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On the iconic Great Barrier Reef (GBR), the cumulative impacts
of tropical cyclones, marine heatwaves and regular outbreaks
of coral-eating crown-of-thorns starfish (CoTS) have severely
depleted coral cover. Climate change will further exacerbate
this situation over the coming decades unless effective
interventions are implemented. Evaluating the efficacy of
alternative interventions in a complex system experiencing
major cumulative impacts can only be achieved through a
systems modelling approach. We have evaluated combinations
of interventions using a coral reef meta-community model.
The model consisted of a dynamic network of 3753 reefs
supporting communities of corals and CoTS connected through
ocean larval dispersal, and exposed to changing regimes of
tropical cyclones, flood plumes, marine heatwaves and ocean
acidification. Interventions included reducing flood plume
impacts, expanding control of CoTS populations, stabilizing
coral rubble, managing solar radiation and introducing heat-
tolerant coral strains. Without intervention, all climate scenarios
resulted in precipitous declines in GBR coral cover over the
next 50 years. The most effective strategies in delaying decline
were combinations that protected coral from both predation
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(CoTS control) and thermal stress (solar radiation management) deployed at large scale. Successful
implementation could expand opportunities for climate action, natural adaptation and socioeconomic
adjustment by at least one to two decades.

1. Introduction

The Great Barrier Reef (GBR) is the largest living structure on the planet and currently under intense
pressure from climate change and other threats. A crown-of-thorns starfish (CoTS) outbreak began on
the GBR in 2010 [1] exacerbating coral mortality associated with a decade of severe tropical cyclones
(notably Hamish in 2009, Yasi in 2011 and Debbie in 2017) and successive mass coral bleaching events
in 2016, 2017 and 2020 [2,3]. Their cumulative impacts have depleted coral cover to some of the
lowest levels in recorded history. The frequency of mass bleaching events and intensity of cyclones are
already being influenced by ocean warming [4,5], and ocean acidification is expected to have an
increasing impact on coral growth over the next few decades [6]. Beyond these ecological impacts,
continued decline of the GBR could jeopardize Australian employment equivalent to 64 000 full-time
jobs and economic value of AU$6.4 billion per annum [7].

Effective global climate change mitigation is clearly essential to the future of the GBR [8]. In addition,
a variety of strategies have been suggested to offset future impacts on the reef. Shorter-term options have
primarily focused on enhancing ecosystem resilience and adaptive capacity by improving water quality
[9-11] or ensuring compliance within protected areas [12]. However, there is increasing acceptance of the
need for more targeted interventions. An existing programme is the direct eradication of CoTS using
lethal injection, which started targeting high priority reefs in 2011 [13] and in 2019 expanded to five
control vessels operating over much of the GBR [14]. A wider range of interventions may become
technically feasible and socially acceptable if the GBR declines further. Here, we consider a diverse
range of interventions, including some that are yet to be tested in situ or at large scale.

The effectiveness of any intervention in protecting the GBR will depend on many system interactions
and may only become apparent over multi-decadal timescales. Gaining insights into these interactions,
with a view to identifying practical interventions, initially requires a systems modelling approach that
can be used to formulate and test alternative strategies [15-17]. Ultimately, such models may be used
to plan adaptation pathways involving multiple interventions applied adaptively under evolving
technological, environmental and social conditions [18].

2. Material and methods

GBR interventions likely to be technically feasible and cost-effective within the near future have previously
been identified (table 1). We have tested these strategies within a reef meta-community model describing
key physical and biological processes operating on coral reef systems exposed to tropical cyclones, impacts
from flood plumes, mass bleaching events and ocean acidification (figure 1). The Coral Community
Network (CoCoNet) model has previously been implemented on a generic network of reefs [17]. The
current implementation on the GBR resolved 3753 individual reefs with enhanced representation of
coral communities, as well as a range of human interventions aimed at protecting or restoring coral
communities (figure 1). Key components of the model workflow are shown in figure 2 and key
assumptions are listed in table 2, with more detailed descriptions provided below.

The CoCoNet model has been calibrated against the Australian Institute of Marine Science (AIMS)
Long-Term Monitoring Program (LTMP) dataset [55] at both the individual reef scale [28,56] and reef
network scale [17]. It has also undergone continuous qualitative evaluation by the Reef Restoration
and Adaption Program (RRAP) group of 33 experts (https://www.gbrrestoration.org/about-us) to
confirm it was fit for purpose. Results demonstrate realistic simulations of coral cover and CoTS
outbreak densities, and emergent system responses such as CoTS outbreaks and coral recovery at
close to their observed periodicity [17]. Here, we further demonstrate the model’s ability to reproduce
observed coral cover trends under realistic environmental forcing conditions.

2.1. Population dynamics

Each reef had a fixed coral-carrying capacity proportional to the area of the reef. Coral communities
consisted of five coral groups whose species are relatively abundant on the GBR [57]. These groups
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Figure 1. Components of the Coral Community Network (CoCoNet) model showing within-reef interactions on the left (interventions
shown as line drawings) and between-reef interactions on the lower right.

nominally corresponded to staghorn Acropora, tabular Acropora, Montipora, Poritidae and favids,
distinguished within the model in terms of their growth rates, preference by CoTS, and susceptibility to
environmental impacts such as cyclones and marine heatwaves (tables 3-5). Differences in fecundity
among coral groups were assumed to be negligible compared with differences in environmental
susceptibility [60] and independent of geographical location along the GBR [61] (assumption 1a).

CoTS populations were size-structured, differentiating larvae (age 0 years), herbivorous juveniles (age
1 year) and four corallivorous adult classes (ages 2, 3, 4 and 5+ years). By directly equating size with age,
the potential for delayed transition from juvenile to adult stages [25] was excluded (assumption 1b).
Trophic interactions between corals and CoTS were calculated using a formulation (equations
(2.9)-(2.11)) that included doubling of adult CoTS predation rates until age 4 [26] when they began to
move into a senescent phase [1,62] (assumption 1c). CoTS had a preference for faster-growing corals
[27,28] (assumption 1d) and populations declined when these became rare (equations (2.2), (2.3) and
(2.12)) (assumption 1e). Rate parameters such as growth, predation and natural mortalities were fitted
to data from the AIMS LTMP [28,56].

2.2. Reef connectivity

Reef connectivity was determined by spawning, larval transport by ocean currents and successful
settlement onto either a natal reef (self-recruitment) or neighbouring reefs (cross-recruitment). For all
coral groups, larval production was proportional to their area coverage (assumption 2a). CoTS larval
production was proportional to the number of adult starfish (assumption 2a) and also increased by a
factor of 4 for each age class [35] before plateauing after age 4 years [1,62] (assumption 2c).

Larval transport was modelled as directed links that appeared and disappeared from year to year
with exchanges that also varied stochastically to represent variability in ocean currents and larval
survival. A maximum travel distance for coral larvae was set at 90 km [33,63] and for CoTS at 150 km
[31,64,65]. The probability of successful recruitment onto a reef from spawning on an upstream reef
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Figure 2. Key components and workflow for the CoCoNet model, including model initialization, population dynamics for corals and
(0TS, spawning and reef connectivity, environmental influences, natural adaptation of corals and six types of intervention applied
either individually or in combination.

was proportional to the connectivity estimated from particle tracking model results, although recruitment
to a reef was reduced by the proportion of coral rubble previously generated by cyclone and bleaching-
induced coral mortality (assumption 2b). While particle tracking provided a direct estimate of relative
connectivity, because larvae cannot be tracked over large spatial scales and larval survival rates are
uncertain, the proportionality constant between relative connectivity and successful recruitment could
not be determined empirically. It was, therefore, treated as a calibration parameter independently for
coral and CoTS connectivity. Coral and CoTS populations were found to be particularly sensitive to
the CoTS connectivity parameter [17].

The structure of the reef connectivity networks for corals and CoTS were estimated using ocean
current patterns from the eReefs 1 km resolution hydrodynamic model [30-32,66,67]. Both coral and
CoTS spawning events were simulated over 3 years of available currents (2016-2018) by releasing
particles from all reefs over their respective spawning periods. Particles were advected by the current
fields, with the imposition of biological constraints such as preferred swimming depths and larval
mortality rates. Broad-scale geographical differences in larval mortality were also modelled, with
temperature preferences for CoTS larvae [36] assumed to peak around 15-16°S where outbreaks
typically initiate [1] (assumption 2d). A directed link was established between two reefs when a
particle released from one passed within 1 km of another during the period when larvae would have
been competent to settle. The 1 km ‘capture halo’” allowed for any directed swimming of larvae (weak
for corals and CoTS) and the limited resolution of current fields that may not fully resolve features
such as lee eddies. All directed links were combined into a reef connectivity matrix with each element
indicating the number of particle connections between two reefs. Connectivity matrices were
generated for each of the three coral spawning seasons and each of the three CoTS spawning seasons.

Using the connectivity matrices directly in CoCoNet would have not only restricted the choice of
connectivity patterns to the three modelled spawning periods available through eReefs, but would
also have reduced the computational speed of the model by several orders of magnitude. Instead,
links between reefs were made each year with a probability that depended on direction, distance and
the median weighted in-degree centrality (figure 3a). Weighted in-degree centrality is the product of
the number of incoming connections and the average weight of those connections [68] and was
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Table 4. Definitions of model variables.

variable definition

(oTS (age a= 0 1 2 3 4 5+)
» Nya R number ofCoTS of ageaat the start ofyeary
. Nya B number of CoTS o sge 0 on connected el ye.ary e
‘ H(;‘;,TS - » fractlon of CoTS of age a removed through controI programmes durrng year y -
coralgroups e (gmup g1 15,0 1, fa po) B
G oedodgupgatesscyery
‘ tﬁ. - ~ cover of coral group g on connected reefs i in yeary - o
@ covr focton of coml growp g consmed by COTS duringyeary
Mg'(y‘ cyclone induced mortallty of coral group ¢ in year y
Tg thermal tolerance (in DHW) of coral group g in year y
”enwronméntal R S SRR R
e Dy Jegree eating weeks ?F?‘Té.ef_ Rl
human interventions
» Sy S effect of artrﬁcral shadrng or coollng (|n DHW) ata reef over yeary S
ek Ievel of art|ﬁc|al ptection from o ac|d|ﬁcat|on [0 1] S

ensemble statistics

G, ensemble average of average coraI cover fractron at the start of year y for ensemble i
Ly * ensemble standard deviation in average coral cover fraction at the start of year y for
ensemble i

computed from the connectivity matrices. Its median value was calculated for every 0.2 x 0.2° cell using
the 3 years of data for both corals and CoTS (figure 3b). A third-order (cubic) polynomial surface in
longitude, latitude and weighted in-degree was then fitted on the same geographical grid using linear
regression. Third-order polynomials were found to capture the broad-scale variations in in-degree
across the GBR with much lower RMS errors than could be achieved with a second-order (quadratic)
polynomial.

The cubic surface provided a connectivity probability distribution (CPD) for the reef network. For
each spawning event, the probability of forming an incoming link to any reef increased in proportion
to the CPD. There was also preferential linking [69] of larger reefs to reflect their larger capture halos.
This process gave the network a scale-free structure with larger reefs tending to form connectivity
hubs, consistent with previous graph theory analysis targeting one section of the GBR [70].

The final connectivity network provided relative probabilities of links forming between any two reefs.
However, recruitment of larvae to any reef will ultimately be influenced by a range of survival factors
that cannot be measured directly or inferred from the limited genetic data currently available for the
GBR. The mean number of links and mean recruitment for each coral and CoTS group were,
therefore, estimated through a calibration process aligning coral and CoTS population trends with
observations from the LTMP (described below).

2.3. Environmental influences

Reefs were subjected to environmental stressors in the form of tropical cyclones and flood plumes,
heatwaves and ocean acidification. These stressors changed over the simulations on the basis of
historical data prior to 2020, and then according to statistical climate projections (assumption 3a).
These projections corresponded to Representative Concentration Pathways RCP 2.6, 4.5 and 8.5 [71],
noting that the ocean heating effects of RCP 4.5 and RCP 6.0 are very similar to 2070 [72]. The
resulting scenarios (described below) are considered plausible and consistent with published
estimates. However, the large uncertainties inherent in both the modelled climate projections and their
impacts ultimately necessitated the use of an ensemble modelling approach (described below).
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Figure 3. (a) Factors controlling connections to a downstream reef. (b) In-degree centrality of reefs (averaged over three coral
spawning periods: 2016—2018) mapped onto a 0.2 X 0.2° grid. In-degree centrality values ranged from 0 (dark purple) to
2638 (yellow) with an average of 676. High values in the southeast reflect high densities of small interconnected reefs.
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2.4. Tropical cyclones and flood plumes

Parametrization of tropical cyclones (including tropical lows) were represented as described previously
[17]. Cyclone events were applied stochastically at frequencies and intensities consistent with recent
historical conditions [73-75]. Coral mortalities within the spatial footprint of different cyclone
intensities (categories 1-5) were parametrized using results from post-cyclone surveys [17,39]
(assumption 3b). However, these too were applied randomly among individual reefs so as to capture
the high spatial variability in mortality that is typically observed [76]. There was also a commensurate
increase in coral rubble cover at each reef impacted by a cyclone.

Three levels of susceptibility to cyclone damage were specified (figure 4a). The two fastest-growing
coral groups (staghorn Acropora and tabular Acropora) had the same high susceptibility to cyclone
damage and the two slower-growing coral groups (Faviidae and Poritidae) had the same lower
susceptibility, with Montipora midway between these levels. Differentiating only three levels of
susceptibility reflects variable morphology within each coral group and is consistent with the
relatively coarse levels of differentiation identified empirically [39,80,81].

Cyclone-induced flood plumes also reduced coral growth rates and increased rates of CoTS recruitment
(assumption 3c). Coral growth decayed exponentially from its offshore value towards zero at the coastline
due to factors such as elevated nutrients and turbidity [52,82], whereas CoTS recruitment increased
exponentially towards the coast peaking at five times the offshore value at the coastline [11,46,83].
Throughout the GBR, the offshore scale of these distributions also increased with increasing cyclone
category. The maximum offshore exponential scale was limited to 75 km, consistent with the estimated
influence of river flood plumes [84] and scales for offshore transport of fine sediments [85].

Future projections assumed that while the frequency of category 1-3 cyclones remained unchanged, it
could increase by up to 21% for category 4 cyclones and 42% for category 5, depending on the climate
scenario (assumption 3a). These values fall within the range of recently reviewed estimates for the South
Pacific from climate simulations [5,86-88] and extrapolation of historical trends [89]. The resulting
projected frequency of category 5 cyclones after 2050 was still less than the frequency observed on the
GBR over the past decade (2010-2019) and, therefore, not beyond the realistic range. Remaining
uncertainties in cyclone frequency tended to become less significant over time as heatwave impacts
began to dominate projected coral mortalities.

2.5. Marine heatwaves

Similar to tropical cyclones, marine heatwaves were implemented as random events dependent on the
cumulative exposure of reefs to high temperatures. This exposure is expressed in terms of degree
heating weeks (DHW), acknowledging that bleaching levels are usually influenced by a combination
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Figure 4. (a) Ranges of mortality experienced by corals within the impact zone for each cyclone category [17,73,77]. (b) Maximum
annual DHW used under the three RCP scenarios [71]. Each year, DHW were set at a level randomly selected from below the
maximum annual DHW curve. (c) Average proportion of locations bleached per annum under the three RCP scenarios and
corresponding estimates from empirical data for 1980-2016 [41]. The long-term values are consistent with the frequency
of bleaching (greater than 2° heating months) estimated from climate model projections for RCP 2.6 (0.35-0.45) and RCP
45 (0.55-0.75) [4,78], as well as forecasts of annual bleaching across nearly all of the GBR by 2070 under RCP 8.5 [79].
(d) Maximum bleaching mortality as a function of DHW for each of the coral groups (equation (2.13)), including the thermally
tolerant strain of staghorn Acrapora. Also shown are observed bleaching mortality rates on individual reefs following the 2016
bleaching event on the GBR [40]. (e) Modelled decline in coral growth rate for fast-growing staghorn Acropora and slow-
growing Poritidae due to ocean acidification (equation (2.16)). These trends exclude any effects of natural adaptation.
(f) Increase in thermal tolerance of coral surviving a bleaching event as a function of bleaching mortality for a range of
adaptability levels (equation (2.15)). Initial thermal tolerance values were: 1.0 DHW for staghorn Acropora; 1.5 DHW for tabular
Acropora; 2.0 DHW for Montipora; 3.0 DHW for Poritidae and favids and 6.0 DHW for thermally tolerant corals (equation (2.14)).

of water temperature and irradiance [90]. Coral bleaching mortality within the spatial footprint of marine
heatwaves increased with DHW (assumption 3b), with a commensurate increase in coral rubble cover the
following year. Prior to 2020 heatwaves followed observed patterns, after which plausible future
scenarios for the maximum annual DHW were described by a sigmoid curve (hyperbolic tangent)
with parameters estimated from past sea surface temperature distributions [37] and extrapolation of
past bleaching events [71] (figure 4b).

In any year, a marine heatwave could occur with the maximum geographical extent of the bleaching
event increasing with the maximum annual DHW. The ratio of these two quantities was set to ensure that
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the average proportion of locations bleached on the GBR per annum aligned with corresponding [ 16 |
empirical estimates from the Australasian region (figure 4c) [41].

With size and DHW distributions for marine heatwaves aligned with available empirical data, the next
step was to estimate the associated coral mortality. The maximum bleaching mortality was related to DHW
using another sigmoid curve (Gompertz function) fitted to data from the 2016 mass bleaching event on the
GBR [3] (equation (2.13), figure 4d). These mortality curves are separated by differences in natural thermal
tolerance of coral groups (measured in DHWs), with slow-growing corals tending to be more thermally
tolerant than fast-growing corals (equation (2.14), assumption 3b) [91,92].

The process for setting bleaching mortality in future years using the relationships described above
was as follows:

(i) DHW was set by randomly sampling from beneath the maximum DHW curve shown in figure 4b.
(ii) The geographical radius of the heatwave zone was set by again sampling randomly from beneath
the maximum DHW curve and then scaling by the constant used to generate figure 4c.

(iii) For reefs within the heatwave zone, the mortality of each coral group was estimated by randomly
selecting from beneath the square of the distribution for that group in figure 44 (i.e. 2> distribution
with one degree of freedom) and taking the square root. This last step weighted the mortality
distribution towards higher values as suggested by the 2016 data (figure 4d).

*sosi/Jeunof/6106uiysgnd/aposjedos

This stochastic approach resulted in patchy distributions of bleaching mortality [3], which are more
realistic than distributions that might be generated by a more deterministic relationship between
DHW and coral mortality.
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2.6. Ocean acidification

Corals build their exoskeleton with aragonite, and ocean acidification is lowering the aragonite saturation
state of seawater. This process was represented as a broad-scale reduction in coral growth rates informed
by recent field and laboratory experiments on reductions in calcification rates under decreasing ocean pH
levels [48,93]. Observations of coral distributions in naturally low pH environments [94] and controlled
laboratory experiments [95] both suggest that faster-growing corals may be more susceptible to
acidification. Biogeochemical modelling further indicates that aragonite saturation rate on outer GBR
reefs is on average 0.76 times that on inner GBR reefs [96]. This difference is comparable to the
expected change in aragonite saturation rate over the next century assuming that recent rates of
decline continue (0.76% per year [48]).

Coral responses to ocean acidification were, therefore, assumed to be dependent on their
underlying growth rate, offshore location and the climate scenario (equation (2.16), figure 4e,
assumption 3d). The formulation captures the decline in coral growth rates over recent decades
evident in both laboratory [59] and field results [22,48]. By 2070, modelled coral growth rates fall to
56% below pre-industrial levels for RCP 4.5 or 84% below pre-industrial levels for RCP 8.5. These
values are comparable to estimates of approximately 50% and greater than 100% derived from
laboratory results [59]. The model formulation is also consistent with annual declines of 0.75-1.23%
suggested by analyses of the skeletal structure of corals in the GBR [48,97], the Indo-Pacific [98] and
Central America [99].

CoTS may also be influenced by ocean acidification. However, laboratory studies suggest that the
effect is negative for larvae [49] and positive for juveniles [50], and may be further confounded by
temperature dependencies. Effects over their life history are, therefore, highly uncertain and have been
assumed to be negligible in the current model (assumption 3d).

2.7. Natural adaptation of corals

The thermal tolerance of any coral group could change through natural adaptation. There are various
approaches that can be used to model this process and the rates and maximum extent of adaptation
are still largely unknown [100]. We, therefore, implemented a parsimonious model that captured only
the essential dynamics of coral adaptation with trade-offs between the key traits of thermal tolerance
and growth rate. Agent-based models are well structured to capture such processes [101], in this
instance, tracking key traits at the scale of individual reefs.

Following each bleaching event, the thermal tolerance of surviving corals (measured in DHWSs) was
increased by a factor that rose with both their inherent adaptability and the mortality rate associated with
the event (assumption 4a). The rate of adaptation was limited by the adaptability parameter (equation



(2.15), figure 4f), which was assumed to be the same for all coral groups. However, groups more
susceptible to bleaching had higher mortality and this selective pressure drove more rapid adaptation.
This was considered the simplest conceivable model in which thermal tolerance increased with
bleaching mortality, but remained unchanged if either adaptability or bleaching mortality were zero.

In the absence of continuing thermal stress, thermal tolerance gradually declined again as the
community structure within each coral group recovered [102-104] or corals shuffled their
zooxanthellae populations to more thermally tolerant symbiont types [72,103]. The exponential
timescale for decline associated with a coral group’s community structure was assumed to be
inversely proportional to the growth rate of the group (ranging from 10 years for the fastest-growing
corals to 100 years for the slowest growing corals) [72,102-104] (assumption 4a). However, it is
acknowledged that shorter timescales (less than 5 years) may be appropriate where corals adapt by
shuffling their zooxanthellae populations [72,103].

The adaptive capacity of corals was also limited by imposing both a cap on the cumulative change
in thermal tolerance and a growth rate penalty per DHW increase in thermal tolerance. Empirical
evidence suggests that even a single type of zooxanthellae can adapt their thermal tolerance by more
than 3 DHW [105]. Considering the greater potential offered by shuffling zooxanthellae, a cap of 12
DHW on changes in thermal tolerance is not unreasonable (also compare with figure 4b). In any case,
over 50-year projections, the growth rate penalty (assumed to be 1.0% per DHW of thermal tolerance)
usually limited adaptation of populations below this cap. Specifically, to reach the adaptation cap, corals
needed to be exposed to three to five successive bleaching events without any extended recovery
periods. In the absence of continuing thermal stress, coral growth rates recovered commensurate with the
decline in thermal tolerance.

Thermal tolerance was heritable in that recruitment from neighbouring reefs contributed to the
average thermal tolerance of the receiving reef. However, averaging at the reef scale limited the
propagation of traits, except to reefs where the existing coral cover was very low. An implicit model
assumption was, therefore, that local adaptation in direct response to heat stress tended to be the
main driver of adaptation (over the 50-year projection), rather than propagation of traits from reef to
reef and across latitudes (i.e. genetic rescue) [106,107] (assumption 4b). This assumption has not yet
been tested empirically and could potentially lead to overly pessimistic adaptation scenarios.

The net rate of adaptation in the model was largely controlled by the adaptability parameter
(figure 4f). While adaptation rates on the GBR are largely unknown [72,100], setting adaptability to 5
delayed coral decline by around 10 years under RCP 4.5 and RCP 8.5, and longer under RCP 2.6.
These effects are consistent with mid-range adaptive responses to sea surface temperature changes
over the past two decades [51] as well as future projections [51,72]. We refer to this as a plausible
level of natural adaption to emphasize the uncertainties associated with predicting natural adaptation.

sos1/JeuInof/6105uiysignd/aposjesos

967107 ‘8 DS uadp 0 Y

2.8. (alibration against historical data

Model parametrizations have previously been calibrated for coral and CoTS population dynamics at
the scale of individual reefs [28,56] and smaller networks of reefs [17]. This was extended here
to cover the entire GBR system by comparing model ensemble statistics with historical coral cover in
the northern, central and southern regions of the GBR estimated from the LTMP [55] (figure 5).
Because CoTS outbreaks were an emergent behaviour in the model, their magnitude and timing
could vary across ensemble members. However, outbreak characteristics such as the frequency of
outbreaks and their propagation speed were compared with behaviours produced in individual model
ensemble runs.

2.9. Interventions

Short- and long-term intervention options were identified from the Great Barrier Reef Blueprint for
Resilience  (http://elibrary.gbrmpa.gov.au/jspui/handle/11017/3287), the Reef Restoration and
Adaptation Program (https://www.gbrrestoration.org/interventions) and from existing management
practices. Interventions could be classified as either regional scale or reef scale. In the latter case, the
number of reefs treated was generally limited by some form of intervention capacity. Under these
circumstances, reefs designated as high priority were treated first. A total of 289 reefs were designated
as high priority by the Great Barrier Reef Marine Park Authority based on factors such as their
importance as tourism sites or their potential to contribute to recruitment of coral or CoTS [30-33].


http://elibrary.gbrmpa.gov.au/jspui/handle/11017/3287
http://elibrary.gbrmpa.gov.au/jspui/handle/11017/3287
https://www.gbrrestoration.org/interventions
https://www.gbrrestoration.org/interventions
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Figure 5. (a) Comparison of observed and modelled coral cover averaged over northern, central and southern reefs for the period
1986—2019. Observations are from the AIMS LTMP [55] covering 6—8% of GBR reefs in any year and represented here by the mean
(red line) and 95% credible intervals (red shading). The model results are represented by the 100-member ensemble mean (blue
dashed line) and +2 s.d. spanning approximately 95% of the data in any year (blue shading). (b) Modelled annual coral cover
averaged over all GBR reefs for the period 1985-2020 from all 100 ensemble runs. (c) As in (b) for modelled coral diversity
(evenness index). (d) Comparison of observed latitudes of CoTS active outbreaks (greater than 1.0 CoTS per manta tow,
equivalent to 67 CoTS ha™") [1] and model outbreak latitudes from the first model ensemble member. A histogram of average
modelled CoTS density both outside of the outbreak zone and inside of the outbreak zone across the 100-member ensemble is
shown in the right-hand panel.

2.10. Reducing the impact of flood plumes

Only a few per cent of reefs on the GBR are directly exposed to flood plumes containing elevated
nutrients and suspended sediments [108] and quantifying the influence of catchment restoration on
reef ecology is still a major challenge [10]. The model, therefore, focused on the potential influences of
flood plumes on coral growth and recruitment of CoTS larvae. Reductions in these impacts (through
improvements in coastal catchments) were assumed to asymptote towards an improved state over a
timeframe of 20 years, which may be optimistic [10] (assumption 5a). The maximum achievable
improvement was assumed to have an effect equivalent to reducing the intensity of tropical cyclones
and lows by one cyclone category. For a category 3 cyclone, this had the effect of reducing the
offshore scale of catchment influences by one-third. This equates to around 42% of the difference
between southern and far northern catchments on the GBR, which has previously been used as an
indication of the maximum improvement that might be achievable through catchment restoration [52].
Hence, the limits placed on catchment restoration in the model were broadly consistent with
geographical differences in catchment condition.

2.11. Controlling CoTS

The implementation of baseline CoTS control in the model closely followed the approach used by control
vessels currently operating on the GBR [14,19] (assumption 6a). Control firstly targeted priority reefs and
then moved onto other reefs as allowed by vessel capacity. There were five vessels, each carrying eight
divers. Every vessel conducted 20 voyages per year, each lasting 10 days over which 36 dive sessions were
completed (i.e. average of four per day with 1 day lost in transiting). This gave a total of 5 x 8 x 20 x 36 =28

96710z 8 s uadp 205y sosyjeumol/bobunsyqndfanosiedor g



800 dives per year distributed across the five vessels. Each dive took place at a single site within a reef, with the [ 19 |
size of each site equating to the area that could be covered by a single dive under average CoTS densities
(approx. 500 m long and 200 m wide or 10 ha).

CoTS were killed sequentially at each dive site until numbers fell below an ecological threshold that
explicitly accounted for coral cover. Recent studies [109] suggest that even very low coral cover can
support a detectable concentration of four CoTSha™', whereas 30% coral cover can support
10 CoTS ha™' consistent with early estimates [26]. While there is evidence that very high coral cover
may be able to support up to 28 CoTS ha™"' [109], it is desirable to reduce CoTS densities significantly
below the threshold for high coral cover where CoTS fertilization success may be enhanced [110]. A
relatively conservative threshold can, therefore, be represented by a simple linear dependence on coral
cover (equation (2.17)).

When reducing CoTS populations to the ecological threshold, it was assumed that younger CoTS
were harder to detect, and, therefore, a smaller proportion of them were controlled (assumption 6b).
Hence, after culling, age classes 2, 3, 4 and 5+ years were left with the respective average abundances
of 0.63, 0.29, 0.065 and 0.015 times the threshold [53]. Any age class already below this abundance
was not affected by the control programme.

The number of individual 40 min dives per site required to reduce CoTS below the ecological
threshold has been estimated using empirical data from historical and recent control efforts [111]
(equation (2.18)). Once a site had been reduced below the ecological threshold, control activities
moved to the next dive site (or next reef if all sites had been treated). This process continued until all
dives available for that year had been fully used.
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2.12. Stabilizing coral rubble

Coral rubble was generated as a direct consequence of coral mortality during cyclone and bleaching
events. The area of rubble cover was set at twice the contributing live coral cover (corresponding to a
hemispherical surface of live coral collapsing onto a flat seabed). Rubble cover was tracked on all reefs
and coral recruitment was prevented over the proportion of a reef covered by rubble. The rubble
decayed exponentially with a decay timescale of 5.5 years consistent with empirical data on natural
rubble consolidation [112].

Stabilization interventions can bond, mesh or remove rubble, all of which were modelled by reducing
rubble limitations on coral recruitment, proportionate to the area stabilized. It was targeted only at
priority reefs with low coral cover (less than 20%) and large areas of rubble (greater than 1 ha). Reefs
satisfying these criteria were selected at random and a prescribed area of 1 ha of rubble was stabilized
each year with the effort distributed over a maximum of 100 reefs. While the annual stabilization area
was fixed to limit logistical requirements, it is clearly much larger than has any existing stabilization
programme (assumption 7a).

2.13. Shading to reduce coral bleaching

Shading was specified in the model as a fixed reduction in DHW leading to reduced bleaching mortality
(equation (2.13)). This simple parametrization implicitly represents reductions in both water
temperatures and irradiance levels that typically contribute to bleaching. Using surface films or other
shading devices may be effective in reducing heat stress on a limited number of reefs. We have,
therefore, assumed a reduction of 12 DHW, while acknowledging potential limitations associated with
warmer waters flowing onto the reef from outside the shading area (assumption 8a).

When solar radiation management is applied at regional or GBR-wide scales (sky brightening, cloud-
brightening or ocean surface albedo modification [54,113]) or as global geoengineering (stratospheric
aerosols [78]), more uniform reductions in heat stress may be achievable. For example, modelling the effect
of radiative forcing on ocean temperatures over GBR reefs indicates that a 30% increase in low-level cloud
albedo (corresponding to a 6.5% increase in average albedo) would have reduced heat stress by 7.5+ 3.5
DHW over the summer of 20152016 and 8.3 +3.7 DHW over the summer of 2016-2017 (increasing sky
albedo by 6.8% showed very similar benefits) [54]. These values were described as ‘representative of a
reasonable (perhaps aspirational) target for solar radiation management’ and early field trials of a
delivery system broadly support this view (https://www.theguardian.com/environment/2020/apr/17/
scientists-trial-cloud-brightening-equipment-to-shade-and-cool-great-barrier-reef). While this implies a
relatively positive outlook for solar radiation management, the research is still in an early phase and we
have, therefore, adopted a more conservative reduction of 4.0 DHW across the GBR (assumption 8b).


https://www.theguardian.com/environment/2020/apr/17/scientists-trial-cloud-brightening-equipment-to-shade-and-cool-great-barrier-reef
https://www.theguardian.com/environment/2020/apr/17/scientists-trial-cloud-brightening-equipment-to-shade-and-cool-great-barrier-reef
https://www.theguardian.com/environment/2020/apr/17/scientists-trial-cloud-brightening-equipment-to-shade-and-cool-great-barrier-reef

2.14. Introducing thermally tolerant corals

A thermally tolerant coral group (strain) was characterized by lower rates of mortality during bleaching
events (figure 4d). On the GBR, such corals could be seeded as larvae or outplanted as juveniles. High
mortality expected immediately following seeding or outplanting was not explicitly modelled, so that the
initial coverage represented successful introductions only. The total annual successful seeding or
outplanting area of coral cover was fixed at 10 ha and distributed evenly across all priority reefs with
low existing coral cover (less than 20%). This is clearly a much larger programme than has ever been
demonstrated in the field (assumption 9a).

Thermally tolerant corals were assumed to be capable of interbreeding with some fraction of the
existing coral community (assumption 9b). Because each of the other groups represented many coral
species, interbreeding was limited to a specified proportion of just one coral group (staghorn
Acropora). Hybrids recruited to a reef were allocated proportionally to each of the two interbreeding
groups, with proportionally weighted changes to their thermal tolerance. While this provides a
reasonable starting point for the modelling, an extensive research breeding programme will clearly be
required to properly quantify these processes.

2.15. Mitigating ocean acidification

Declines in growth rates of corals due to ocean acidification may be offset by releasing alkaline chemicals
[22] or growing plants such as macroalgae around reefs [23]. In the model, such interventions were
represented by protecting all priority reefs completely from the effects of ocean acidification (equation
(2.16)). This represents a large intervention programme with a very high level of effectiveness.

2.16. Ensemble runs testing interventions

Interventions could be tested individually or in combination under any specified RCP scenario. Each
simulation started in 1950 and ended in 2070, with the first 30 years treated as an equilibration
period. Because the model and model forcing included a large number of stochastic elements, every
run was repeated 100 times allowing ensemble statistics to be calculated (i.e. 100-member ensembles).
Ensemble means and variances were found to be insensitive to ensemble size for more than 25 members.

Historical cyclones and severe heatwaves (1950-2019) were applied as localized coral mortality
events, dependent on cyclone intensity and DHW, respectively, switching to stochastic events (2020-
2070) described by probabilistic frequency and intensity distributions based on literature projections.
This approach provided statistically representative ensembles. After comparing model estimates with
historical coral cover data, we modelled coral trajectories under three climate scenarios (Representative
Concentration Pathways RCP 2.6, RCP 4.5 and RCP 8.5). We then included interventions (table 1) by
comparing responses under RCP 4.5, which has been used previously in the context of global
interventions [78] and is very similar to RCP 6.0 in terms of ocean heating to 2070 [72].

For each run within an ensemble, the initial cover of each of the five coral groups was varied
randomly between 0 and 10%, giving an average total coral cover of 25%. Adult CoTS populations
were varied randomly between 0 and 0.75 CoTS per manta tow (0-50 CoTS ha™'). The percentage
cover of each coral group and the concentration of each age class of CoTS were then recorded at every
reef in every year within the ensemble. These data could be used to estimate the corresponding total
coral cover (equation (2.7)) and coral diversity (equation (2.8)). The latter was specified in terms of the
group evenness index (i.e. normalized Shannon’s entropy) [114]. When only one coral group was
present, the diversity was J = 0, and when all groups had equal coverage, the diversity was J = 1.
The recorded model outputs were used to calculate time-series of ensemble averages and percentiles
for coral cover, coral diversity and CoTS density for each region and over the entire GBR.

The effectiveness of interventions was assessed by comparing forecast projections with and without
intervention for total coral cover as a percentage of available reef habitat area, averaged across all GBR
reefs. To account for underlying variability across the model ensemble, the effect size of any change in
coral cover associated with interventions was estimated in terms of Cohen’s d [115] (equation (2.19)).
This annual statistic compared the absolute difference in ensemble-averaged coral cover with and
without intervention, relative to the underlying variability across the ensemble. While alternative
metrics are available (e.g. the f-statistic), Cohen’s d has the advantage that it quantifies the size of the
difference and is associated with broadly accepted descriptors for magnitude of the difference (small,
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medium or large). In this context, p-values are not meaningful as they decrease with the size of the model
ensemble [116] and, therefore, have not been presented.

3. Results

Comparison of model ensemble statistics with historical coral cover estimated from the LTMP [55] shows
a high level of consistency across the northern, central and southern regions of the GBR (figure 5a). From
1985 to 2020, GBR coral cover in the model declined from near 30% to 15% of total available habitat
(figure 5b). This corresponds to an average loss rate of 4.4% per decade (+*=0.76, p <0.01). Over the
same period, coral diversity (as measured by the evenness index) declined from near 0.50 to 0.30
(figure 5¢), corresponding to a rate of 0.058 per decade (+*=0.82, p<0.01). A sharp decline in both
coral cover and coral diversity in 2009 was followed by almost a doubling in the range of ensemble
results that was then sustained until 2020 (figure 5b,c). This switch to a more uncertain trajectory
appears to have been triggered by tropical cyclone Hamish, which unlike most cyclones tracked
parallel to the coast and thereby impacted a large proportion of the GBR.

Because CoTS outbreaks were an emergent behaviour in the model, their magnitude and timing
could vary across ensemble members. However, they generally showed southward movement,
propagating relatively rapidly from around 15° S to 17°S and then more gradually from 17° S to 20°S
(figure 5d). This is broadly consistent with the observed patterns [1], with outbreaks propagating
approximately 1° south every 3 years from 17°S to 20°S [1,117,118], although it has been argued that
the evidence for simple wave-like propagation is equivocal [119]. Both observations and model results
also suggest that outbreaks between 20°S and 22.5°S tend to be locally more persistent (chronic) and
largely independent of those to the north (figure 54). These north-south differences are probably
associated with reef geography and oceanographic connectivity patterns [120].

In the absence of interventions, all climate scenarios showed an ongoing decline in GBR coral cover
from 2020 to 2070 (figure 6a). However, because future cyclones and heatwaves were controlled by
probability distributions (rather than historical patterns), ensembles spanned a wide range of outcomes
(figure 6b). For RCP 4.5, the average annual fall in GBR coral cover was 0.27% (r*=0.54, p <0.01). While
this decline is less steep than the historical decline (1985-2019), annual losses as a fraction of remaining
coral cover increased. Starting from an ensemble average coral cover of approximately 16% in 2019, the
three warming scenarios diverged from 2035, and by 2070 average coral cover was approximately 6%
for RCP 2.6, 3% for RCP 4.5 and 1.5% for RCP 8.5 (figure 6a). Including a plausible (but uncertain)
level of natural adaptation delayed coral decline by a decade under RCP 4.5 and RCP 8.5, and longer
under RCP 2.6, consistent with reported mid-range adaptive responses to SST projections [72].

Maintaining existing intervention commitments (reduced flood plume impacts and five CoTS control
vessels) was effective in reducing average CoTS densities throughout the projection period (figure 6e).
However, improvements in average coral cover were modest and only occurred after 2040 (figure 6b,e)
as the impacts of flood plumes were gradually reduced.

When applied individually, most intervention strategies were ineffective over the projection period
(figure 6c), particularly those limited in spatial coverage (e.g. stabilizing substrate or moderating
ocean acidification on priority reefs). The notable exception was regional shading capable of reducing
the DHW exposure of reefs. This intervention benefited coral cover despite also supporting higher
CoTS densities to 2040 (figure 6e). Interestingly, introduction of thermally tolerant corals had a
negative impact on coral cover until 2050 (figure 6c). This outcome was due to the more consistent
coral availability supporting increased CoTS densities (figure 6e).

Interventions were more effective when combined (figure 6d4). In combination with either enhanced
CoTS control or thermally tolerant corals, regional shading produced improvements in coral cover
throughout the projection period (figure 6¢). However, the combination of enhanced CoTS control and
thermally tolerant corals without shading was less successful. Combining all three interventions was by
far the most effective (figure 64) and by 2070 had 24% higher coral cover than the highest dual strategy
combination and 53% higher coral cover than without intervention. Natural adaptation of corals has
potential to enhance these gains (cf. assumptions 3a and 3d), although adaptation rates remain uncertain.

4, Discussion and conclusion

The GBR is a large complex ecosystem and the CoCoNet model only included the ‘minimum realistic’
components and feedbacks necessary to capture responses from single-reef [28] to whole-of-GBR
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Figure 6. Model coral cover averaged across all reefs and 100 ensemble members: (a) three climate projections with no intervention,
with and without plausible levels of natural adaptation of corals to thermal stress; (b) current interventions (including data from
individual ensemble runs) compared with no intervention; (c) interventions applied individually under RCP 4.5 (excluding those that
had only a small effect on coral cover prior to 2070); (d) combination of interventions under RCP 4.5 including one combination with
a plausible level of natural adaptation of corals to thermal stress and (e) effects of interventions on coral cover and CoTS density
under RCP 4.5 for years 2030, 2040, 2050, 2060 and 2070. Cohen’s d is a measure of effect size (small when |d| < 0.2; small to
medium when 0.2 < |d] < 0.5; medium to large when 0.5 < |d] < 0.8 and large when |d] > 0.8).
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scales [17]. Even with such minimal complexity, some aspects of the model remain to be explored in [ 23 |
detail (e.g. responses in coral community composition to interventions). While there are no technical
impediments to adding additional components and processes to the model, increasing complexity can
increase errors and reduce the relevance and usefulness of models [121]. Even our parsimonious
approach requires a significant number of assumptions (table 2), some of which continue to be
contested. Acknowledging that complex system models can never be fully verified [122], the
formulation has been validated quantitatively by comparing outputs with available empirical data (i.e.
positivism perspective [123]), as well as qualitatively in terms of its fitness for purpose through
continuous evaluation by the RRAP group of experts (https://www.gbrrestoration.org/about-us) (i.e.
relativism perspective [123]).

There are varying levels of uncertainty associated with modelling interventions. For example, the
complex series of hypothesized biophysical interactions connecting flood plumes to the responses of
coral and CoTS [9,10]. There are also large uncertainties associated with the climate scenarios and
their ecological responses (figure 6b), which are based on limited empirical data from a small number
of historical events. We have attempted to capture these uncertainties within our ensemble modelling
approach, and thereby provide insights into possible trajectories of the GBR over the next 50 years.
While there may be irreducible uncertainties inherent in the projections, the guidance they provide in
relation to the relative performance of intervention options should be relatively robust.

Ensemble-averaged coral cover declined across the GBR from 1985 to 2020 by 4.4% per decade
(figure 5b). A more rapid decline from 1996 to 2017 of 6.1% per decade (+*=0.67, p<0.01) is similar
to the recent estimate of 6.7% obtained by fitting gridded coral cover to disturbance history south of
14°S [2]. This period included tropical cyclone Hamish in 2009, which impacted an anomalously large
area of the GBR by moving parallel to the coast. This event appears to have triggered a change in the
state of the modelled GBR, characterized by more depleted coral cover and diversity, low CoTS
densities and less certain population trajectories (figure 5b,¢). Similar changes are evident in the LTMP
data (figure 5a,d), potentially representing an ecological tipping point for the GBR system [56] after
which average coral cover is around 15%.

All future projections suggest continued decline, with an ensemble-averaged rate of 0.27% per year
for RCP 4.5. However, because future cyclones and heatwaves were specified in terms of probability
distributions (figure 4a—c), a wide range of trajectories were possible. For example, individual model
ensembles suggest that without intervention, coral cover in 2050 could range from a relatively healthy
16% to a catastrophic 1% (figure 6b), although the probability of such extremes is very low. This
underlines the need to assess modelled interventions in terms of relative risk and recognize that no
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intervention can guarantee a healthy reef system in a changing climate.

The potential value of interventions is in slowing the rate of decline and allowing time for
development of other more effective interventions, natural adaptation and, ultimately most important,
global climate action [8]. The model results suggest that delays of one to two decades are likely to be
feasible, and this might be further extended by better targeting interventions (spatially or temporally)
or enhancing their effectiveness in novel ways. In any case, two decades may be sufficient to help
evade tipping points leading to ecological collapse [124] or, at the very least, allow for social and
economic adaptation to cope with the changed state [125,126].

Key lessons relating to the relative effectiveness of interventions have emerged from our model runs.
Firstly, interventions limited to a relatively small proportion of reefs were largely ineffective at the whole-
of-GBR scale (figure 6¢,e). These included stabilization of coral rubble, local shading and protection from
ocean acidification, each of which focused on priority reefs comprising only 7.7% of GBR reefs. River
plumes directly impact an even smaller percentage of GBR reefs [127], placing limits on the potential
effectiveness of catchment restoration [11] (but recognizing that water quality improvements provide
key benefits to other parts of the ecosystem). This is not to say that localized strategies are not
effective with respect to the reefs that are treated. For example, by 2040, shaded priority reefs on
average had double the coral cover of those without shading (not shown).

Secondly, by reducing water temperatures, irradiance levels and associated bleaching [54], regional
shading appears to be particularly effective in helping to maintain coral cover and was the only single
intervention to be effective over the next two decades (figure 6c—¢). This is not surprising, given that
increased coral mortality over the next 50 years is expected to be primarily associated with increased
frequency and severity of heatwaves causing mass bleaching events [3,4,6]. It should, however, be
cautioned that technologies capable of reducing upper ocean heating at the scenario rate (4 DHW)
and spatial scale (entire GBR) are yet to be demonstrated, and their social and legal acceptability is
also untested [113].


https://www.gbrrestoration.org/about-us
https://www.gbrrestoration.org/about-us

Thirdly, any intervention that focused only on protecting or restoring corals also benefited CoTS through [ 24 |
enhanced food supply [17]. Most notably, the persistence of thermally tolerant coral helped maintain the
connectivity of highly fecund CoTS populations within the reef network [31], resulting in total coral cover
falling below levels without intervention (figure 6c,e). This feedback was eliminated and coral cover
improved when CoTS control was included as part of the intervention strategy [31] (figure 6d,e). A clear
lesson is that CoTS control must form part of any successful coral restoration strategy on the GBR.

While we applied interventions from 2020 to 2070, some interventions may not be logistically,
technologically or socially feasible to implement on short timescales. Furthermore, their relative
effectiveness may vary greatly over the future evolution of the GBR and from region to region. Future
work will consider when and where interventions should be optimally deployed as part of a broader
recovery and adaptation strategy. For example, our results suggest that regional shading in
combination with CoTS control will be relatively effective until 2040, at which time thermally tolerant
coral could begin to play an important role in slowing the decline of the GBR. However, constraining
the costs of such interventions will require deployments to be optimized in both space and time.

Another key question for the future of the GBR is the rate of natural thermal adaptation within coral
communities. We found that plausible levels of natural adaptation [72] may delay coral decline by a
decade, or even two decades when supported by a combination of interventions. However, rates of
adaptation are highly uncertain and improving our understanding and modelling of these processes is
a high priority for ongoing research.
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