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Laboratory-derived temperature dependencies of life-history traits are
increasingly being used to make mechanistic predictions for how climatic
warming will affect vector-borne disease dynamics, partially by affecting
abundance dynamics of the vector population. These temperature–trait
relationships are typically estimated from juvenile populations reared on
optimal resource supply, even though natural populations of vectors are
expected to experience variation in resource supply, including intermittent
resource limitation. Using laboratory experiments on the mosquito Aedes
aegypti, a principal arbovirus vector, combined with stage-structured popu-
lation modelling, we show that low-resource supply in the juvenile life
stages significantly depresses the vector’s maximal population growth rate
across the entire temperature range (22–32°C) and causes it to peak at a
lower temperature than at high-resource supply. This effect is primarily
driven by an increase in juvenile mortality and development time, combined
with a decrease in adult size with temperature at low-resource supply. Our
study suggests that most projections of temperature-dependent vector abun-
dance and disease transmission are likely to be biased because they are
based on traits measured under optimal resource supply. Our results pro-
vide compelling evidence for future studies to consider resource supply
when predicting the effects of climate and habitat change on vector-borne
disease transmission, disease vectors and other arthropods.
1. Introduction
The global burden of human, animal and plant vector-borne diseases has
increased substantially in recent decades [1,2]. The transmission patterns of
these diseases are strongly linked to the spatiotemporal distributions and abun-
dances of their vectors [3,4]. Therefore, there is growing concern that climate
and land-use change coupled with rapid globalizationmay shift the distributions
and abundances of vector species, and thus, the diseases they transmit [5,6].How-
ever, we currently lack a mechanistic understanding of how changes in multiple
environmental drivers interact to affect the abundance of disease vectors [7–9].

Because most disease vectors are small ectotherms, environmental
temperature in particular can have large effects on their population fitness
[5,6,10–15].Many biological rates (includingmetabolic, development and fecund-
ity rate [7]) of ectotherms increase approximately exponentially with temperature
up to some optimum before declining to a baseline [16]. A number of recent
studies have used laboratory data on the thermal responses of functional traits
of vectors to predict how temperature will affect vector abundance and disease
transmission in the field, leading to new insights, including amuch lower optimal
temperature for malaria transmission than previously thought [17]. However,
these laboratory-derived temperature–trait relationships are generally measured
in populations reared on optimal resource supply, whereas natural vector
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populations are expected to experience variation in resource
supply, including intermittent resource limitation.

Indeed, alongwith temperature, resource supply is another
ubiquitous environmental driver that is expected to limit the
fitness of vector populations in nature [18–20].Moreover, temp-
erature and resource supply are expected to act interactively
[9,21]. The primary reason for this prediction is that while the
energy cost of somatic maintenance, growth and ontogenetic
development of individuals generally increases with tempera-
ture [22,23], the ability tomeet this increasing demanddepends
on resource supply. If the resources available to an individual
do not keep pace with increasing energy requirements, its
growth, development and survival would be compromised.
This resource limitation should negatively affect fitness, with
the severity of these effects increasing with temperature.
While the importance of resource supply in mediating the
effect of temperature on population abundance may seem
obvious, this problem remains largely unresolved theoretically
and empirically, not just in vector-borne disease research, but in
thermal ecology in general. For example, ecological metabolic
theories (including the metabolic theory of ecology (MTE)
and dynamic energy budget (DEB) theory), which seek to
link organismal metabolic rates to ontogenetic and population
growth, generally assume that external resource supply is not a
limiting factor [22–25].

Resource supply can also interactwith temperature to affect
the population fitness of ectotherms by determining size at
maturity. Generally, size at maturity decreases with rising
temperature (the size–temperature rule [26], which also applies
to disease vectors, such as mosquitoes [27]). The size–
temperature rule also remains largely untested under resource
limitation in disease vectors and other ectotherms [26,28]. For
vectors specifically, female size is demographically and epide-
miologically important because it is associated with longevity,
fecundity and biting behaviour [29,30].

In general, the question of whether and how temperature
and resource supply interact to modulate disease transmission
together through effects on underlying traits remains open.
Here, we seek to address this gap in knowledge by investi-
gating the effect of realistic variation in resource supply on
the temperature dependence of population-level fitness in
Aedes aegypti, a principal mosquito vector of human arbo-
viruses (e.g. dengue, yellow fever and Zika; [31]). Because
resource competition between larvae is expected to be a
major regulator of adult mosquito abundance, many studies
have examined how resource supply and larval density interact
to affect fitness [32–35], while others have investigated the
effect of resource supply and larval density separately
[36,37]. However, none of these studies considered environ-
mental temperature. On the other hand, studies that have
considered temperature have not examined how the effects of
temperature and resource supply on underlying fitness traits
can propagate through the system to affect population fitness
[38,39]. By taking a trait-based approach, we seek to gain gen-
eral, mechanistic insights into how resource availability and
temperature may together affect the abundance of disease
vectors and other arthropods in the field.
2. Methods
To investigate the effects of temperature and resource supply
on mosquito life history, we employed a 3 × 2 factorial design
comprised of three temperatures (22, 26 and 32°C) and two
resource supply levels: 0.1 (low-resource supply) and 1 mg
larva−1 day−1 (high-resource supply). These experimental temp-
eratures span the range of average annual temperatures [40] that
this strain of Ae. aegypti is likely to experience in the wild (F16–
19 originating from Fort Meyer, FL; [41]). Our low-resource
supply level was chosen because previous work has found that it
is the highest resource limitation that can be applied to this species
without resulting in complete juvenile mortality [18,19]; a level of
limitation that might be expected in wild populations. We also
determined that the low-resource level was appropriatewith a pre-
liminary assay (electronic supplementary material, tables S4 and
S5). The high-resource supply level corresponds to the upper mid-
range of the high-resource supply levels used in Arrivillaga &
Barrera [18] and Barrera et al. [19] and is consistent with the levels
of resource supply commonly used in laboratory studies on this
species [38,42].

Batches of approximately 300 Ae. aegypti eggs were randomly
assigned to one of the three experimental temperatures and
immersed in plastic tubs containing 150 ml of dechlorinated
tap water. Each tub was provided with a pinch of powdered
fish food (Cichlid Gold®, Hikari, Kyrin Food Industries Ltd,
Japan) to stimulate overnight hatching. The tubs were then sub-
merged in water baths (Grant Instruments: JAB Academy) set at
either 22, 26 or 32°C. Water baths were situated in a 20°C climate-
controlled insectary with a 12 L : 12 D photoperiod and 30 min of
gradual transition of light levels to simulate sunrise and sunset.
On the following day, first instar larvae were separated into
cohorts of 30 and held in tubs containing 150 ml of water. We
created three replicate tubs per treatment (90 individuals/
treatment). We conducted a preliminary assay to determine the
adequacy of this replication level to detect statistically significant
effect sizes (electronic supplementary material, tables S4 and S5).
Low-resource supply treatments were provided 3 mg of food and
high-resource supply treatments received 30 mg. Thereafter,
resource levels were adjusted daily according to the number of
living individuals in each tub prior to feeding each day such
that resource levels were maintained at an approximately con-
stant level during the juvenile stages. Rearing tubs were
cleaned and refilled with fresh tap water daily. Water volumes
were also adjusted daily in accordance with mortality to main-
tain larval density (0.2 larvae ml–1). Electronic supplementary
material, figure S1 is a schematic of the experimental design
and the traits measured.

(a) Fitness calculation
To calculate population-level fitness, we used our data to para-
meterize stage-structured matrix projection models [43], which
describe a change in a population over time:

Ntþ1¼ MNt, ð2:1Þ
where Nt is a vector of abundances in the stage classes at time t
and M is the population projection matrix. The first row of M is
populated by daily fecundity (the number of female offspring
produced per female at age i). The sub-diagonal of M is popu-
lated with the proportions of survival from age i to age i+1.
Multiplying the transition matrix (M; equation (2.1)) and stage-
structured population size vector (Nt) sequentially across time
intervals yields the stage-structured population dynamics. Once
the stable stage distribution of the abundance vector is reached,
the dominant eigenvalue of the system is the finite population
rate of increase (λ) [43]. Then, the intrinsic rate of population
growth is

rmax ¼ log(l):

This is a population’s inherent capacity to reproduce and there-
fore a measure of population-level fitness [24,44,45]. Negative
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rmax values indicate decline and positive ones, growth. The
projection matrices were built and analysed using the popbio
R package [46,47].

(b) Parameterization
(i) Immature development time and immature and adult survival
proportions

Matrix survival elements (the sub-diagonal of the matrix M;
equation (2.1)) were populated with continuous survival pro-
portions estimated using the Kaplan–Meier survival function in
the survival R package [46,48]. We assumed life stage duration
(i.e. larva-to-pupa-to-adult) was the mean duration of transition-
ing into and out of that stage and a fixed age of adult
emergence at the mean age of emergence. Adult survival elements
were populated with the Kaplan–Meier proportions. Hatching-
to-adult development times were calculated by recording the
day and time that egg eclosion, pupation and adult emergence
occurred for each individual. Upon pupation, mosquitoes were
held in individual falcon tubes containing 5 ml of tap water.
This enabled pupa-to-adult development durations and the life-
spans of individual starved adults to be recorded. Starvation
forces adults to metabolize nutritional reserves accumulated
during larval development, so starved lifespan should increase
with body size. Therefore, starved adult lifespan is a useful indi-
cator of the carry over effects of temperature and resource
availability in the larval habitat [49,50].

(ii) Daily fecundity rate
The use of scaling relationships between fecundity and size is
common in predictions of population growth in Aedesmosquitoes
[51,52]. A detailed description of our method for estimating
fecundity is provided in the electronic supplementary material
(electronic supplementary material, figure S2). Briefly, we
measured wing length as a proxy for body size, and estimated life-
time fecundity using previously published datasets on the
temperature- and resource supply-dependent scaling between
wing length and lifetime fecundity [42,50]. Daily fecundity rate
is required for the first row ofM (equation (2.1)), so lifetime fecund-
ity was divided by lifespan andmultiplied by 0.5 (assuming a 1 : 1
male-to-female offspring ratio) to give temperature-specific
individual daily fecundity.

(c) Parameter sensitivity
We used the delta method to approximate 95% confidence inter-
vals (CIs) for our fitness calculations [43,53] to account for how
uncertainty in survival and fecundity estimates is propagated
through to the rmax estimate. This method requires the standard
errors of the survival and fecundity element estimates. For survi-
val, we used the standard errors estimated by the Kaplan–Meier
survival function in the survival R package. For fecundity, we cal-
culated the standard errors of the mean daily fecundity rates
(electronic supplementary material, table S2) for each treatment
using the Rmisc R package [54]. As an additional sensitivity analy-
sis, we recalculated fitness using the upper and lower 95% CIs of
the exponents for the scaling of wing length and lifetime fecundity
(figure 3; electronic supplementary material, figure S2).

(d) Elasticity analysis
Elasticities were used to quantify the proportional contributions of
individual life-history traits to rmax. Elasticity, eij, measures the
proportional effect on λ of an infinitesimal change in an element
ofM (equation (2.1)) with all other elements held constant (the par-
tial derivative) [55,56]. This partial derivative of λ, with respect to
each element of M, is sij= ∂λ/∂aij = viwj with the dot product 〈w,
v〉 = 1. Here, w is the dominant right eigenvector (the stage
distribution vector of M), v is the dominant left eigenvector
(the reproductive value vector of M) and aij is the i × jth element
of M. Elasticities can then be calculated using the relationship:
eij= aij/λ × sij. Multiplying an elasticity by λ gives the absolute
contribution of its corresponding aij to λ [55,56]. Absolute contri-
butions for juvenile and adult elements were summed and
changed proportionally to quantify the sensitivity of rmax to
these traits.

(e) Statistical analyses
All statistical analyses were conducted using R [46]. We used full
factorial generalized linear models (GLM) with gamma distri-
butions and identity link functions (predictor effects were
considered additive) to determine the significance of each predictor
on the thermal responses of development time, lifespan and wing
length. Replicate was included in these GLMs as a fixed effect.

We investigated the effect of temperature and resource
supply on juvenile mortality rate by fitting a set of candidate
distributions (exponential, log-logistic, Gompertz and Weibull)
to the survival data with R package flexsurv [57]. The Gompertz
survival function was the best fit to these data according to the
Akaike information criterion (AIC) (electronic supplementary
material, table S3). The final mortality model was obtained
by dropping terms from the full model (consisting of tempera-
ture × resource supply + replicate as fixed effect predictors). If
removing a term worsened model fit (ΔAIC >−2), then it was
retained. Otherwise, it was removed (electronic supplementary
material, table S3). For each treatment, maximum-likelihood
methods executed in flexsurv estimated the mortality parameters
(and their 95% CIs) of the Gompertz model, μx = aebx, where a is
the baseline morality rate, and b is the change in mortality rate
with time. These parameter estimates were then used to deter-
mine the significance of the effects of temperature and resource
supply on juvenile mortality.
3. Results
All trait responses varied significantly with temperature and
resource supply, with a significant interaction between the
two environmental variables (figures 1 and 2; electronic sup-
plementary material, tables S1 and S2). Thus, the realized
effect of temperature on trait responses was consistently
and significantly mediated by resource supply.

At a low-resource supply, daily juvenile mortality rates, μx,
increased with time at all temperatures, whereas at high-
resource supply, they decreased with time (figure 1e). Baseline
juvenile mortality rates, a, were significantly lower at low-
resource supply than at high-resource supply as temperatures
increased from 22 to 32°C (non-overlapping 95% CIs at
26 and 32°C; figure 1c). Mortality rate trajectories, b, were
significantly lower at high-resource supply than at low-
resource supply as temperatures increased from 22 to 32°C
(non-overlapping 95% CIs at 26 and 32°C; figure 1d).

Development time varied significantly with the interaction
between temperature and resource supply (ANOVA; F2,0.75=
24.11, p < 0.001; electronic supplementary material, table S1).
Whereas development time decreased both at warmer temp-
eratures and at high-resource supply, the decrease with
temperature was greater at low-resource supply than at high-
resource supply. At low-resource supply, development time
decreased by 15.45 days as temperatures increased from 22 to
32°C, whereas at high-resource supply, it decreased by 6.38
days across this range (figure 2a; electronic supplementary
material, table S2).
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Figure 1. The effect of resource supply on the temperature dependence of juvenile survival. Survival curves at (a) low- and (b) high-resource supply by temperature
with 95% confidence bounds. Predicted survival for each treatment was 22°C at low-resource supply = 65%, at high-resource supply = 87%; 26°C at low-resource
supply = 80%, at high-resource supply = 83%; 32°C at low-resource supply = 32%, at high-resource supply = 0.64%. (c) Baseline mortality rates (a) by resource
supply level across temperatures with 95% CIs. Mortality rates were significantly lower at low-resource supply than at high-resource supply as temperatures increased
from 22 to 32°C (95% CIs at 26 and 32°C do not overlap). (d ) Change in mortality rate trajectories (b) by resource supply level across temperatures with 95% CIs.
Rate trajectories were significantly lower at high-resource supply than at low-resource supply as temperatures increased from 22°C (95% CIs at 26 and 32°C do not
overlap). (e) Logged daily mortality rates (ln(μx) = ln(a) + bx) show how mortality rates at low-resource supply started low and increased with time; at high-
resource supply, they started high and decreased with time.
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Adult lifespan varied significantly with the interaction
between temperature and resource supply (ANOVA; F2, 2.41 =
14.95, p < 0.001; electronic supplementary material, table S1).
Although lifespan decreased both at warmer temperatures
and at low-resource supply, the decrease with temperature
was greater at high-resource supply than at low-resource
supply. High-resource supply lifespan decreased by 8.89
days, whereas low-resource supply lifespan decreased by
4.71 days as temperatures increased from 22 to 32°C (figure 2b;
electronic supplementary material, table S2).

The interaction between temperature and resource supply
resulted in significant variation in size at maturity (wing
length) between resource levels (ANOVA; F2,0.03 = 4.36,
p = 0.01; electronic supplementary material, table S1). Adult
size decreased both at warmer temperatures and at low-
resource supply, though the decrease with temperature was
greater at high-resource supply than at low-resource supply.
As temperatures increased from 22 to 32°C, size decreased
by 0.54 mm at high-resource supply, whereas size at low-
resource supply decreased by 0.37 mm (figure 2c; electronic
supplementary material, table S2).
(a) Population fitness (rmax)
Resource limitation depressed rmax to negative values at all
temperatures, with a unimodal relationship of rmax with temp-
erature (figure 3; electronic supplementary material, table S2).
Low-resource supply rmax increased from −0.09 at 22°C to
−0.03 at 26°C and then decreased acutely to −0.38 at 32°C.
By contrast, at high-resource supply, rmax was always positive
and increased with temperature from 0.17 at 22°C to maximal
growth (0.28) at 32°C.

(b) Elasticity analysis
Juvenile development and survival were the most important
contributors to rmax (electronic supplementary material,
figure S3). For example, at low-resource supply at 32°C, a 0.5
proportional increase in juvenile traits would almost halve
the rate of decline from −0.380 to −0.202 (electronic sup-
plementary material, figure S3a). By contrast, for the same
treatment, a proportional increase of the same magnitude for
adult survival would increase rmax from−0.380 to−0.376 (elec-
tronic supplementary material, figure S3c), and fecundity
would increase rmax from −0.380 to −0.372 (electronic sup-
plementary material, figure S3d). This underlines how the
temperature dependence of rmax derives mainly from how
resource supply level impacts juvenile mortality and develop-
ment, which determine the number of reproducing individuals
and the timing of reproduction, respectively. Fecundity and
adult survival, on the other hand, have relatively negligible
effects on rmax, which suggests that the carry over effect of
reduced size at maturity on rmax is relatively weak.
4. Discussion
Our results show that juvenile resource regimes can have
far-reaching effects on the temperature dependence of
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population-level fitness, rmax. Differences between the ther-
mal response of traits at low- versus high-resource supply
resulted in a marked divergence of the temperature depen-
dence of rmax between the two resource levels (figure 3).
At low-resource supply, fitness was negative for all three
temperatures tested and was much lower at 32°C than
26°C. This indicates that population fitness becomes increas-
ingly and nonlinearly constrained by resource limitation as
temperatures increase. By contrast, fitness at high-resource
supply was positive and increased moderately from 26°C to
32°C. While recent studies show that interactions between
temperature and resource availability can mediate population
growth in single-celled plankton [21,58,59], studies of how
such interactions can affect eukaryotes are rare (but see
[87]). Our study shows that the effects of temperature ×
resource availability interactions need to be considered to
accurately predict and understand how natural disease
vector populations and other arthropods will respond to
environmental change.

The elasticity analysis (electronic supplementary material,
figure S3) shows that the primary mechanism underlying the
divergent temperature dependence of rmax across resource
levels is decreased juvenile survival and increased juvenile
development time at low resources. Population-level reproduc-
tive output decreased at low resources because decreased
juvenile survival (figure 1) reduced the number of reproducing
individuals, and increased juvenile development time
(figure 2a) delayed the onset of reproduction. At low-resource
supply, the daily mortality rate started low and then increased
over time, while at high-resource supply, it started high and
then decreased to very low levels (figure 1e). Resource limit-
ation substantially increased development time at all
temperatures (figure 2a).

Fecundity and adult lifespan had comparatively negligible
effects on rmax, which suggests that the carry over effect of
reduced size atmaturity on rmax is relativelyweak. For example,
at high-resource supply, adult lifespan and body size were
greater at 26°C than at 32°C, yet fitness at 32°C was predicted
to be 25% higher (figures 2c and 3). This pattern occurs because
high-resource supply and increased temperature minimized
juvenile mortality and optimized development rate. These
effects allowed faster recruitment at 32°C, leading to increased
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fitness as greater numbers of individuals could contribute to
population growth through reproductive output sooner than
for other treatments. This result is consistent with empirical
and theoretical studies of ectotherm fitness [60–63], including
mosquitoes [32]. This finding is key, as it implies that predic-
tions about the effect of warming on vector abundance and
disease transmission based on laboratory-derived trait data
(which are generally from populations under high- or optimal
resource supply) likely underestimate the effect of temperature
on development time and juvenile survival, and overestimate
effects of temperature on lifespan and fecundity.

Indeed, the trait-level responses of our high-resource
supply treatments correspond with studies that have syn-
thesized laboratory-derived high-resource supply trait
responses to temperature to estimate vector fitness and R0. In
these studies, juvenile survival is expected to be approximately
80% at 22 and 26°C and approximately 70% at 32°C [8]. In the
present study, juvenile survival at high-resource supply was
predicted to follow a similar pattern (approx. 80% at 22 and
26°C, and 64% at 32°C; figure 1). By contrast, juvenile survival
at low-resource supply in the present studywas predicted to be
65% at 22°C, 80% at 26°C and 32% at 32°C (figure 1).

Further, the juvenile development rate of most mosquito
vectors is expected to increase from approximately 0.07
day−1 at 22°C to approximately 0.14 day−1 at 32°C [8],
which is congruent with the present study’s development
rate (1/development time, figure 2a) at high-resource
supply (approx. 0.08 to approx. 0.17 day−1) across the same
temperature range. By contrast, at low-resource supply, we
found juvenile development rate was approximately 0.05
day−1 at 32°C (figure 2a), which is consistent with other
studies on the effects of temperature and low-resource
supply on juvenile development rate [38]. Such differences
in juvenile trait responses are likely to substantially alter pre-
dictions about the temperature dependence of R0. This
underlines the importance of considering resource supply
when predicting the temperature dependence of R0 for
vector-borne diseases.

Juvenile survival decreased significantly with tempera-
ture and was overall significantly lower at low-resource
supply (figure 1). This reduction in survival is likely because
somatic maintenance costs increase with metabolic rate [22],
which cannot be met below a threshold resource supply
level. Such metabolic costs could explain why the highest
level of mortality occurred at 32°C at low-resource supply,
where the energy supply-demand deficit was expected to
be the largest.

The Gompertz-shaped juvenile survival curves observed
at 22 and 26°C at low-resource supply (figure 1a) may well
arise from the amount of resource being sufficient for somatic
maintenance, but not for development. This hypothesis could
be a key line of future investigation because it points to the
importance of understanding how resource availability com-
bines with temperature and other environmental factors to
affect natural mosquito populations and other arthropods.
For example, the negative effects of resource limitation on
population growth through increased juvenile development
time and mortality may be exacerbated, as individuals
remain in the vulnerable juvenile stages for longer, which
may increase predation threat [64] and/or the risk of
exposure to breeding habitat evaporation [65]. If resource
availability increases with climatic warming, the negative
effects of predation and breeding habitat evaporation on
population growth could be offset by increased development
and recruitment rates [66]. Alternatively, population growth
could be dampened, if climate change reduces the quantity
of food available to ectotherms [67,68]. This effect could
simultaneously decrease the burden of vector-borne diseases
and agricultural pests, but increase the extinction risk of
vulnerable species [69,70].

We did not measure the effect of temperature and
resource supply on fecundity directly, but used the size-scal-
ing of this trait to estimate this effect. This approach is
appropriate because most of the effect of resource limitation
on juveniles is expected to affect adult mosquitoes indirectly
by reducing size at emergence and lifespan [30,50]. Predicted
fecundity increased with temperature, with a larger increase
from 26°C to 32°C than between 22°C and 26°C (figure 2d;
electronic supplementary material, table S2). Across both
resource levels, these fecundity estimates are similar to data-
sets that are used to parameterize mosquito-borne disease
transmission models (e.g. [71]). However, even substantial
under- or overestimation of fecundity by our size-scaling
predictions and the use of starved adult lifespans would
not affect our main conclusions because predicted fitness
was relatively insensitive to these traits (figure 3; electronic
supplementary material, figure S3).

While the increased negative carry over effects of tempera-
ture at resource limitation on adult traits had a relatively weak
impact on fitness compared to juvenile traits, temperature ×
resource supply interactions may have important effects on
other components of vector-borne disease transmission [72].
For example, larger individuals may have greater transmission
potential because they are more likely to outlive a pathogen’s
extrinsic incubation period [73]. However, the interactive
effects of temperature and resource availability can alter the
relationships between body size, longevity and vector compe-
tence [74,75]. Indeed, as we have shown here, resource
limitation can exaggerate the negative relationship between
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size and temperature [26]. This effect could increase trans-
mission probability as smaller Ae. aegypti may compensate
for poor larval nutrition by biting more frequently [76]. Also,
larval nutrition [37] and temperature [77] can independently
influence within-vector parasite development, but future
studies could consider how the combined effects of tempera-
ture and resource supply affect this, and other important
transmission traits.

Another important implication of this study’s findings for
vector-borne disease research is that it underlines the need to
develop realistic and tractable methods of measuring density-
dependent effects on population fitness in the field. Without
such datasets, it will not be possible to link temperature- and
resource-dependent fitness to vector abundance dynamics
and VBD dynamics. Semi-field systems offer a way to track
the entire mosquito life cycle under ambient environmental
conditions [78]. Such systems are generally being used to
test the effectiveness of novel biocontrol strategies, such as
transgenic fungi [79], but they also could allow for the effects
of temperature × resource interactions on fitness and abun-
dance to be explored under conditions that more closely
resemble natural environments. State of the art insect traps
and geospatial mapping of microclimates and vegetation
indices could also be used to study the effects of variation
in temperature and resource availability on vector popu-
lations in the field [80,81].

In this study, we did not consider the temperature depen-
dence of resource supply itself (supply was held constant
across temperatures in our experiments). In nature, the avail-
ability of resources may in fact be temperature dependent.
This relationship occurs because microbial growth rates
increase with temperature to some optimum, which may
increase the concentration of food in the environment
[9,82,83]. For example,Anopheles [84] andAedes [85] mosquitoes
can be reared exclusively on cultures of Asaia bacteria. We also
did not address larval competition for resources by manipulat-
ing the number of larvae for a given resource supply level.
Variation in larval densitymay introduce additional fitness con-
straints through interference and exploitative competition.
It could also interact with temperature-dependent resource
supply because a higher larval density will increase accumu-
lation of waste products. These are interesting and potentially
important avenues for future investigation.

We note that experimenting with more resource levels
would not change our qualitative results, which we have
shown to be robust using thorough sensitivity analyses.
Indeed, the two resource levels we have chosen represent
extremes, and it is reasonable to conclude that mosquito popu-
lation fitness in the field fluctuates with resource availability
between the radically different temperature responses as we
have found here (figure 3). One avenue for future work is to
find more accurate methods to estimate effective tempera-
ture-dependent fitness values in the field, accounting for
resource fluctuations.

Organisms experience significant resource limitation over
space and time in nature. This is particularly true for insects
such as mosquitoes, which have juvenile stages restricted to
small, ephemeral aquatic habitats that are susceptible to
resource fluctuations [18–20,86]. Our study underlines the
importance of the effects of resource supply on the temperature
dependence of population-level fitness of an important disease
vector. In doing so, our findings suggest that current projec-
tions of how climatic warming affects vector-borne disease
transmission may prove inaccurate because they generally
fail to consider resource limitations. Our findings also under-
line the need for a future research effort to be directed at
better understanding how temperature and resource supply
interact in the field, and how this, and interactions between
other environmental factors, may influence other components
of vector-borne disease systems. While recent studies have
shown that interactions between temperature and resource
availability can have important effects on population fitness
in single-celled organisms [21,58,59], our results show that
such interactions also need to be considered when predicting
how eukaryotes will respond to environmental change.
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