=188)

Characteristic Median (Range) or N (%)

Maternal Age, years 29 (18–45)

Maternal Pre-Pregnancy BMI, kg/m2 27.1 (15.7–53.6)

Estimated Fetal Weight, g 375 (231–570)

Abdominal Circumference, cm 15.6 (13.0–18.3)

Femur Length, cm 3.4 (2.6–4.1)

Biparietal Diameter, cm 4.8 (3.8–5.7)

Head Circumference, cm 17.9 (14.8–22.0)

Gestational Age at Ultrasound, weeks 20.4 (18.1–22.0)

Maternal Urinary AsB, μg/L 0.7 (<LOD-483.7)

Recruitment Site

 Clinic Site A 42 (22.3)

 Clinic Site B 112 (59.6)

 Clinic Site C 26 (13.8)

 Clinic Site D 8 (4.3)

Maternal Ethnicity by Birth Place

 Non-Hispanic 44 (23.4)

 Hispanic Born in the U.S. 66 (35.1)

 Hispanic Born Outside the U.S. 78 (41.5)

Maternal Education

 Did Not Complete High School 50 (26.6)

 Completed High School 48 (25.5)

 Completed Some College or Technical School 51 (27.1)

 Completed College 39 (20.7)

Maternal Parity

 Primiparous 59 (31.4)

 Multiparous 129 (68.6)

Infant Sex

 Male 100 (53.2)

 Female 88 (46.8)

In Utero Tobacco Smoke Exposure

 Any 16 (8.5)

 None 172 (91.5)
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Table 3.

EFW PIPs
a

Primary Analysis Exploratory Analysis

Metal PIP PIP

As 0.362 0.247

Ba 0.512 0.413

Cd 0.437 0.328

Hg 0.358 0.255

Mo 0.631 0.485

Sn 0.334 0.221

Co 0.232

Ni 0.247

Sb 0.287

Tl 0.230

a
PIPs were estimated using Bayesian Kernel Machine Regression. Models were adjusted for GA at ultrasound, recruitment site, maternal age, pre-

pregnancy BMI, maternal ethnicity by birthplace, maternal education, infant sex, and urinary arsenobetaine. Urinary metal and arsenobetaine 
concentrations were log2-transformed. Metals, EFW, and continuous covariates were also mean-centered and scaled. The top two ranking metals 

are bolded.

Abbreviations used: As, arsenic;Ba, barium; Cd, cadmium; Co, cobalt; EFW, estimated fetal weight; Hg, mercury; Mo, molybdenum; Ni, nickel; 
PIP, posterior inclusion probability; Sb, antimony; Sn, tin; Tl, thallium

Environ Res. Author manuscript; available in PMC 2022 May 01.


	Abstract
	Introduction
	Methods
	Study Population
	Urine Metals Analysis
	Speciated Urinary Arsenic
	Specific Gravity
	Fetal Biometry Measures
	Covariates
	Statistical Analyses

	Results
	Participant Characteristics and Urinary Metal Concentrations
	BKMR Results
	Confirmatory and Sensitivity Analyses
	Exploratory Analysis

	Discussion
	References
	Figure 1.
	Figure 2.
	Figure 3.
	Figure 4.
	Table 1.
	Table 2.
	Table 3.

