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Network ecology is an emerging field that allows researchers to conceptual-
ize and analyse ecological networks and their dynamics. Here, we focus on
the dynamics of ecological networks in response to environmental changes.
Specifically, we formalize how network topologies constrain the dynamics of
ecological systems into a unifying framework in network ecology that we
refer to as the ‘ecological network dynamics framework’. This framework
stresses that the interplay between species interaction networks and the
spatial layout of habitat patches is key to identifying which network proper-
ties (number and weights of nodes and links) and trade-offs among them are
needed to maintain species interactions in dynamic landscapes. We conclude
that to be functional, ecological networks should be scaled according to
species dispersal abilities in response to landscape heterogeneity. Determin-
ing how such effective ecological networks change through space and time
can help reveal their complex dynamics in a changing world.
1. Introduction
From the life sciences to mathematics, social sciences, computer science and
physics, network theory has become a universal analytical tool to conceptual-
ize, visualize and model the relationships (edges or links) among the discrete
elements (nodes) of complex systems [1]. The appeal of network theory in all
these disciplines stems from its intuitive representation of systems and its flexi-
bility to model and study the strength of relationships (e.g. weighted links)
among nodes (e.g. entities, points, species, populations, patches).

In ecology, network theory has been used successfully to investigate all aspects
of species’ life histories, relationships and flows: species interactions and food webs;
dispersal and migration; metapopulation, metacommunity and metaecosystem
dynamics; insect outbreaks and invasion; epidemics and disease spread. It is not
surprising then that over the last few decades network ecology has emerged as
an integrated discipline aimed to analyse, simplify andmodel ecological complexity
to its essential components in order to understand the system’s dynamics [2–10].

Here, we review how ecological networks can be analysed, compared and
modelled using network theory. Specifically, we highlight the potential of mul-
tilayer networks to answer a broad range of questions about the dynamics of
ecological entities and their relationships in a changing world. Then, we
stress the importance of acknowledging how network topologies constrain
the dynamics of ecological systems as a unifying framework in network ecology
that we refer to as the ‘ecological network dynamics framework’. This frame-
work emphasizes that the interplay between the inherent species interaction
network topologies and the spatial layout of networks of habitat patches is
essential for identifying which network properties (number and weights of
nodes, links) and trade-offs among them are needed to maintain species inter-
actions in dynamic landscapes. We end by stressing the need to estimate the
direct and indirect interplay, as well as feedbacks, between species interaction
networks and spatial networks of habitat patches while accounting for species
dispersal ability throughout their life history from daily movement within home
range, to dispersal and migration [11–13]. By doing so, ecologists will be able to
model how functional ecological networks respond to the effects of landscape
dynamics in a rapidly changing world.
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Figure 1. Example of ecological networks: (a) species as nodes: multipartite network with interactions indicated by directed edges between sets (no edges within a
set), and (b) patches as nodes: spatial-temporal network as multilayer network with corresponding supra-adjacency matrix. Each layer is a time; intralayer directed
edges indicate dispersal; inter-layer edges indicate dependencies from one layer to another. (Online version in colour.)
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2. Ecological networks
In species interaction networks (hereafter interaction net-
works), nodes are species and the links among them are
interactions: trophic links in food webs [14], mutualistic
relationships modelled by bi- and multipartite networks
(pollination, seed-dispersal, gut microbiomes) [2,15,16]
(figure 1a), antagonistic interactions (predation, herbivory,
parasitism), among others.

Interaction networks can be represented and modelled as
multilayer networks (figure 1) that are composed of several
monolayer networks where each monolayer contains nodes
connected via intralayer links, with interlayer links (often
directed edges) connecting nodes from one monolayer to
another [17–24] (figure 1b). Multilayer networks provide
therefore a powerful framework to visualize and model
how interaction networks vary through space and time as
presented in the following sections.
3. Network dynamics and evolution
Ecological networks vary in space [25,26] and time [27] as a
function of environmental conditions and gradients or other
factors [5,6,16,28]. Furthermore, ecological networks are
dynamic and thus can adapt and evolve due to evolutionary
processes such as selection and coevolution [29]. In such
dynamic networks, some or all network properties (degree
of the nodes, transience of nodes and links, among others)
change. For example, a network’s dynamics can be:

— Dynamics on the network: where nodes stay at the same
location from one monolayer to another, but their weights
or states change, and edges remain fixed although their
weights may change. Such dynamics can be analysed
using spatio-temporal networks where from time 1 to
time 2 (see §4): (i) disease can spread [7], or (ii) dispersal
paths between habitat patches can vary in capacity or use,
according to patches’ states and weights, altering the
functional connectivity [30];

— Dynamics of the network: where the number and states of
nodes can change, and links can appear or disappear as
well as change in weight [31]. Such dynamics can be ana-
lysed using spatio-temporal networks (see §4) where
from time 1 to time 2: (i) species interactions rewire (i.e.
changing links between nodes) [32], or (ii) available dis-
persal routes between habitat patches forming spatial
networks, change through the loss or gain of edges, alter-
ing the structural connectivity. Furthermore, in dynamic
landscapes the overall topology of spatial networks of
habitat patches can change as nodes (habitat patches)
are lost or gained, which in turn affect species’ inter-
actions and their abilities to disperse [33].

These two types of network dynamics (on and of ) can
occur independently or in concert such that networks can
evolve through time in numerous and complex ways.

Network dynamics can be modelled using various
matrices (e.g. adjacency, Laplacian or Jacobian) that represent
different network and ecological properties [1,34,35]. Then,
the stability of networks’ properties through time can be
assessed by comparing the spectral properties of their
topological matrices (e.g. changes in their eigenvalues).

Network dynamics can be modelled using probability
matrices in state-and-transition models [36] where habitat
patches in a dynamic landscape have different states (e.g.
low/high habitat quality, pioneer/mature forest stands) and
transitions governed by a first order Markov chain with con-
stant probabilities. In this scheme, all patches follow the same
sequence of states, although possibly at very different rates,
determined by the probabilities of transitions.
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The dynamics of spatial networks and transitions
between states often depend, however, on conditions farther
in the past than the state immediately preceding and on the
states of spatial neighbours, farther away as well as near by
(the spatial context). Hence, longer-term patch history, more
distant neighbour effects, or non-stationarity (whether tem-
poral or spatial) should be considered while modelling the
dynamics of ecological networks. Furthermore, given that
ecological systems are affected by multiple external processes,
state transitions depend on multi-step history and on a spatial
context beyond first-order neighbours, spatial networks
require more flexible modelling approaches.
 pb
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4. Spatio-temporal networks
We can test hypotheses about the underlying processes that
affect the network topology and function by using spatio-
temporal networks (i.e. multilayer networks with one spatial
layer per time-period), and network properties at the node,
link and network levels [3,10,33,37,38].

Spatio-temporal networks are a particular case of multi-
layer networks (figure 1b) where spatial and temporal links
may appear and disappear. For example, spatio-temporal net-
works may have both spatial and temporal links that
approximate the animals’ paths as they move through frag-
mented landscapes. For short-lived phenomena, such as
lightning strikes, there are no within-individual links possible
because no distinct individuals persist between time periods,
but the links between events can be either purely spatial
(joining contemporaneous strikes), purely temporal (joining
time-instances of the same locations with strikes in succes-
sive time intervals), or a mixture of the two (creating
spatio-temporal networks of aggregations).

Spatio-temporal networks can also be used to analyse the
state-and-transition probabilities associated with ecological
processes, species interactions, invasive species spread,
insect outbreaks, or disease spread. For example, Grillet
et al. [39] used spatio-temporal networks to develop a series
of state transition indexes based on ‘incidence/non-inci-
dence’ data allowing for the quantification of the different
spatio-temporal patterns of malaria spread in Venezuela. de
la Fuente [40] used the generalized connectivity model [41]
to predict the spread of an invasive pest and from that analy-
sis proposed a management strategy to limit the spread of the
pest. Boulanger et al. [42] used spatial networks to assess the
potential dispersal of a species through multiple generations.

The temporal dimension is a necessary feature of
spatio-temporal networks for focusing on the importance of
change. Here, nodes can represent individuals, species or
habitat patches while the links between the nodes are their
actions or dependencies (as directed links) from one time
period to the next [27,43–46]. The study of dynamic ecologi-
cal systems using time-series data [45,46] is critical to our
understanding of the extent to which past ecological pro-
cesses affect current and future processes, by carrying
certain characteristics forward through a number of iterations
or observation periods. The nodes may be short-lived (only
one observation at a particular time) or they may be persist-
ent (several observation periods or temporal steps), and
organisms can also be sessile (e.g. trees) or mobile (e.g. mam-
mals). When the nodes are sessile, the links may join
instances of the same node at different times, giving
time-only directed links. Temporal networks are, therefore,
commonly used to study shifts in phenology [27,32,47] or
the effects of landscape memory in ecological systems [48].

There are several ways in which systems can be modelled
as spatio-temporal networks: temporal changes are added to
spatial networks, or temporal networks are studied at several
spatial locations where changes occur. Hence, changes can be
at the node or link, for example:

— Nodes change state (e.g. healthy to diseased)
— Nodes change weight (e.g. population density increases)
— Edges change position (e.g. two pollinators swap their

two interactions between two different plants)
— Edges change weight (e.g. water flow between lakes

changes with season)
— Both nodes and links change weights (e.g. lake depth and

river flow both decline).

Because both nodes and links can vary, spatio-temporal
networks can be modelled using one-step (e.g. supra-adja-
cency matrix in figure 1b) or k-steps of temporal memory,
and spatial nearest neighbours or kth order of relative neigh-
bours (e.g. nodes that are linked through another node and
more than one edge) [49]. The determination of the spatial
and temporal units to be used raises important issues to be
considered while modelling and interpreting spatio-temporal
networks. First, there is rarely true commensurability for the
dimensions of time and space (how can a spatial distance in a
network translate into a temporal network’s ‘distance’ in
time?). This lack of commensurability requires consideration
of the dimensionality of the ecological system under study
because spatial scaling and temporal scaling will both
depend on the underlying processes that affect the network
topology and function. Consequently, spatio-temporal analy-
sis requires matching the time step with the processes and
events that change either nodes or links, or both. The
period of these time steps can be driven by external events
such as disturbances and land use change, as well as by
internal processes such as population dynamics, succession
and dispersal, or by species’ lagged responses to the syner-
gies of external events and internal processes. For example,
due to the dynamics of patches, there is often a connectivity
window in time which allows species to reach habitat patches
before they are lost or unavailable. Hence, to determine the
importance of the temporal dimension in assessing connec-
tivity, Martensen et al. [33] developed a spatio-temporal
network algorithm that accounts for both an organism’s dis-
persal ability and a given temporal connectivity window.
Such temporal windows can be set to match a species’ disper-
sal events or longevity. Then, the three spatio-temporal
probability of connectivity metrics [33] can be calculated to
determine the relative importance of the patch persistence,
the availability of stepping-stone patches, or the ability to
reach habitat patches directly in dynamic landscapes.
5. Network properties
To compare networks, network metrics and theoretical
models can be used at the element-level (nodes, links)
[38,50], subnetwork-level (motifs or graphlets), or network-
level [1,35]. At the network level, network properties can be
quantified using spectral graph properties [35] or network
metrics (nestedness, modularity, connectance, partite class—
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bi-, multi-partite) to characterize relationships between two
or more subsets of species [4,21,51]. Then, the observed distri-
bution of the degree of the nodes can be compared with those
of theoretical models such as random, scale-free, or small-
world [3,10], or with exponential random graph models
[52]. Furthermore, network structural properties can be
tested against simulated networks based on null models or
percolation network theory [1,4,31,37,52,53] that account for
the number of nodes, the number of links, and the spatial
configuration of the network. Process-based null models
[53,54] that account for the dynamical effects of network
topologies, can also be used for comparison, assessing how
interaction networks differ based on various theoretical
frameworks (e.g. random, niche and cascade models). Com-
paring observed network properties with those derived
from known models is an important step in understanding
the processes that affect the systems we study. In multilayer
networks, not only do the intralayer network properties
need to be tested against some null or restricted network
structures (e.g. keeping the same connectance, keeping the
same degree distribution) that account for the network’s
topologies and constraints, but so do the interlayer properties
between nodes in different layers (e.g. nodes and links
weighted, spatial modularity, time lags, trophic structure).

Ecological networks should not be compared using only
one network property (e.g. node degree distribution or pres-
ence of cycles) because two networks can have the same
degree distribution but differ in other characteristics such as
diameter or the number of cycles. One should therefore
always determine a priori which network properties are rel-
evant to the hypotheses under study (e.g. path lengths,
modularity, connectivity, node centrality). For example, with
spatial networks, one could focus on comparing path
length, path redundancy, and reachable area given an organism’s
dispersal range [50].

At the subnetwork level, characterization of interaction
networks can be analysed by assessing the recurrence of
basic small subnetworks, like those called ‘motifs’ [55,56].
Milo et al. [55] proposed motifs based on weighted 3-node
subnetworks corresponding to specific species interactions
(e.g. competition, predation). Motifs have been used to
compare changes in species interactions along environmental
gradients [57] or the trophic position of species in food-webs
[58]. The 3-node motifs are part of the family of graphlet
approaches [3,10,59]. Graphlet analysis comprises both
undirected and directed subnetworks, called graphlets,
allowing to characterize positions of any node among the
set of defined equivalent positions on these subnetworks.

At the element level, a node’s attributes can be assessed
(betweenness centrality, eigenvector centrality, etc. [3,10])
including the trophic levels of species (nodes) [14]. In some
circumstances, the exact position of a node (e.g. species) in
a subnetwork could provide insights on the dynamics of
species interactions [58]. Motifs and directed graphlets can
do this by determining the equivalent position of an individ-
ual node in a graphlet known as an orbit [3,10,59]. Electronic
supplementary material, figure S1 illustrates the potential of
directed graphlets [59] to identify changes in the frequency
of orbits (e.g. species) through time as a trophic level is chan-
ged or removed. In this example, the frequencies of various
lengths of antagonistic interactions are the most common
(3-node and 4-node graphlets). Directed graphlets could
therefore help analyse more complex interactions such as
those found in bioinformatics and medicine with comparable
ways to align networks [60] and in ecology for more complex
trophic interactions (e.g. omnivory [61]).
6. Inferring interaction networks
Network theory often relies on the assumption that all the rel-
evant nodes of the network under study are included [1].
However, this assumption is rarely met in ecological inter-
action networks as they are sampled targeting particular
taxa or specific types of interactions (e.g. mutualistic inter-
actions in plant–pollinator networks), missing the context of
the rest of the community in which those interactions occur.

As most interaction networks are sampled only once,
their variability through space or time cannot be determined
[62]. Moreover, sampling tends to miss rare species/nodes
and rare pairwise interactions/links. Such incomplete and
possibly biased sampling of interaction networks has resulted
in inaccurate estimates of network topologies [63,64]. More
complete descriptions of species interactions via additional
observations of time series of species abundances, are there-
fore needed to better infer interaction networks.

Often interaction networks are constructed by assuming
that species co-occurring at a location have an interaction
even if it is not observed. This approach has been criticized
because presence/absence data may be a poor proxy for
species interactions [65]. Novel approaches rely instead on
species abundance data for determining species interactions
[32]. The core assumption of these approaches is that if
species have interactions, their abundances should be
linked, after controlling for abiotic factors.

In a multilayer network, all the difficulties in assessing
intralayer topology and interactions at a single time step pre-
vail as well as those in assessing the interlayer edge weights
or changes in node weights. So far, only a few empirical
studies have tried to estimate both intralayer and interlayer
ecological interactions (e.g. [22,24]). More empirical studies
are needed to parameterize interlayer edges like the cumulat-
ive effects of permanent habitat patches, compared to those of
ephemeral patches, on the dynamics of ecological networks.
7. Ecological network dynamics: a unifying
framework

The topology of an interaction network constrains its species’
ecological responses and that in turn changes the network
topology and function [6,28]. Network properties can there-
fore be used to generate and test hypotheses about the
underlying processes that shape interaction networks
[10,47]. For example, Croft et al. [47] tested for social beha-
viours (e.g. grooming, aggressions; the links in the
network) among individuals (the nodes) using restricted ran-
domization procedures [10,53,54] to account for the non-
independence of these behavioural interactions.

Similarly, spatial networks like dendritic stream networks
can impose directionality and flow constraints on ecological
systems that literally channel the potential dynamics of eco-
logical processes and species interactions [32]. Benda et al.
[66] formalized these network constraints as the ‘network
dynamics hypothesis’ where a network of channels and their
confluences can affect both the physical and riparian
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characteristics of dendritic networks as well as amplitude and
stochasticity of disturbances in these stream networks. This
network dynamics hypothesis specifies key predictions about
the direct effects of dendritic topology, as well as the influence
of the surrounding land (e.g. catchment size, elevation) on the
number of run-offs, water volume, flow and quality. The
effects of dendritic network constraints on species and com-
munity structure have been acknowledged in several
empirical and modelling studies (e.g. [67–70], among others).

Similarly, the key properties of spatial networks of habitat
patches (e.g. numbers and weights of nodes and links) are
known to constrain properties and dynamics of species interaction
networks [28]. For example, Gravel et al. [71] developed a concep-
tual model of the trophic interactions (e.g. predator–prey) in the
context of island biogeography theory. Then, Guzman et al. [13]
conceptualized how species dispersal abilities—that they termed
‘spatial use properties’—scale species interactions.

Here, we formalize all these previous concepts [28,71] and
frameworks [13,66] as the ‘Ecological Network Dynamics
Framework’ (hereafter ENDF; figure 2) that stresses the set
of key network properties that constrain species interaction
networks. ENDF conceives of the topology of the spatial net-
work constraining the characteristics and dynamics of
embedded interaction networks:

1. Topology of a spatial network and its changes constrain
the characteristics and dynamics of the species interaction
networks embedded within it.

2. Species traits and the strengths of their ecological inter-
actions constrain how species respond to changes in the
spatial network.

3. The interaction networks can directly or indirectly affect
the structure and dynamics of the spatial network in
which they occur.

ENDF stresses the importance of the interplay between
species interaction networks (e.g. trophic networks) and
spatial networks (network of habitat patches), accounting
explicitly for the topological, dynamic and directional con-
straints (e.g. temporal directionality, spatial layout
constraints). Thus, a network’s constraints resulting from
species traits (e.g. dispersal ability, trophic level) and the
strength of their interactions limit how species can respond
to changes in the spatial network (number of patches, their
size, quality, spatial layout; electronic supplementary
material, figure S2).

ENDF can help elucidate the combinations of network
properties that maintain a balance between positive effects
(e.g. rescue effects through dispersal and gene flow) and nega-
tive effects (e.g. increased risk of species invasion, predation
and disturbance spread) in dynamic landscapes. As such, a
series of combinations of network properties (e.g. degree of
the nodes or the transience of nodes and links) can offset the
handicaps of nodes or of links (e.g. more nodes of lower qual-
ity or more links of lower strengths; electronic supplementary
material, figure S2) to maintain species and their interactions
[72,73]. Specifically, the ratio of nodes to links and feedback
effects in these evolving systems need to be accounted for at
the element- (node- and link-), subnetwork- and network-
levels. For instance, changes to habitat patches (amount, qual-
ity; electronic supplementary material, figure S2) directly affect
species richness and abundances, which in turn affects the
number of interactions among species [72] and potentially
rewiring the interactions, resulting in drastic effects on species
assemblages such as spatial trophic cascade effects [74].

A series of specific research topics can be formulated for
analysis at various network levels to investigate the potential
effects of networks on ecological processes, for example:

— At the network-level in interaction networks. The constraints
of species interactions and trophic level topologies
will determine species potential to rewire their inter-
actions in changing environmental conditions such that
membership of nodes that form modules change across
a season.

Example of prediction:

— Generalist species are likely to be able to rewire their food
web topology in the event of environmental change.

— At the network level in spatial networks. The interaction
between the pace of landscape change and species
traits (dispersal ability, dispersal rate, generation
time) will determine the conditions (combinations of
spatial network topologies) under which species will
persist as well as their interactions.

Example of predictions:

— Spatial networks of connected patches favour species
dispersal but also the spread of predators, invasive
species, diseases and disturbances.

— Spatio-temporal dynamics of patches (changes in
quality and quantity) that occur more rapidly than
species’ lifespans will impede species dispersal abil-
ities, survival and local persistence.

— At the link-level for species traits. The constraints of
species traits (dispersal ability, reproduction strategy,
longevity) will determine their response to dynamic
network topologies (same number of nodes and
links but with different weights; electronic sup-
plementary material, figure S2).

Example of prediction:

— Short-distance dispersers and species with slow
dispersal rates will persist if they can reach spatio-
temporal stepping stone patches.
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These examples underscore the importance of determin-
ing how change in landscape heterogeneity disrupts
interaction networks by accounting for constraints on species
dispersal abilities and species interactions. In certain circum-
stances, the interaction networks can influence directly or
indirectly the structure or topology of the spatial networks.
For example, insects that are extirpated could prevent pollina-
tion events, which could be detrimental to other foundation
species [75] thereby reducing or eliminating some of the veg-
etation patches that make up the spatial network. Yet, given
climate change, foundation species may influence the top-
ology of their spatial networks through their ability to
disperse within their climatic envelope and colonize new
and previously unreachable areas.

Then, when ecological systems that are apparently not
constrained by network topologies do change, this would
indicate that novel responses are due to the changes operating
at levels beyond the networks themselves. Such knowledge is
critical for understanding the response of ecological processes
to a changing world.
8. Next steps
Network ecology enables ecologists to analyse and model
complex spatial dynamics of species interactions across
scales, trophic levels and ecosystem functions. Network
analytical tools are powerful and well suited to study ecologi-
cal lines of inquiry about species persistence in dynamic
landscapes. Specifically, we stressed here the importance of
the interplay between spatial network topology (weighted
patches, weighted links, transient stepping stone patches)
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and species traits (dispersal ability, generation time, rewiring)
as they are key to determine the trade-offs under which
species will persist in functional ecological networks.
Hence, ecological studies (experimentation in the field, in
the laboratory, or analytically) can be designed to determine
the trade-offs (electronic supplementary material, figure S2)
among the synergistic effects of the dynamics of network topo-
logical and functional properties and the dynamic ecological
processes that evolve on and in such networks. For example,
the ENDF itself can be evaluated by tracing the dependencies
in multilayer networks through time by coding constraints
using the appropriate supra-adjacency matrix.

(a) Delineating functional spatial ecological networks
Natural and anthropogenic disturbances combine with cli-
mate change will limit the amount of habitat available for
species persistence by decreasing patch size and quality
and by making the landscape between the patches more
inhospitable. Some species can compensate for these effects,
up to a point, by the combination of their dispersal abilities
or rates, longevity and interactions with other species.
Then, given the various degree of landscape spatial hetero-
geneity, interaction networks and food webs can vary in
their topologies. It is therefore important to delineate where
habitat patches are, as well as where the properties of a
food web stop in space. Here, we suggest delineating ‘func-
tional spatial ecological networks’ in space-based species
interaction modules and networks of habitat patches
[13,76,77]. Several methods are available to identify inter-
action networks (species as nodes) [4] including graphlets
(usually triads or quartets of nodes [3,4,54,55]). Types of
species interactions can be calibrated by filters using graph-
lets as templates (figure 3a); these can be scaled according
to species dispersal ranges (core versus extended home
ranges, figure 3b), similarly to assessing the responses of
high versus low matching scores as a function of scale and
position in wavelet analysis [49].

In the same way, a spatial network of habitat patches can
be delineated using an edge detection algorithm (figure 3a)
[49] which is also scale-responsive, based on a scalable tem-
plate using triplets of sampling locations (figure 3b). For a
given scale and position, uniformity among the samples in
the triplet indicates that it is within a patch at that scale and
location; large differences among the values indicate an edge.

Combining interaction networks and spatial networks can
help determine the conditions under which the interaction
network’s functions (or species traits) persist when species
turnover or network rewiring occurs along spatial gradients
(figure 3b). By using scalable templates based on species dis-
persal abilities, metanetworks of functional spatial ecological
networks can be identified. Then, the stability and connec-
tivity properties of those spatial ecological networks across
space can be assessed. That can be done by examining
changes in the eigenvalues of the Jacobian matrices for
species interactions, or in the eigenvalues of the adjacency
matrices for patch connectivity [1,78,79]. Alignment between
interaction network modules, based on the redundancy of a
set of graphlets among species interactions, and the patches
in the spatial network can be used to determine the backbone
of the functional spatial ecological network [80,81].
(b) Moving forward
The potential applications of networks in ecology, and
especially multilayer networks, seem limitless in their ability
to represent, model and test both spatial and temporal
relationships and interactions among ecological units from
individuals to communities. Yet, we need to be careful of
including too many layers in a multilayer network because
the strength of the network approach is the simplification
of ecological complexity; too many layers may make it
overly complicated and thus inhibit our attempts to under-
stand the system. Of particular, interest may be the capacity
of spatio-temporal networks to evaluate and analyse the
speeds of ecological processes of change, and the longevity,
reaction-time, and capacity of ‘ecological memory’ in the sys-
tems being studied. Hence, specific knowledge on changes in
species time lag responses within spatial network topology
should be acquired. Then, species rewiring and turnover
should be assessed while accounting for the ratios of species
generation times and landscape dynamics.

The next research agenda of the field of network ecology
should therefore be to assess how local spatial effects (such as
contingency or decay functions) compare with effects within
the entire network (or its backbone) as well as with the legacy
of temporal effects, which may be permanent, transient or
fluctuating.
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