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Abstract Stroke exerts a massive burden on the US
health and economy. Place-based evidence is in-
creasingly recognized as a critical part of stroke
management, but identifying the key determinants
of neighborhood stroke prevalence and the underly-
ing effect mechanisms is a topic that has been treat-
ed sparingly in the literature. We aim to fill in the
research gaps with a study focusing on urban health.

We develop and apply analytical approaches to ad-
dress two challenges. First, domain expertise on
drivers of neighborhood-level stroke outcomes is
limited. Second, commonly used linear regression
methods may provide incomplete and biased conclu-
sions. We created a new neighborhood health data
set at census tract level by pooling information from
multiple sources. We developed and applied a ma-
chine learning–based quantile regression method to
uncover crucial neighborhood characteristics for
neighborhood stroke outcomes among vulnerable
neighborhoods burdened with high prevalence of
stroke. Neighborhoods with a larger share of non-
Hispanic blacks, older adults, or people with insuf-
ficient sleep tended to have a higher prevalence of
stroke, whereas neighborhoods with a higher socio-
economic status in terms of income and education
had a lower prevalence of stroke. The effects of five
major determinants varied geographically and were
significantly stronger among neighborhoods with
high prevalence of stroke. Highly flexible machine
learning identifies true drivers of neighborhood car-
diovascular health outcomes from wide-ranging in-
formation in an agnostic and reproducible way. The
identified major determinants and the effect mecha-
nisms can provide important avenues for prioritizing
and allocating resources to develop optimal
community-level interventions for stroke prevention.

Keywords Prevention . Cardiovascular health .

Neighborhood .Machine learning . Quantile regression

J Urban Health (2021) 98:259–270
https://doi.org/10.1007/s11524-020-00478-y

L. Hu (*) : J. Ji :Y. Li : B. Liu
Department of Population Health Science and Policy, Icahn
School of Medicine at Mount Sinai, 1425 Madison Avenue, New
York, NY 10029, USA
e-mail: liangyuan.hu@mountsinai.org

J. Ji
e-mail: jiayi.ji@mountsinai.org

Y. Li
e-mail: yan.li1@mountsinai.org

B. Liu
e-mail: bian.liu@mountsinai.org

L. Hu
Institute for Health Care Delivery Science, Icahn School of
Medicine at Mount Sinai, New York, NY, USA

Y. Li
Department of Obstetrics, Gynecology, and Reproductive
Science, Icahn School of Medicine at Mount Sinai, New York,
NY, USA

Y. Zhang
Division of General Medicine, Columbia University, New York,
NY, USA

http://crossmark.crossref.org/dialog/?doi=10.1007/s11524-020-00478-y&domain=pdf
http://orcid.org/0000-0002-4067-892X


Background

Stroke is the fifth leading cause of death in the USA and is
a major cause of serious disability for adults [1]. The
prevalence of stroke is approximately 3%, accounting
for one of every 20 deaths.With an estimated $45.5 billion
in direct and indirect costs, stroke is a chronic disease
exerting a massive burden on the US health and economy.
Considerable research has been conducted on the risk
factors for stroke at the individual level [2–4]. These
studies have demonstrated accumulative scientific evi-
dence showing that stroke is associated with modifiable
risk factors, such as high blood pressure, obesity, and high
cholesterol, and health behavioral risk factors, such as
smoking, sleep deprivation, and sedentary lifestyle [5–8].
There are also remarkable disparities, with higher stroke
incidence and prevalence found among older population,
Blacks, and those with low socioeconomic status [9].

In comparison, few studies have examined the mech-
anisms between neighborhood characteristics and
neighborhood-level prevalence of stroke, despite the
growing awareness that individuals’ health is closely
related to the neighborhood environment they live in
[10, 11]. The connections between place and health can
be seen in the apparent clustering of high prevalence of
stroke in the Stroke Belt states and in certain census
tracts across major US cities [12, 13]. However, there is
an insufficient understanding of what and how neigh-
borhood characteristics drive the neighborhood-level
prevalence of stroke. Identifying critical predictors is
important as it provides an opportunity for policymakers
to plan tailored community-based interventions, which
have been shown to be more effective and cost-effective
in reducing the burden of cardiovascular disease and
curbing health care costs compared with individual-
based interventions [14].

This study aims to contribute to neighborhood car-
diovascular health research. We address two primary
challenges. First, in public health research, domain ex-
pertise is frequently used for variable selection. Howev-
er, subject matter expertise on key drivers of
neighborhood-level cardiovascular health outcomes
and their relative importance is limited. In practice,
variable selection is often carried out with certain degree
of arbitrariness (e.g., tests based on statistical signifi-
cance level, the order in which variables are entered into
a model, the choice of a statistical model). In addition,
the relative importance of each variable in relation to the
outcome is often unclear.

Second, commonly used linear regression (LR)
methods for determining the association between expo-
sures and an outcome assess how the mean of the
conditional distribution of the outcome varies with ex-
posures. However, the mean of the neighborhood-level
prevalence of stroke may be a poor indicator of central
tendency and conveys limited information about how
prevalence of stroke varies across different neighbor-
hoods. The distribution of the neighborhood-level prev-
alence of stroke is skewed; see Fig. 1. The effect of a
factor may be different across quantiles. Consequently,
using LR methods to estimate only the effects at the
mean level may result in incomplete and biased conclu-
sion about the effect.

Research is needed to understand the most important
links between neighborhood-level characteristics and a
high prevalence of stroke at the neighborhood level, as
such knowledge would aid in prioritizing and deploying
prevention interventions for the affected communities.
Focusing on these vulnerable communities requires an
analysis of the tail of a distribution, e.g., 90th percentile
of the distribution of the prevalence of stroke as it
signals “troubled” neighborhoods.

Quantile regression (QR) methods are well suited to
estimate how specified quantiles or percentiles of the
distribution of the outcome variable varywith covariates
and is robust against outliers and is more informative for
a skewed distribution than mean-based regression [15,
16]. In this article, we demonstrate the value of a highly

Fig. 1 Distribution of the neighborhood-level prevalence of
stroke is right skewed. Skewness = 1.5 and kurtosis = 6.0
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flexible machine learning–based quantile regression
method in studying neighborhood stroke burden.

We first created a large-scale neighborhood health
data by pooling information from multiple sources and
considered 24 factors. These factors have been linked to
cardiovascular health outcomes at the individual patient
level and can be grouped into four major domains,
unhea l thy behaviors , prevent ion measures ,
sociodemographic indicators, and environmental mea-
sures [5, 6, 8, 9]. We then exploited quantile regression
forests (QRFs)—a machine learning modeling
technique—to rank the relative importance of the poten-
tial predictors and proposed and implemented an algo-
rithm to identify a set of major determinants for the
distribution of neighborhood-level prevalence of stroke.
We further compared the performance of our machine
learning method to the performance of regression ap-
proaches commonly used in practice. Finally, we quan-
tified the effects of the identified major determinants on
stroke prevalence in vulnerable neighborhoods where
the stroke prevalence ranked in the 90th percentile and
assessed the bias from mean-based analyses.

Results from this study will provide insights into how
to prioritize and incorporate the fabric of neighborhood
health and sociodemographic environment into stroke-
prevention strategies for communities heavily burdened
with stroke.

Methods

We created a new neighborhood health data set by
pooling information in three datasets from the Centers
for Disease Control and Prevention (CDC), the Census
Bureau, and the Environmental Protection Agency
(EPA) in the USA. Census tract was used as a proxy
of neighborhood. Data on the prevalence of health out-
comes, prevention, and health behavior measures were
drawn from the CDC’s 500 Cities Project 2017 data
release on 28,004 census tracts [17]. The project was
funded by the Robert Wood Johnson Foundation in
conjunction with the CDC Foundation. Socio-
demographic measures for the selected census tracts
were from the 2011–2015 American Community Sur-
vey 5-Year Estimates [18, 19]. Information on environ-
mental exposures was obtained from the EPA’s Envi-
ronmental Justice Screening (EJSCREEN) database
[20]. We did not obtain IRB approval as this ecological

study used census tract level data from publicly avail-
able data sources.

We included four types of neighborhood risk factors:
(i) unhealthy behaviors (e.g., smoking, no leisure-time
physical activity, insufficient sleep, and obesity), (ii)
prevention measures (e.g., lack of health insurance,
visits to dentist, colonoscopy screening, up to date on
a core set of preventative services for male and females),
(iii) sociodemographic indicators (e.g., age, sex,
race/ethnicity, income, and education), and (iv) environ-
mental measures (e.g., ambient air pollution). Both the
stroke outcome and its predictor variables were mea-
sured at the neighborhood level (no person-level data
were used). Detailed description of the variables and
their data sources and distributions are shown in Table 1.
We excluded 1307 census tracts that had missing data
on key variables. Among the 1307 census tracts, 975
had missing health measures, 137 had missing socio-
demographic measures, and 295 had missing environ-
mental data. Our final analytical dataset included 26,697
census tracts.

We first explored a heuristic approach to remove the
minimum number of highly correlated predictor vari-
ables. Redundant predictors add complexity to the mod-
el than information they provide to the model. Using
highly correlated predictors in regression models can
lead to highly unstable results. The variance inflation
factor (VIF) can be used to identify predictors that are
impacted but does not determine which should be re-
moved to resolve the problem. We followed an iterative
algorithm to remove the minimum number of variables
to ensure that all pairwise correlations are below a
certain threshold, for which we chose 0.75 [21]. Details
of the algorithm appear in Fig. 2.

We then applied a high-performance nonparametric
machine learning technique, QRFs, on the reduced data
with no highly correlated variables. QRFs is a general-
ization of the random forests (RFs). RFs are a machine
learning modeling technique that builds an ensemble of
regression trees to flexibly capture the relationship be-
tween the conditional mean of the response and predic-
tor variables and has gained popularity in medical re-
search for its high prediction accuracy and adaptability
[22–24]. QRFs utilizes the infrastructure of RFs and
gives a nonparametric and accurate way of estimating
conditional quantiles. The method has been shown to be
consistent and competitive in terms of predictive power
[25]. QRFs grows an ensemble of regression trees,
employing random nodes and split point selection as
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Table 1 Distribution of 24 potential neighborhood-level predictors and prevalence of stroke across 500 cities. Measures are in percentages
for all variables except those marked with an asterisk

Domain Variable name Definition Min Q1 Median Q3 Max Mean Data source

Health outcomes STROKE Stroke among adults
aged ≥ 18 years

0.30 2.20 2.80 3.60 18.80 3.11 CDC 500 Cities
Data

Unhealthy
behaviors

SMOKING Current smoking
among adults aged
≥ 18 years

2.00 14.30 18.30 23.10 48.70 19.10 CDC 500 Cities
Dataa

NO_PA No leisure-time physi-
cal activity among
adults aged
≥ 18 years

7.90 18.30 24.20 31.60 61.30 25.30

OBESITY Obesity among adults
aged ≥ 18 years

8.70 23.70 28.60 34.90 58.50 29.76

INSUF_SLEEP Sleeping less than 7 h
among adults aged
≥ 18 years

18.50 32.50 36.30 41.20 59.80 37.10

Prevention LACK_INSURANCE Current lack of health
insurance among
adults aged
18–64 years

2.50 11.70 18.00 27.40 70.80 20.58 CDC 500 Cities
Data

DENTAL Visits to dentist or
dental clinic among
adults aged
≥ 18 years

18.90 49.80 61.30 70.50 87.10 59.82

COLON_SCREEN Fecal occult blood test,
sigmoidoscopy, or
colonoscopy among
adults aged
50–75 years

23.40 52.60 60.60 66.60 81.50 59.29

CORE_PREV_M Older adults aged
≥ 65 years who are
up to date on a core
set of clinical
preventive services
(men: flu shot past
year, pneumococcal
polysaccharides
vaccine (PPV) shot
ever, colorectal can-
cer screening)

13.10 24.80 29.90 34.60 52.20 29.88

CORE_PREV_W Older adults aged
≥ 65 years who are
up to date on a core
set of clinical
preventive services
(women: same as
above and
mammogram past
2 years)

9.60 23.00 28.60 33.90 53.80 28.64

Socio-demographic
status

AGE65_OVER Population aged 65
and over

0.00 10.61 14.81 19.79 100.00 15.81 ACSb

AGE18_34 Population aged
between 18 and 34

0.00 27.48 33.78 40.76 99.38 34.96

COLLEGE_HIGHER Bachelor’s degree or
higher

0.00 12.27 23.71 40.33 100.00 28.28

HS_COLLEGE High school graduate
or higher

0.00 75.78 85.51 91.66 100.00 82.44
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in the standard RFs algorithm, but for each node in each
tree, RFs keeps only the mean of the observations that
fall into this node, whereas QRFs keeps the values of all
observations in the node. Thus, QRFs can assess the
conditional distribution function of the response given
the covariates and can provide a fuller picture of the
exposure-outcome relationship than mean-based RFs.

We developed and implemented a variable selection
algorithm based on the variable importance scores gen-
erated by QRFs to determine the most critical predictors
for the 90th percentile of the neighborhood-level

prevalence rate of stroke. The algorithm is described in
Fig. 2. A similar algorithm was suggested by Dietrich
et al. for implementing RFs with survival outcomes but
without assessing the optimal balance between the pre-
diction error and the number of selected variables [26].
The importance score for each variable is computed by
randomly permuting the values of each predictor for the
out-of-bag (OOB) sample of the predictor for each tree
and measuring the decrease in model accuracy by the
permutation averaged across the forest. The more im-
portant the variable is, the larger decrease (i.e.,

Table 1 (continued)

Domain Variable name Definition Min Q1 Median Q3 Max Mean Data source

FEMALE Female 0.00 48.82 51.19 53.60 100.00 51.04

NON_HIS_ASIAN Not Hispanic or
Latino: Asian alone

0.00 0.72 3.08 8.50 91.32 7.26

NON_HIS_BLACK Not Hispanic or
Latino: Black or
African American
alone

0.00 2.19 7.37 24.43 100.00 19.73

NON_HIS_OTHER Not Hispanic or
Latino: Other

0.00 2.07 4.61 8.06 50.70 6.02

NON_HIS_WHITE Not Hispanic or
Latino: White alone

0.00 17.24 48.02 72.15 100.00 45.65

POVERTY Below poverty level;
estimate; families

0.00 5.10 12.10 24.00 100.00 16.09

MED_INCOME* Median household
income in the past
12 months (in
thousands)

4.17 34.10 49.58 70.43 250.00 55.49

Environmental
factors

HOUSE_PRE1960* Pre-1960 housing (lead
paint indicator) (in
thousands)

0.00 0.10 0.48 0.92 8.13 0.59

TRAFFIC* Traffic proximity and
volume (average
number of
vehicles/distance)

0.00 0.12 0.39 1.10 62.11 11.73

OZONE* Ozone level in air
(ppb)

27.63 44.40 48.74 52.81 73.67 48.04 EPA-EJSCREENc

PM25* PM2.5 level in air
(μg/m3)

4.97 8.54 9.89 10.66 13.32 9.71

PM2.5 concentrations are annual average of the daily ambient average, and ozone concentrations are average of daily maximum 8-h level for
the summer season. Both PM2.5 and ozone were from a space-time downscaling fusion model based on monitoring data and modeled data.
Traffic data reflect annual average daily traffic count of vehicles, i.e., count of vehicle at major roads within 500 m divided by distance in
meters, and was calculated based on traffic data from the USDepartment of Transportation. Pre-1960 housing data were based onACS from
the US Census

*Variables with absolute measurements as opposed to percentages
a Census tract level 500 Cities Data from the Centers for Disease Control and Prevention (CDC), which were modeled based on population-
based survey data from the Behavioral Risk Factor Surveillance System (BRFSS)
b Census tract level data from the 2011–2015 American Community Survey 5-Year Estimates provided by the Census Bureau
c To match the geospatial unit of census tract available in the other two data sources, we aggregated the census block group level
environmental measures to the census tract level by taking the means for PM2.5 and O3 and the sum for the housing data and the sum of
block-group-level population weighted traffic data
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importance score) is produced by the permutation. We
carried out an iterative process for variable selection.
Each time, we removed the least important variable and
rebuilt a QRFs model with the remaining variables and
recorded the OOB average quantile loss (AQL) until no
variable is left. We used AQL for the evaluation of
model performance because the true conditional
quantiles of the responses are unobservable. So as sug-
gested by Wang et al. and Fang et al., we computed the
prediction error of the τth conditional quantile by aver-
aging the quantile loss function, ρτ Y−bqτ Y jX ¼ xð Þð Þ,
overall observations, where ρτ(r) = τr − rI(r < 0) [27,
28].We then plotted the OOBAQLs against the number
of selected variables and set the final model to be the one
corresponding to the “elbow” point, which achieved the
best balance between the smallest OOB AQL and the
parsimoniousness of the selected variables.

To empirically evaluate whether our machine
learning algorithm selected major determinants, we
compared QRFs with classical linear QR including
all predictors additively, termed as LQR-AllVar,
which is frequently used in public health. To dem-
onstrate the benefit of our first step of removing
highly correlated variables, we applied our variable
selection algorithm using QRFs to the full set of 24
predictors, and we termed this approach as QRFs-F.
We compared the metric AQL and AQL reduction
per predictor—defined as (AQLnull − AQLmethod)/
Number of Predictorsmethod, where AQLnull is the
AQL from the null model, i.e., intercept only model,
and AQLmethod corresponds to the AQL of each
method. AQL reduction per predictor answers the
question of how much gain do we get for adding
each predictor variable suggested by a variable

Fig. 2 Variable selection algorithm using quantile regression forests
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selection approach, and therefore methods that give
larger AQL reduction per predictor are desired.

Finally, to “unblackbox”machine learning, we includ-
ed the major predictors selected by QRFs in a linear QR
model to quantify the effects of each predictor on differ-
ent percentiles of the response and in an LR model to
show how mean-based analysis may provide incomplete
and biased summary of the effect of exposures. All
statistical analyses were performed using R version
3.6.1. QRF models were built using the “quantregForest”
R package.

Results

We first applied the iterative algorithm (steps 1–4 in Fig.
2) to identify and remove 8 redundant and highly cor-
related variables from the 24 candidate predictors. We
then built a QRFs model with the remaining16 predic-
tors and ranked the relative importance of each predictor
in relation to the 90th percentile of the neighborhood-
level prevalence of stroke; see Fig. 3. Sociodemographic
indicators related to race, age, income level, education,
and unhealthy sleep behavior appeared to be the leading
neighborhood-level risk factors for high prevalence of
stroke, whereas the environmental measures and gender
composition are of relatively low importance.

We further identified major determinants of high
stroke prevalence using the relative importance scores.

Targeting the 90th percentile of the prevalence of stroke
at the neighborhood level, our QRFs-based variable
selection algorithm (steps 5–9 in Fig. 2) identified five
crucial factors that explained the majority of the vari-
ability in stroke prevalence among the most vulnerable
neighborhoods. They are, in the order of relative impor-
tance, the share of non-Hispanic blacks, the proportion
the percentage of population over 65 years of age,
median household income, the percentage of population
with insufficient sleep, and the share of population with
higher education. These five predictors correspond to
the “elbow” point in Fig. 4—variables remained in the
QRFs model in the 11th iteration of our QRFs variable
selection algorithm. Together, the predictors reduced the
AQL from the null model (with no predictors) by 70%,
similar to the percentage of reduction in AQL (72.5%)
delivered by a full model including all 16 available
predictors, as suggested in Fig. 4 by the curve of OOB
AQL gradually reaching a plateau after the “elbow”
point. The AQL reduction per predictor achieved by
these five predictors was 0.04 as compared with 0.01
by the full model.

Figure 5 compares the performances of QRFs, QRFs-
F, and LQR-AllVar in terms of the prediction error of
the 90th quantile, number of selected variables, and
prediction error reduction per predictor. While QRFs
distinguished only five factors out of 16 available fac-
tors, the machine learning–based method gave a similar
AQL as LQR-AllVar did for predicting the 90th percen-
tile of the neighborhood-level prevalence of stroke and
obtained a significantly larger error reduction per pre-
dictor. The AQL from QRFs-F was the same as that
from QRFs. Consequently, the QRFs-F method yielded

Fig. 3 Importance ranking of predictors for the neighborhood-
level prevalence of stroke based on 10,000 trained trees for the
QRFs. Importance is measured as follows. For each tree, the
prediction performance (i.e., mean squared errors) on the OOB
samples is recorded. Then the values of each predictor in the OOB
samples are randomly permuted, and the prediction performance
based on the shuffled data is recorded. The importance score of
that variable is measured as decrease in the prediction performance
after permutation averaged across all trees. QRFs quantile regres-
sion forests, OOB out-of-bag

Fig. 4 Estimated out-of-bag average quantile loss for the 90th
percentile corresponding to each iteration in our QRFs variable
selection algorithm. The red dot indicates the “elbow” point, at
which the optimal balance between model accuracy and
parsimoniousness of the selected variables is achieved. QRFs
quantile regression forests
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a smaller AQL reduction per predictor; see Table 2. In
addition, several variables selected via QRFs-F were
highly correlated (results not shown). For example, the
Pearson correlation coefficient was − 0.92 between the
proportion of people who have dental insurance and the
proportion of people who have no leisure-time physical
activity and 0.83 between the proportion of obese peo-
ple and the proportion of people who have no leisure-
time physical activity. These results showed that the
presence of highly correlated predictors may adversely
impact QRFs’ ability to identify strong predictors [29]
and that QRFs may be sensitive to selecting highly
correlated and redundant predictors. The findings cor-
roborated that our method identified true determinants.
We further investigated whether the better performance
of QRFs over LQR-AllVar was due to the possible
nonlinear covariate–outcome relationships and interac-
tions among predictors. Figure 6 shows the partial de-
pendence functions between the outcome and the five
identified key determinants, demonstrating the marginal
effects of the five determinants on the 90th percentile of
the neighborhood-level prevalence of stroke. The mar-
ginal effects were nonlinear for median household in-
come, the proportion of people who are above 65, and
the proportion of people with insufficient sleep. The
interaction measures based on the normalized minimal
depth of variable [30] indicate that the interactions
among these five key determinants were quite substan-
tial (results not shown).

An “unblackboxing” analysis provided interpretable
effects of the identified major determinants on the high
prevalence of stroke at the neighborhood level. To dem-
onstrate that a risk factor may have different effects on the

tails of the outcome distribution than on the outcome on
average, we examined the respective effects on the 90th
(upper tail), 50th (median), and 10th (lower tail) quantile
and the mean effects. Figure 7 displays the point estimates
and 95% confidence intervals for each of the five major
factor. First, larger shares of non-Hispanic blacks, older
residents over 65 years of age, and people who have
insufficient sleep were positively associated with higher
90th, median, and 10th quantile of the neighborhood-level
prevalence of stroke. Median household income and the
fraction of adults with higher education were inversely
associated with all three quantiles. Second, all five major
factors disproportionally affect different parts of the out-
come distribution. The fractions of non-Hispanic blacks,
older adults, highly educated residents, and people with
insufficient sleep had significantly larger (absolute) effects
on the upper tail than on the lower tail. Third, estimates
from the mean-based LR analysis hardly covered the QR
estimates. These findings suggest that analyses based on
the premise that the prevalence of stroke is uniformly or
symmetrically distributed across the nation would lead to
an incomplete and biased summary of the effect of expo-
sures. A geographical comparison of the effects on the
90th and 10th percentile appears in Fig. 8. Take the New
York City as an example, Manhattan and Bronx sit at the
opposite tails of stroke prevalence distribution (lower (10th
percentile) and upper (90th percentile), respectively), the
effects of major factors such as the prevalence of insuffi-
cient sleep and the age structure are substantially different
(e.g., nonoverlapping confidence intervals of the effect
estimates) between these two neighborhoods, underscoring
heightened influence of insufficient sleep and older popu-
lation in Bronx than in Manhattan, which, in turn, can

Fig. 5 Comparison of QRFs,
QRFs-F, and LQR-AllVar based
on AQL, number of predictors
selected, and AQL reduction per
predictor (larger AQL reduction is
better). QRFs quantile regression
forests, QRFs-F quantile regres-
sion forests applied to full set of
predictors, LQR-AllVar linear
quantile regression including all
variables, AQL average quantile
loss
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provide guidance for developing targeted intervention
programs.

Discussion

In this study, we developed and applied a robust and
reproducible machine learning–based approach to iden-
tify major factors for the tails of the distribution of the
neighborhood-level cardiovascular health outcome,
prevalence of stroke, and when the distribution was
not normal and investigated the underlying effect

mechanisms of the major factors, leveraging a high-
performance nonparametric quantile regression tech-
nique, QRFs. We exploited a large-scale dataset with
wide-ranging information from unhealthy behaviors and
prevention measures to sociodemographic status and
environmental factors, pooled from more than 20,000
census tracts in 500 cities of the USA.

Our approach identified a parsimonious set of predic-
tors for quantiles of the neighborhood-level prevalence of
stroke, shedding light on the true drivers for high preva-
lence of stroke at the neighborhood-level. The identified
neighborhood characteristics were in good agreement
with known individual-level risk factors. Neighborhoods
with a larger share of non-Hispanic blacks, older adults,
or people who have insufficient sleep tended to have a
higher prevalence of stroke, whereas neighborhoods with
a higher socio-economic status in terms of income and
education had a lower prevalence of stroke. All of five
factors disproportionally affected the prevalence of stroke
among neighborhoods with different stroke prevalence
profile. The effects on the 90th percentile (upper tail)
were significantly higher than effects on the 10th percen-
tile (lower tail) and higher than effects at the mean level.
Using mean-based LR methods would have led to a
limited and biased conclusion. Our approach offered a
“higher-resolution” analysis that can be used to expand
and deepen the existing quantitative evidence on stroke
prevalence and its risk factors.

Table 2 Comparison of QRFs and QRFs-F in variable selection.
QRFs-F = quantile regression forests applied to full set of
predictors

Selected key determinants AQL AQL reduction
per predictor

QRFs NON_HIS_BLACK,
MED_INCOME,
AGE65_OVER,
INSUF_SLEEP,
COLLEGE_HIGHER

0.09 0.042

QRFs-F NON_HIS_BLACK,
MED_INCOME,
AGE65_OVER,
INSUF_SLEEP, NO_PA,
OBESITY, DENTAL

0.09 0.029

Fig. 6 The partial dependence
plot showing the marginal effect
of each of five determinants on
the neighborhood-level preva-
lence of stroke. Nonlinear pat-
terns are observed for median
household income, the proportion
of people who are above 65, and
the proportion of people with in-
sufficient sleep
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Results from our study may help inform public health
policies. Establishing key neighborhood characteristics for

high neighborhood-level prevalence of stroke allows
policymakers to prioritize communities burdened with a

Fig. 7 The effects of five major determinants on stroke varied
across the 90th, 50th, and 10th quantile of the distribution of the
neighborhood-level prevalence of stroke, in contrast to the uniform
effect from the mean-based LR analysis. The height of the bars
corresponds to estimated point effects; error bars represent the
associated 95% confidence intervals. Horizontal gray solid and

dotted lines represent the effects and confidence intervals on the
mean responses. Effect estimates represent changes in the τth
quantile (bars) or the mean (horizontal gray lines) of the preva-
lence of stroke per 10% increase in NON_HIS_BLACK,
AGE65_OVER, INSUF_SLEEP, and COLLEGE_HIGHER and
per $100,000 increase in MED_INCOME. LR linear regression
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Fig. 8 Effect estimates of five major neighborhood characteristics
on the 90th and 10th quantile of the distribution of the
neighborhood-level prevalence of stroke. Tracts corresponding to

the 90th and 10th percentiles are represented by red and green
dots, respectively



high prevalence of stroke in developing and customizing
community-based intervention programs to improve car-
diovascular health outcomes. For example, resources may
be allocated to the boroughs of NewYork City that have a
high prevalence of stroke (e.g., the Bronx) to develop
community-level educational interventions that promote
exercise, improve bedroom ambience, or alleviate sleep
disorders that may promote or interfere with sleep [31]. As
the share of non-Hispanic blacks and the older population
structure are two key components that may drive up the
prevalence of stroke, it is critical for communities to make
efforts to address avoidable inequalities and to eliminate
health and health care disparities [32].

Identifying the most influential and true determinants
from wide-ranging information is challenging, especially
when the number of relevant predictors is sparse relative to
the total number of available predictors and relationships
between predictors and outcomes may be nonlinear. The
presence of skewness in the outcome elevates the com-
plexity. Previous studies that evaluated the relationships
between neighborhood characteristics and cardiovascular
health outcomes are typically conducted at the individual
level and have limitations in analytical approaches [33].
The skewness of the outcome is typically ignored asmean-
based regression analyses are commonly used. Predictors
are often selected a priori or using test procedures based on
some arbitrary threshold value. As a result, these studies
may not provide specific insights into precise drivers for
diverse neighborhoods with varied prevalence of cardio-
vascular diseases.

Our method is capable of specifying the effect of a
predictor on the tail of the outcome distribution in the
presence of skewedness that is missed by others. We
compared our approach to classical QR and classical LR.
Our approach achieved nearly the same prediction error
reductionwith only five predictors as the full QRmodel. In
comparison, implementation of the two-standard-deviation
approach within the framework of QRFs proposed in Fang
et al. [28] selected only one variable, failing to capture
many important predictors. Our “higher resolution” analy-
sis showed that the major determinants disproportionally
affected neighborhood-level stroke outcomes,
underscoring the larger effects in the areas with a higher
prevalence. In conjunction with the ranking of variable
importance, our method can provide valuable guidance
for targeted community-based interventions.

There are several limitations in this study. First, some
behavioral and health outcome measures available in the
500 Cities Data were estimated by the CDC using a small

area estimation approach. Although these estimated mea-
suresmay not be accurate as real statistics, they provide the
best available data for these small areas and the approach
has been well validated [34]. Second, we could not make
causal claims about the relationship between neighborhood
characteristics and health outcomes due to the nature of the
cross-sectional data and the ecological study design. How-
ever, our results identified important factors of neighbor-
hood cardiovascular health and can potentially stimulate
future causal inference research in neighborhood cardio-
vascular health. Finally, there could be other important
variables that were not included in our study, either un-
measured or not collected in our data, due to the complex-
ity of the neighborhood cardiovascular health. Despite the
potential omitted variables, by combining data from three
different large datasets and using an innovative machine
learning approach, we believe that the scope and depth of
our analysis can provide important insights on
policymaking and lead to more innovative investigations
in the area of neighborhood population health.

Conclusions

Highly flexible machine learning identifies drivers of
neighborhood cardiovascular health outcomes from
wide-ranging information in an agnostic and reproduc-
ible way. Quantile regression–based approaches provide
an opportunity to deepen and expand the quantitative
evidence gained from mean-based analyses. The identi-
fied major determinants and the effect mechanisms can
provide important avenues for prioritizing and allocat-
ing resources to develop optimal community-level in-
terventions for stroke prevention.

Funding This research was supported in part by award
ME2017C3 9041 from the Patient-Centered Outcomes Research
Institute (PCORI), a grant from the National Heart, Lung, And
Blood Institute of the NIH under Award Number R01HL141427,
and two grants from the National Cancer Institute of the NIH under
Award Number R21CA235153 and R21CA245855. The contents
of this paper are solely the responsibility of the authors and do not
necessarily represent the official views of the PCORI or NIH.

References

1. Mozaffarian D, Benjamin Emelia J, Go Alan S, et al. Heart
disease and stroke statistics-2016 update. Circulation.
2016;133(4):e38–e360.

Quantile Regression Forests to Identify Determinants of Neighborhood Stroke Prevalence in 500 Cities in the... 269



2. You Roger X, McNeil John J, O’Malley Heather M, Davis
Stephen M, Thrift Amanda G, Donnan GA. Risk factors for
stroke due to cerebral infarction in young adults. Stroke.
1997;28(10):1913–8.

3. Whisnant JP. Modeling of risk factors for ischemic stroke.
Stroke. 1997;28(9):1840–4.

4. Müller-Nordhorn J, Nolte Christian H, Rossnagel K, et al.
Knowledge about risk factors for stroke. Stroke. 2006;37(4):
946–50.

5. Go AS, Mozaffarian D, Roger VL, Benjamin EJ, Berry JD,
Blaha MJ, et al. Heart disease and stroke statistics-2014
update: a report from the American Heart Association.
Circulation. 2014;129(3):e28–e292.

6. Bridgwood B, Lager KE, Mistri AK, Khunti K, Wilson AD,
Modi P. Interventions for improving modifiable risk factor
control in the secondary prevention of stroke. Cochrane
Database Syst Rev. 2018;5(5):CD009103.

7. Cappuccio FP, Cooper D, D'Elia L, Strazzullo P,Miller MA.
Sleep duration predicts cardiovascular outcomes: a system-
atic review and meta-analysis of prospective studies. Eur
Heart J. 2011;32(12):1484–92.

8. Boehme AK, Esenwa C, Elkind MSV. Stroke risk factors,
genetics, and prevention. Circ Res. 2017;120(3):472–95.

9. Kelly-Hayes M. Influence of age and health behaviors on
stroke risk: lessons from longitudinal studies. J Am Geriatr
Soc. 2010;58(Suppl 2):S325–8.

10. Schüle SA, Bolte G. Interactive and independent associa-
tions between the socioeconomic and objective built envi-
ronment on the neighbourhood level and individual health: a
systematic review of multilevel studies. PLoS One.
2015;10(4):e0123456.

11. Osypuk TL, Ehntholt A, Moon JR, Gilsanz P, Glymour
MM. Neighborhood differences in post-stroke mortality.
Circ Cardiovasc Qual Outcomes. 2017;10(2):e002547.

12. Dworkis DA, Marvel J, Sanossian N, Arora S.
Neighborhood-level stroke hot spots within major United
States cities. Am J Emerg Med. 2020;38(4):794–98.
https://doi.org/10.1016/j.ajem.2019.06.044.

13. Karp David N, Wolff Catherine S, Wiebe Douglas J, Branas
Charles C, Carr Brendan G, Mullen MT. Reassessing the
Stroke Belt. Stroke. 2016;47(7):1939–42.

14. Mensah GA, Cooper RS, Siega-Riz AM, Cooper LA, Smith
JD, Brown CH, et al. Reducing cardiovascular disparities
through community-engaged implementation research: a
National Heart, Lung, and Blood Institute workshop report.
Circ Res. 2018;122(2):213–30.

15. Wei Y, KehmRD, GoldbergM, Terry MB. Applications for
quantile regression in epidemiology. Curr Epidemiol Rep.
2019;6(2):191–9.

16. Hu L, Hogan JW. Causal comparative effectiveness analysis
of dynamic continuous-time treatment initiation rules with
sparsely measured outcomes and death. Biometrics.
2019;75(2):695–707.

17. 500 Cities: Local Data for Better Health. Centers for Disease
Control and Prevention; 2017. https://www.cdc.gov/500
cities/index.htm. Accessed June 15, 2020.

18. American Community Survey 5-Year Data (2009-2018).
United States Census Bureau. https://www.census.

gov/data/developers/data-sets/acs-5year.html. Accessed
June 15, 2020.

19. American FactFinder (AFF). United States Census Bureau.
https://data.census.gov/cedsci/. Accessed June 15, 2020.

20. Environmental Justice Mapping and Screening Tool. United
States Environmental Protection Agency. https://www.epa.
gov/ejscreen. Accessed June.15, 2020.

21. Kuhn M, Johnson K. Applied predictive modeling. 2nd ed.
New York: Springer; 2018.

22. Breiman L. Random forests.Mach Learn. 2001;45(1):5–32.
23. Genuer R, Poggi J-M, Tuleau-Malot C. Variable selection

using random forests. Pattern Recogn Lett. 2010;31(14):
2225–36.

24. Mazumdar M, Lin J-YJ, Zhang W, Li L, Liu M,
Dharmarajan K, et al. Comparison of statistical and machine
learning models for healthcare cost data: a simulation study
motivated by Oncology Care Model (OCM) data. BMC
Health Serv Res. 2020;20(1):350.

25. Meinshausen N. Quantile regression forests. J Mach Learn
Res. 2006;7:983–99.

26. Dietrich S, Floegel A, Troll M, KühnT, RathmannW, Peters
A, et al. Random Survival Forest in practice: a method for
modelling complex metabolomics data in time to event
analysis. Int J Epidemiol. 2016;45(5):1406–20.

27. Wang L, Wu Y, Li R. Quantile regression for analyzing
heterogeneity in ultra-high dimension. J Am Stat Assoc.
2012;107(497):214–22.

28. Fang Y, Xu P, Yang J, Qin Y. A quantile regression forest
based method to predict drug response and assess prediction
reliability. PLoS One. 2018;13(10):e0205155.

29. Darst BF, Malecki KC, Engelman CD. Using recursive
feature elimination in random forest to account for correlated
variables in high dimensional data. BMCGenet. 2018;19(1):
65.

30. Ishwaran H, Kogalur UB, Chen X, Minn AJ. Random
survival forests for high-dimensional data. Stat Anal Data
Min ASA Data Sci J. 2011;4(1):115–32.

31. Redeker NS, Caruso CC, Hashmi SD, Mullington JM,
Grandner M, Morgenthaler TI. Workplace interventions to
promote sleep health and an alert, HealthyWorkforce. J Clin
Sleep Med. 2019;15(4):649–57.

32. Srinivasan S, Williams SD. Transitioning from health dis-
parities to a health equity research agenda: the time is now.
Public Health Rep. 2014;129(Suppl 2):71–6.

33. Kershaw KN, Osypuk TL, Do DP, De Chavez PJ, Diez
Roux AV. Neighborhood-level racial/ethnic residential seg-
regation and incident cardiovascular disease: the multi-
ethnic study of atherosclerosis. Circulation. 2015;131(2):
141–8.

34. Zhang X, Holt JB, Yun S, Lu H, Greenlund KJ, Croft JB.
Validation of multilevel regression and poststratification
methodology for small area estimation of health indicators
from the behavioral risk factor surveillance system. Am J
Epidemiol. 2015;182(2):127–37.

Publisher’s Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional
affiliations.

270 L. Hu et al.

https://doi.org/10.1016/j.ajem.2019.06.044
https://www.cdc.gov/500cities/index.htm
https://www.cdc.gov/500cities/index.htm
https://www.census.gov/data/developers/data-sets/acs-5year.html
https://www.census.gov/data/developers/data-sets/acs-5year.html
https://data.census.gov/cedsci/
https://www.epa.gov/ejscreen
https://www.epa.gov/ejscreen

	Quantile...
	Abstract
	Background
	Methods
	Results
	Discussion
	Conclusions
	References


