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Biased perceptions explain collective
action deadlocks and suggest new
mechanisms to prompt cooperation

Fernando P. Santos,1,2,3,10,* Simon A. Levin,1,2,4,5,6 and Vı́tor V. Vasconcelos2,3,7,6,8,9,*

SUMMARY

When individuals face collective action problems, their expectations about
others’ willingness to contribute affect their motivation to cooperate. Individ-
uals, however, often misperceive the cooperation levels in a population. In the
context of climate action, people underestimate the pro-climate positions of
others. Designing incentives to enable cooperation and a sustainable future
must thereby consider how social perception biases affect collective action. We
propose a theoretical model and investigate the effect of social perception bias
in non-linear public goods games. We show that different types of bias play a
distinct role in cooperation dynamics. False uniqueness (underestimating own
views) and false consensus (overestimating own views) both explain why commu-
nities get locked in suboptimal states. Such dynamics also impact the effective-
ness of typical monetary incentives, such as fees. Our work contributes to under-
standing how targeting biases, e.g., by changing the information available to
individuals, can comprise a fundamental mechanism to prompt collective action.

INTRODUCTION

Many of themost pressing problems humanity faces today share the perils of public goods dilemmas (Dietz

et al., 2003; Olson, 1965). These are dilemmas in which reaching a minimum level of cooperation is neces-

sary to achieve the best social outcome, but in which refusing to do so (free-riding) is the immediate rational

action to follow. Greenhouse gas emissions, overexploitation of natural resources, low vaccination

coverage, antibiotics abuse, or fertilizer overuse are challenges in which incentivizing cooperation is

arduous yet necessary to obtain results that benefit all (Dietz et al., 2003; Keohane and Victor, 2016; Levin,

1999; Smith et al., 2005). Failing to do so leads to the infamous tragedy of the commons (Hardin, 1968),

engendering ecological breakdown and increased inequality, resource depletion, failure to achieve herd

immunity, antimicrobial resistance, or groundwater contamination. Averting those scenarios requires judi-

ciously designing incentives, interventions, and institutions.

Cooperation in public goods games is constrained not only by the costs and benefits involved but also by

the social environment wherein the interactions take place. Experiments in the laboratory (Fischbacher

et al., 2001) and the field (Frey and Meier, 2004) reveal that ‘‘those who believe others will cooperate in so-

cial dilemmas are more likely to cooperate themselves (Ostrom, 2000).’’ Elinor Ostrom identifies this as one

of the seven stylized facts about public goods games—results replicated so frequently that they can be

considered core facts. In fact, this finding has accompanied public goods games since the very first exper-

iments with this interaction paradigm, which already indicate that assumptions about others’ behavior

impact the decision to cooperate (Dawes et al., 1977). Recent research reinforces this idea, revealing

that second-order beliefs (i.e., beliefs about others’ beliefs) are good predictors of one’s own behavior (Ja-

chimowicz et al., 2018). This observation underscores the potential effectiveness of norm-based interven-

tions whereby informing individuals about the cooperative actions of others constitutes a trigger for coop-

eration (Bicchieri, 2016; Carattini et al., 2019; Miller and Prentice, 2016; Nyborg et al., 2016).

Although there is a link between cooperation and beliefs about others cooperating, humans reveal social

perception biases, e.g., systematic errors in estimating the distribution of cooperative behaviors in a pop-

ulation. In a paradigmatic example, Monin and Norton report that, in a field study during a water shortage

crisis in which students were asked to reduce the number of showers to save water, individuals

1Department of Ecology and
Evolutionary Biology,
Princeton University,
Princeton, NJ 08544, USA

2Center for BioComplexity,
High Meadows
Environmental Institute,
Princeton University,
Princeton, NJ 08544, USA

3Informatics Institute,
University of Amsterdam,
Science Park 904, 1098XH
Amsterdam, TheNetherlands

4Resources for the Future,
Washington, DC, USA

5Beijer Institute of Ecological
Economics, Stockholm,
Sweden

6Andlinger Center for Energy
and the Environment,
Princeton University,
Princeton, NJ 08544, USA

7Institute for Advanced
Study, University of
Amsterdam, 1012 GC
Amsterdam, TheNetherlands

8Centre for Urban Mental
Health, University of
Amsterdam, Amsterdam, The
Netherlands

9Princeton Institute for
International and Regional
Studies, Princeton University,
Princeton, NJ 08544, USA

10Lead contact

*Correspondence:
fppdsantos@gmail.com
(F.P.S.),
v.v.vasconcelos@uva.nl
(V.V.V.)

https://doi.org/10.1016/j.isci.
2021.102375

iScience 24, 102375, April 23, 2021 ª 2021 The Authors.
This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

1

ll
OPEN ACCESS

mailto:fppdsantos@gmail.com
mailto:v.v.vasconcelos@uva.nl
https://doi.org/10.1016/j.isci.2021.102375
https://doi.org/10.1016/j.isci.2021.102375
http://crossmark.crossref.org/dialog/?doi=10.1016/j.isci.2021.102375&domain=pdf
http://creativecommons.org/licenses/by/4.0/


systematically failed to estimate the prosocial behavior of others (Monin and Norton, 2003). Limiting water

usage (reducing the number of showers) has all the ingredients of cooperation, whereas refusing to do so

implies defecting on the public good. Survey results show that students concurred in false consensus,

uniqueness bias, pluralistic ignorance, and other typical social perception biases. Beyond local public

goods, the existence of perception bias extends to climate change beliefs. Research has shown that

both the mass public and political elites—in China, the United States, and Germany—tend to underesti-

mate the pro-climate positions of others (Mildenberger and Tingley, 2019; Taddicken et al., 2019). Likewise,

Leviston et al. investigate the existence of pluralistic ignorance and false consensus effects regarding

climate change beliefs in Australia, finding that opinions are subject to strong false consensus; in general,

people underestimate the number of others who agree with the existence of climate change (Leviston et al.,

2013). Although those opinions do not directly translate into cooperation or defection behaviors, they can

be thought of as a proxy for engaging (or not) in climate action. The existence of such social perception

biases was recently pointed out as an impediment to discussions about climate change (Geiger and

Swim, 2016)—leading to the so-called spiral of silence (Noelle-Neumann, 1974)—being one possible

reason for inhibition to take part in collective climate action (Kjeldahl and Hendricks, 2018). All the biases

mentioned have for long been known in social psychology: Pluralistic ignorance is known as a situation in

which people erroneously believe that their private opinions or behaviors are different from everybody

else’s (Miller and McFarland, 1987; Prentice and Miller, 1993)—which corresponds to false uniqueness or

uniqueness bias when actions map with personal injunctive norms (Goethals et al., 1991; Suls and Wan,

1987); False consensus is known as the tendency to overestimate the representativeness of one’s opinion

or behavior in a population (Ross et al., 1977). Given the above-mentioned connection between coopera-

tion in public goods dilemmas and beliefs about others’ cooperative behavior, it is likely that such biases

play an influential role in collective action itself.

The effect of perception biases is likely to be exacerbated in non-linear public goods games, in which col-

lective action cannot be decomposed into pairwise interactions. A prototypical example is that of threshold

public goods games, where the benefits of cooperation are not realizable until a certain fraction of coop-

erators exists (e.g., the advantages of reducing carbon emissions only ensue once a certain fraction of

countries or industries do so) (Milinski et al., 2008; Pacheco et al., 2009; Santos and Pacheco, 2011; Tavoni

et al., 2011). Threshold formulations for interactions typically lead to tipping points, characteristic of social

behavior influenced by social norm change and expected to play a critical role in transitions to sustainabil-

ity, e.g., mass adoption of sustainable technologies, implementation of collective insurance and risk-miti-

gation strategies (Santos et al., 2021), or changes in diets (Nyborg et al., 2016). Cooperation might, in this

case, be hampered by failing to estimate accurately the number of individuals willing to cooperate, either

by overestimating their real number (‘‘there are so many cooperators, I do not need to cooperate’’) or

underestimating it (‘‘there are too few cooperators, it is not worth it for me to cooperate’’). Likewise, biases

may create the illusion that the required number of cooperators is closer to the goal than it is, thus moti-

vating cooperation. Importantly, these (incorrect) expectations about others can persist even after

repeated interactions (Ackermann and Murphy, 2019). Therefore, it is fundamental to (1) understand the

role of social perception bias in the dynamics of (non-linear) public goods games and (2) understand

how to design cooperation incentives and interventions in situations where perception bias is prevalent.

We provide a theoretical model to analyze the effect of perception bias in public goods cooperation dy-

namics. We consider a population of (boundedly) rational individuals who adapt their behavior through

a (smooth) best response (Fudenberg et al., 1998) while possibly incurring perception bias—either under-

or overestimating the overall levels of cooperation. As detailed below (see transparent methods, supple-

mental information), we assume a population in which each individual can either adopt strategy C (coop-

erate) or D (defect). Interacting groups are formed randomly. Each cooperator pays a cost c > 0, and, when

there are more than a threshold number, M, of cooperators, everyone gets a benefit, b > c, plus an

enhanced share of the contributions of cooperators. We focus the analysis in situations where the enhance-

ment, f, is such that there is an individual incentive to cooperate above the threshold (f > 1), and both full

cooperation and full defection are Nash equilibria—with full cooperation being the social optimum. Above

the threshold, cooperation is self-enforceable (Keohane and Victor, 2016), yet it is potentially hard to

trigger in the first place, when below the threshold. This regime allows us to focus on the simpler situation

in which collective action dynamics, in the absence of bias, are characterized by a single coordination bar-

rier (see the supplemental information for further exploration of the parameters, where we show that the

effects of biases discussed in the main text extend to other types of collective action dilemmas). For a given
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configuration of the population, individuals will adapt by selecting the strategy maximizing their payoffs,

given an estimate of the current distribution of strategies. Such estimates can be biased. As Figure 1 con-

veys, all the perception biases we consider here can be situated in a two-dimensional space (c,d), defined

by a bias in the level of cooperators by cooperators (c, where c < 0 implies an underestimation and c > 0 an

overestimation of the number of other cooperators in the population) and a bias in the level of cooperators

by defectors (d, where d < 0 implies an underestimation and d > 0 an overestimation in the number of co-

operators by defectors). Within this space, we can identify four distinct types of social perception biases: (1)

‘‘False uniqueness’’ (d > 0, c < 0), in which both cooperators and defectors believe their representation in

the population is a smaller fraction than it is (we include a note on this definition of false uniqueness in sup-

plemental information); (2) ‘‘Over-trust’’ (d > 0, c > 0), which reflects biases where all individuals believe

there are more cooperators than there is; (3) ‘‘Under-trust’’ (d < 0, c < 0), which reflects a belief that there

is less cooperation than there is; and (4) ‘‘False consensus’’’ (d < 0, c > 0), whereby both cooperators and

defectors believe their representation is broader than it is.

RESULTS

The aforementioned biases have substantial impacts on the dynamics of cooperation. We first focus on the

role of homodirectional biases, affecting cooperators and defectors alike (over-trust and under-trust, Fig-

ures 1B and 1C), and then move to heterodirectional biases, which affect cooperators and defectors in

opposite ways (false uniqueness and false consensus, Figures 1A and 1D).

Under-trust and over-trust impact the likelihood to reach optimal coordination

In the game considered here, and detailed above, collective benefits are distributed—and cooperation be-

comes desirable both for the group and the individuals—when aminimum fraction of cooperators exist in a

population. In Figure 2, we control d and c such that we navigate from a scenario of under-trust (Figure 1C)

into a scenario of over-trust (Figure 1B). We can observe that increasing cooperation bias (i.e., increasing

both d and c) eases the coordination toward full cooperation entailed by the non-linear public goods with

f > 1. If individuals mistakenly perceive that there are more cooperators in a population than there truly are,

they may recognize that the collective benefits of cooperation can be attained, even in a configuration

A B

C D

Figure 1. Individual perception biases toward cooperation

Individuals can be affected by different biases, depending on their behavior. Cooperators can perceive a higher or lower

fraction of cooperators than in reality, and so do defectors. This creates the four different scenarios represented.

(A) ‘‘False uniqueness’’ corresponds to a case in which both cooperators and defectors believe their representation in the

population is a smaller fraction than it is.

(B) ‘‘Over-trust’’ reflects biases where all individuals believe there are more cooperators than there are.

(C) ‘‘Under-trust’’ reflects a belief that there are fewer cooperators than there are.

(D) In the ‘‘false consensus’’ scenario, cooperators and defectors believe their representation is broader than it is.
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where the number of cooperators is still insufficient. Conversely, reducing cooperation bias

(i.e., decreasing both d and c) induces individuals to understand that the collective benefits of cooperation

are harder to be reached, even in situations where, actually, there are a sufficient number of cooperators to

realize collective success. As such, under-trust hinders coordination toward full cooperation, requiring a

higher number of cooperators to have a population self-organize toward the socially desirable outcomes.

The effect of over- and under-trust on coordination toward cooperation can be grasped by the position of

the coordination point in Figure 2: for different values of M, increasing d and c reduces the position of the

coordination point (represented with dashed lines), implying that a smaller fraction of cooperators is

needed to evolve toward full cooperation.

False uniqueness and false consensus lead to suboptimal deadlocks

The effects observed in Figure 2 result from homodirectional bias, that is, situations in which both cooper-

ators and defectors over- or underestimate the real number of cooperators in a population. Social percep-

tion bias can, however, affect cooperators or defectors in different directions. In the case of false consensus

(Figure 1D), individuals overestimate the adoption of their own strategy in a population, meaning that co-

operators will overestimate the fraction of cooperators and defectors will overestimate the fraction of de-

fectors. If one considers heterodirectional biases of this kind, the effects on cooperation dynamics become

more intricate. Figure 3 summarizes the effects of heterodirectional bias on cooperation dynamics, consid-

ering false uniqueness (d =�c, c < 0, left half of the figure) and false consensus (d =�c, c> 0, right half). We

can observe that false uniqueness induces a stable coexistence of cooperators and defectors, which may

not be sufficient to support high levels of collective success (see transparent methods, supplemental infor-

mation, for more details on group achievement). On the other hand, false consensus introduces a ‘‘neutral

region’’ in which both cooperators and defectors stick to their current strategy.

The different impacts of false consensus and false uniqueness on cooperation dynamics can be further un-

derstood if we examine the gradients of selection and the decisions characterizing each type of bias. Fig-

ure 4B shows the original selection gradient in the absence of any bias. As already discussed, in this case,

the dynamics are simply characterized by a coordination threshold that corresponds to the fraction of co-

operators above which the population will evolve toward full cooperation and below which it will evolve

toward defection. As Figure 4E reveals, below that threshold, cooperators turn into defectors with high

probability and defectors remain defectors, making the gradient of selection of cooperators negative.

Above that threshold, defectors are likely to turn into cooperators, and cooperators stick to their strategy,

making the gradient of selection of cooperators positive. If individuals undergo false uniqueness biases

(Figure 4A), we observe that, at the macroscopic level, the population is likely to remain in a state where

Figure 2. Under-trust and over-trust (homodirectional biases) impact the likelihood of reaching optimal

coordination

In a coordination dilemma (f > 1), when there is no bias (d = c = 0), the dynamics of the population are characterized by a

coordination threshold that corresponds to the fraction of cooperators above which the population will evolve toward full

cooperation and below which it will evolve toward defection. That coordination threshold depends on the threshold

within the interacting group, N, necessary for getting the reward. The dashed lines represent unstable equilibria: below

them, there are insufficient cooperators, and the population evolves to a state of full defection; above, the population

evolves to a state of full cooperation. Full lines at 0 and 1 represent stable equilibria in the fraction of cooperators. The left

side of the figure, with negative biases toward cooperation (d = c < 0), is part of the under-trust region. The right side,

with positive biases toward cooperation (d = c > 0), is part of the over-trust region. Over-trust promotes the coordination

of a population into a cooperative state, whereas under-trust does the opposite. Effectively, biases toward the existence

of cooperators reduce the coordination threshold, facilitating cooperation. Parameters: N = 11, c = 1, b = 10, f = 1.5, and

c = d.
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cooperators and defectors coexist. In Figure 4D, we can observe that this coexistence is motivated by a set

of configurations in which both cooperators and defectors are likely to change their strategies: cooperators

believe themselves to be surrounded by defectors, which motivates them to alter their strategy to defec-

tion; conversely, defectors expect that more cooperation exists than what actually occurs, which encour-

ages themselves to become cooperators. A different dynamic is sustained by false consensus (Figure 4C).

In this case, we observe an area in which any change in behaviors only occurs through exogenous factors

(see supplemental Information). By further inspecting the likelihood that individuals change their strategy

(Figure 4F), we realize that a neutral region appears when neither cooperators nor defectors are incentiv-

ized to alter their strategies: as everyone overestimates the representativeness of their own strategy in the

population, cooperators believe that the cooperation threshold will be achieved, thus expecting to receive

high benefits for cooperating, and defectors are convinced that such threshold is hardly attained, assuming

no benefits for starting cooperating.

The previous results are confirmed in Figure 5 by a time-series analysis, where we assume that a large pop-

ulation of individuals (Z = 1,000) evolve following the best-response process detailed above (and in the

transparent methods section, supplemental information). We confirm that false uniqueness originates a

prevalent cooperator-defector coexistence, and false consensus introduces a neutral region where, over

time, individuals maintain their strategies; both scenarios are sub-optimal, leading to many groups failing

to achieve collective success.

Perception biases affect the effectiveness of monetary incentives

The previous effects of perception bias on cooperation dynamics imply that (1) different biases may have an

impact on achieving high levels of collective success and (2) interventions are likely to have a different

impact depending on whether individuals in a given population reveal a specific bias. Reasoning about

bias and incentives simultaneously also suggests comparing the effect of interventions based on (possibly

monetary) incentives such as rewards and punishment (Andreoni et al., 2003; Balliet et al., 2011; Couto

et al., 2020; Dreber et al., 2008; Góis et al., 2019; Vasconcelos et al., 2013) with the effect of interventions

that alter the information landscape available to individuals, akin to norm-based interventions

Figure 3. False uniqueness and false consensus (heterodirectional biases) lead to deadlocks resulting in individual

and collective suboptimal configurations

We show the position of the equilibrium points associated with different biases. Dashed lines represent unstable

equilibria, and full lines represent stable equilibria. Positive (negative) values of the gradient of selection, in white (gray),

indicate a tendency for the number of cooperators to increase (decrease). False uniqueness (c < 0, left) is characterized by

the existence of a stable configuration in which cooperators and defectors coexist, and the population is unable to solve

the coordination dilemma. From the social-optimum point of view, this is the worst-case scenario because individuals

contribute but not enough to surpass the threshold. A second—higher—coordination needs to be achieved for the

population to reach a fully cooperative state. False consensus introduces a region where individuals believe there are no

incentives to changing strategy even though the population is in a suboptimal configuration from the individual and

collective point of view. In such a region, individuals do not change strategies, and the gradient of selection is 0 (neutral

region, pink). Again, a second, higher, coordination needs to be achieved for the population to reach a fully cooperative

state. Same parameters as Figure 1, with M = 8 and d = �c.
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(Carattini et al., 2019; Miller and Prentice, 2016; Nyborg et al., 2016). Monetary incentives and information

(media) campaigns are typical tools to change norms and behaviors (Bicchieri, 2016). We should also note

that individuals tend to overestimate the impact of self-interest on the attitudes and behaviors of others

(Miller and Ratner, 1998), and this tendency is particularly salient when information is incomplete (Vuolevi

and Van Lange, 2010), which again denotes an interplay between monetary incentives (appealing to self-

interest) and information incentives (attempting to reduce uncertainty).

Establishing a quantitative link among incentives, bias, and collective success is only possible by consid-

ering the combined effect of the different equilibria and dynamical regions identified in Figures 3 and 4.

So, now, we turn our attention to identifying the time that a population spends in each state and what

the chance is that group success is achieved in those states. This can be accomplished by focusing on a

finite population of size Z and analyzing the stochastic, individual decisions. We assume the same process

as before but allow for a small probability of not adopting a strategy that is the best response (also called a

smooth best response (Fudenberg et al., 1998), which mimics uncertainty in estimating the payoff differ-

ences of the order to 1/b) and randomly adopting any possible strategy (with probability m). Moreover,

we alter the game to include punishment applied to defectors (e.g., fines, higher tariffs, or taxes) by an

amount ic, 0%i % 1. The value of i represents how the fines imposed compare with the costs paid by co-

operators, with i = 0 meaning that no punishment is imposed and i = 1 meaning that all the payoff advan-

tage of defectors, when compared with cooperators, is removed. In Figure 6, we show that increasing the

magnitude of punishment has a different effect depending on the nature of bias prevailing in a population.

For instance, a lower punishment is necessary to sustain collective success under false consensus,

compared with false uniqueness (for the combination of parameters analyzed, in particular, high value

M = 8). In fact, the prevalent coexistence characterizing false uniqueness and identified in Figure 4A

may lead to a fraction of cooperators that remains insufficient to guarantee high average levels of

group success; circumventing such stable coexistence of cooperators and defectors proves to be

A B C

D E F

Figure 4. False uniqueness originates a stable cooperator-defector coexistence, whereas false consensus introduces a neutral region on

cooperation dynamics

(A–F) The gradient of selection (A–C) measures how likely it is for cooperators to spread in a population, compared with defectors. Positive gradient values

mean that cooperators are more likely to spread than defectors. As noted in Figure 3, false uniqueness induces a stable coexistence of cooperators and

defectors (A). Further inspection of the strategic dynamics informs that this coexistence is due to a recurring transition of cooperators into defectors and

defectors into cooperators (D). Given that individuals adopting a given strategy underestimate the representativeness of that behavior, everyone is inclined

to change strategies: cooperators, as they do not believe that a minimal threshold of cooperation can be reached; defectors, as they believe that the

threshold was already reached. For reference, we include the gradient corresponding to the no-bias situation (B and E); in that case, stabilizing cooperation

requires overcoming one coordination barrier. If false consensus prevails, we note an inactivity area (neutral region, C) where both cooperators and

defectors are satisfied with their strategy. Individuals overestimate the representativeness of their strategy in the population; as such, cooperators keep their

strategy as they believe that the cooperation threshold was already reached, whereas defectors keep defecting as they believe that the threshold can never

be reached (F). We consider c = �d = �0.2 (false uniqueness, A) c = d = 0 (no bias, B), and c = � d = 0.2 (false consensus, C). Same parameters as in Figure 2.

See also Figure S1 for analysis of the effects of spontaneous changes and errors.
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harder—requiring extra incentives—than eliminating the neutral region associated with false consensus

(Figure 4C). Additionally, we can observe that an effort to reduce individuals’ perception biases can render

high levels of collective success, even in situations where low incentives (low i) are not effective—as a base-

line, we show the group success characterizing a situation where neither biases nor incentives lead to the

coordination in virtually all groups (Figure 6, gray curves).

Here, we assume that incentives are exogenously imposed (Góis et al., 2019) and do not introduce punish-

ment strategies as in, e.g., Couto et al. (2020), Hauert et al. (2007), Quan et al. (2017), Roos et al. (2015), and

Vasconcelos et al. (2013). Often, implementing incentives and institutions results in second-order free-

riding dilemmas; we argue that, even if such dilemmas are solved, biases can affect the effectiveness of

punishment and rewards. Also, we note that a direct comparison of the costs required to implement mon-

etary-based incentives and information-based incentives is case sensitive, and future works can build on

the model we propose for that purpose. Our results, however, already show that leveraging cooperation

and group success may benefit from explicitly identifying and addressing individuals’ social perception

biases.

DISCUSSION

Understanding how cooperation can be sustained in public goods dilemmas of different kinds is central to

address many of society’s current challenges. That endeavor can benefit from recognizing the effect of so-

cial perception bias in cooperation dynamics and setting up incentives and interventions that understand

and incorporate those dynamics. Here, we show that different types of social perception bias (e.g., false

consensus, false uniqueness, over-trust, or under-trust) play a distinct role in the behavioral dynamics asso-

ciated with non-linear public goods. Over-trust (under-trust) is likely to ease (hinder) the coordination asso-

ciated with reaching theminimal number of contributors for cooperation to self-organize. False uniqueness

leads to a persistent coexistence of cooperators and defectors, which can be insufficient to achieve collec-

tive success. Conversely, false consensus originates a neutral region where it is expected that individuals

stick with their strategies, possibly changing behaviors only through exploration (Traulsen et al., 2009)

and motives extraneous to the game being played. The fact that biases generate new, stable equilibria

can have strong implications for the functioning of society. The workings and efficiency of markets andmar-

ket regulation rely on the bottom-up ability of selfish agents to achieve socially desired outcomes and not

get stuck in deadlocks as the ones we identify. Furthermore, these new equilibria are damaging for the pos-

sibility to coordinate from unfavorable into highly favorable states. They halt such a transition even

in situations when all individuals would personally benefit from it. Besides implying different dynamics,

such biases can render incentives less effective: as a prototypical example, false uniqueness requires

that additional punishment is imposed on defectors (or, equivalently, rewards on cooperators) to achieve

A B C

Figure 5. False uniqueness originates a stable cooperator-defector coexistence, whereas false consensus introduces a neutral region on

cooperation dynamics (time-series analysis)

(A–C)We simulate the time evolution of strategy adoption in large populations composed of (Z= 1,000) individuals incurring (A) false uniqueness, (B) no bias,

or (C) false consensus. Each gray curve corresponds to a single run starting from a random initial condition (in terms of the initial number of cooperators). The

red curve corresponds to the average over all runs. We confirm that false uniqueness originates a prevalent cooperator-defector coexistence, where

populations with an intermediate number of initial cooperators get trapped in a deadlock configuration. False consensus, on the other hand, leads to a

neutral region where individuals maintain their strategies (eventually approaching the limits of such area and evolving to either full cooperation or full

defection). Same parameters as in Figure 2.
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the same levels of group success, when compared with, e.g., populations under the effect of false

consensus, and both require severer punishment compared with the absence of biases.

Although, currently, we focus on populations homogeneous in terms of bias and social contacts, the

mathematical framework we propose can, in the future, be tuned to explicitly consider differences in

biases within the same populations (Pearson et al., 2018) and the extent to which different network to-

pologies may augment the effect of perception bias on cooperation. In fact, some authors suggest

that social biases and judgment errors are often contradictory (Krueger and Funder, 2004). In this regard,

considering the social network of interacting individuals not only may prove desirable to re-create real-

istic settings but also can be instrumental in explaining the origin of social perception biases and recon-

ciling the apparently contradictory ones. Lee et al. show that considering homophily and interactions

over a social network can help to explain seemingly conflicting biases, such as the overestimation and

underestimation of a minority group size (Lee et al., 2019). Similarly, Galesic et al. show that homophily

and a sampling process whereby individuals derive their judgments from local information based on their

social environment (e.g., family, friends, and acquaintances) can explain when false consensus or false

uniqueness is expected to occur (Galesic et al., 2018). Alipourfard et al. further show that individuals’ per-

ceptions can be biased as a result of local correlations in a directed social network (Alipourfard et al.,

2020), and Lerman et al. show that social network effects can lead individuals to overestimate states

that are globally rare, if those are overrepresented in their local neighborhoods—a phenomenon named

majority illusion (Lerman et al., 2016). If perception biases result from social network effects rather than

cognitive flaws, interventions based on reshaping information flows about global behaviors are possible

and can be very impactful.

The analysis performed here is particularly relevant and timely given the growing number of works showing

that individuals systematically under- or overestimate the position of others in matters affecting collective

action problems (Kjeldahl and Hendricks, 2018; Leviston et al., 2013; Mildenberger and Tingley, 2019;

Monin and Norton, 2003; Pearson et al., 2018) (also beyond climate change [Suls et al., 1988]). In fact,

such perception biases are only but a subset of cognitive barriers that might affect decision making and

impede collective action toward a better future (Weber, 2017). To reason about how those biases come

A B

Figure 6. Perception biases affect the effectiveness of monetary incentives (such as a fee to be paid by defectors)

Incentives, like reward or punishment, are often used to move populations from unfavorable to favorable equilibria. The

effectiveness of incentives, however, depends on the level and nature of biases existent in a population. Here, we

measure group success, i.e., the fraction of groups that, on average, have the necessary number of cooperators to reap

the benefits of collective action. We explore a game setting in which unbiased individuals self-organize toward high levels

of group success. In a population with individuals that over-trust (c = d = 0.6), extra incentives are unnecessary to achieve

group success if full cooperation is an equilibrium (panel A, f = 1.5); incentives also improve cooperation when individuals

over-trust and if there is no incentive for cooperation above the threshold of group success (panel B, f = 0.8). In this case,

over-trusting individuals may refrain from cooperating when they erroneously believe that the collective success

threshold was already achieved. If individuals incur in false consensus (c = �d = 0.6), a lower punishment on defectors

(or conversely, reward to cooperators) is necessary, compared with a scenario of false uniqueness (c = �d = �0.6). Finally,

in a population with individuals that under-trust (c = d =�0.6), monetary incentives are ineffective to a large extent. Same

parameters as Figure 3. Other parameters: Z = 100, b = 10, m = 0.05.

See also Figures S2–S5 for an extended exploration of incentives and biases in other games, as well as an exploration of

different population sizes, group sizes, and selection intensities. See Figure S6 for heterogeneous, normally distributed

biases in a population.
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to be and change over time is indispensable for a mechanistic understanding of the feedbacks between

interventions and the biases themselves. As mentioned above, the existence of perception bias can be a

by-product of individuals’ psychological states, as well as the influence of local assortment (Cooney

et al., 2016; Lee et al., 2019), specific network topologies (Alipourfard et al., 2020), or information filtering.

False consensus, particularly, is likely to emerge if individuals’ opinions assort them. Establishing a link

between bias and cooperation can further illuminate how cooperation dynamics can depend on factors

such as opinion polarization and assortment (McCarty, 2019), echo chambers (Colleoni et al., 2014), infor-

mation cocoons (Sunstein, 2007), or on decisions about which opinions to share on mass media (Bowen

et al., 2021; Boykoff and Boykoff, 2004; Feldman et al., 2012). To realize the emergence and persistence

of these biases, one can also focus on the coevolutionary dynamics of strategic behavior at par with the

evolutionary dynamics of beliefs (Galesic et al., 2021) and biases (Johnson and Fowler, 2011; Leimar and

McNamara, 2019).

Different issues can also be associated with different levels of perception biases. Those levels depend on

how visible issues are (Shamir and Shamir, 1997) and how visible the number of individuals supporting them

is. Visibility can be a matter of design (e.g., using a COVID-19 tracing app entails the decision to give up

privacy and contribute to a public good; informing how many people are using it is a decision of the

designer) and policy-making (Nyborg et al., 2016). As Bicchieri puts it, solving collective action traps

may require a collective change of expectations (Bicchieri, 2016). In this regard, our work provides a mech-

anistic understanding of how norm-based interventions (aiming at changing individuals’ perceptions and

expectations [Carattini et al., 2019; Miller and Prentice, 2016; Prentice and Paluck, 2020; Tankard and Pal-

uck, 2016]) and information design (Mathevet et al., 2020) can be fundamental tools to trigger and sustain

collective action.

Limitations of the study

The current study focuses on dilemmas that consist of the binary decision to cooperate or defect. Further-

more, we do not model explicitly how perception biases evolve. Future studies can address these limita-

tions by extending the proposed model to understand the role of perception biases in dilemmas with

continuous contribution decisions (e.g., deciding how much to contribute to collective success from a

range of possible contributions), strategies explicitly conditioned on the number of expected cooperators

(Ohtsuki 2018) and in contexts where biases can evolve at par with strategies. Bias dynamics can be studied

in several ways: On the one hand, as introduced earlier, different biases can emerge in particular network

topologies and as a function of individuals’ homophily degree (e.g., see Galesic et al., 2018; Lee et al., 2019;

Lerman et al., 2016), which calls to consider biases and cooperation dynamics on top of interaction net-

works. On the other hand, the development of biases can be studied through evolutionary models that

explicitly define perception biases’ fitness (e.g., as in Johnson and Fowler [2011] where the evolution of

overconfidence is studied in the context of conflicts over resources) or throughmulti-level selectionmodels

(Cooney, 2019), where groups with particular sizes, structures, and information dissemination tools can

inspire or solve specific perception biases that affect internal cooperation levels and the consequent ca-

pacity to outperform other groups. Finally, here we assume that individuals can, at least, track the direction

of shifts in cooperation levels correctly. One can argue that biases can also prevent detecting such

changes. In this regard, we note that previous works establish a distinction between bias and accuracy

(West and Kenny, 2011) such that individuals may systematically misperceive the real cooperation levels

due to biases toward their own perspective but accurately track changes in cooperation over time. It would

be relevant to investigate, in the future, how accurately perceiving changes can be instrumental in

designing incentives for cooperation in the same dilemmas we here study.

Resource availability

Lead contact

Further information and requests for materials should be directed to Fernando P. Santos (fppdsantos@

gmail.com).

Materials availability
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Data and code availability

The data that support the results of this study are available from the corresponding authors upon request.

The figures discussed result directly from the set of equations described in the transparent methods section

(Supplemental Information). The code used to implement such equations and generate the figures is avail-

able from the corresponding authors upon request.

METHODS

All methods can be found in the accompanying transparent methods supplemental file.

SUPPLEMENTAL INFORMATION

Supplemental information can be found online at https://doi.org/10.1016/j.isci.2021.102375.
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Fischbacher, U., Gächter, S., and Fehr, E. (2001).
Are people conditionally cooperative? Evidence
from a public goods experiment. Econ. Lett. 71,
397–404.

Frey, B.S., and Meier, S. (2004). Social
comparisons and pro-social behavior: testing"
conditional cooperation" in a field experiment.
Am. Econ. Rev. 94, 1717–1722.

Fudenberg, D., Drew, F., Levine, D.K., and Levine,
D.K. (1998). The Theory of Learning in Games
(MIT press).

Galesic, M., Olsson, H., Dalege, J., van der Does,
T., and Stein, D.L. (2021). Integrating social and
cognitive aspects of belief dynamics: towards a
unifying framework. J. R. Soc. Interface 18,
20200857.

Galesic, M., Olsson, H., and Rieskamp, J. (2018). A
samplingmodel of social judgment. Psychol. Rev.
125, 363.

Geiger, N., and Swim, J.K. (2016). Climate of
silence: pluralistic ignorance as a barrier to
climate change discussion. J. Environ. Psychol.
47, 79–90.

Goethals, G.R., Messick, D.M., and Allison, S.T.
(1991). The uniqueness bias: studies of
constructive social comparison. In Social
Comparison: Contemporary Theory and
Research, pp. 149–176.
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Supplemental Figure 1 

 

Figure S1. Effect of spontaneous changes (with probability 𝝁, also known as mutation probability) and 
errors (controlled by the intensity of selection 𝜷, the largest 𝜷, the less errors individuals do when updating 
strategies) in the infinite population dynamics, Related to Figure 4. Other parameters: 𝜒 = ±0.2, 𝛿 = ±0.2, 
𝑓 = 1.5, 𝑀 = 8. 

  



Supplemental Figure 2 

 

Figure S2. Role of payoff difference uncertainty (the inverse of selection intensity, 𝟏/𝜷), population size (𝒁) 
and group size (𝑵) in overall group achievement, Related to Figure 6. When fixed, 𝑍 = 100,𝑀 = 8, 𝑓 =
1.5, 𝑁 = 11, 𝑐 = 1, 𝑏 = 10, 𝛽 = 10, 𝜇 = 0.05. 𝑀 = rounded[0.5𝑁] when 𝑁 is varying.  



Supplemental Figure 3 

 
Figure S3. Effect of asymmetric biases, that is, deviation from diagonals in Figure 1, Related to Figure 6. 
Same parameters as Figure 6 in main text, but with 𝜒 = ±0.7, 𝛿 = ±0.5. Compare with Figure 6 of the main 
text.   



Supplemental Figure 4 

 
Figure S4. The role of incentives in populations with perception bias: Over-trust (OT), False consensus 
(FC), False uniqueness (FU) and Under-trust (UT), Related to Figure 6. Results for N-person game with co-
existence (f<1), that is, where individuals do not have incentive to contribute further after the group has 
achieved the collective success threshold. Same parameters as Figure 6 in main text.  



Supplemental Figure 5 

 

 Figure S5. The role of incentives in populations with perception bias playing dillemas with different results 
from cooperation (𝒇 = 𝟎. 𝟖 and 𝒇 = 𝟏. 𝟓) and group success threshold (𝑴 = {𝟔, 𝟕, 𝟗, 𝟏𝟎}), Related to Figure 
6. Same parameters as Figure 6 in main text. We can observe that, as discussed in the main text, false 
consensus (FC) requires less punishment to achieve high values of collective success when M and f are 
both high. For low M and f we can also observe situations in which false uniqueness (FU) leads to scenarios 
where it becomes easier to incentivize cooperation. We also represent group success under over-trust (OT) 
and under-trust (UT). 

  



Supplemental Figure 6 

 

Figure S6. The role of incentives under bias heterogeneity, Related to Figure 6. Contrarily to the 
homogeneous bias scenario whose results we represent in Figure 6, here we assume that 𝜒 and 𝛿 convey 
the mean of a normal distribution with standard deviation 𝜎. We compute, numerically, the average fraction 
of cooperators and average group success for each value of defector fee (𝜄), taken over 1000 generations 
(where, at each generation, 𝑍 individuals have the possibility of changing strategies). Instead of using the 
transition probabilities detailed in Equations (9) and (10) below — which preclude any difference among 
cooperators or among defectors — we explicitly sample individuals, each possibly characterized by a 
specific value of bias, and compute the probability that this unique individual changes strategy. Assuming 
that strategy updates follow this stochastic process (also accounting for a mutation probability, 𝜇 = 0.05), 
we keep track of the number of strategies in the population in each generation, which allows us to quantify 
the average collective success (left panel) and average number of cooperators (right panel) associated with 
each value of fee 𝜄. This way, we are able to compute the collective success assuming an arbitrary 
distribution of biases in the population. Each combination of cooperators’ and defectors’ biases (𝜒 and 𝛿) 
represents the mean of a Normal distribution with standard deviation 𝜎. For each bias (false uniqueness, 
false consensus, over-trust, and under-trust), we use the same (𝜒,𝛿) as in Figure 6. We plot results for 𝜎 = 0 
and 𝜎 = 0.15. Despite the noise associated with the numerical procedure we use here — note that now, 
on top of bias heterogeneity, to compute a smooth transition probability between states one needs a very 
large number of samples — we are able to confirm the results of Figure 6 in a scenario of bias 
heterogeneity. Same parameters as Figure 6. Dashed lines correspond to 𝜎 = 0 (homogeneous bias) and 
full lines to 𝜎 = 0.15 (heterogeneous bias).   

  



Transparent Methods 

 

Payoff: Players interact in groups of fixed size 𝑁 to obtain a payoff Π! that depends on their action, 𝑋 =
𝐶	or 𝐷, and other players' actions. Action 𝐶 corresponds to costly cooperation, and action 𝐷 corresponds 
to defection. In an interacting group, cooperation costs an amount 𝑐, and, if there are less than 𝑀 
cooperators, there is no benefit to any of the group members. Whenever the group reaches a threshold 
of 𝑀 cooperators, each individual gets a benefit, 𝑏𝑐, plus an additional reward per extra cooperator, 𝑓𝑐. 
Thus, if we let 𝑗 be the number of cooperators in a group, we can write 

Π"[𝑗] = O𝑏𝑐 + 𝑓𝑐(𝑗 −𝑀)TΘ[𝑗 −𝑀]	and	 (1)
Π#[𝑗] = Π"[𝑗] − 𝑐, (2)

 

where Θ[𝑥] is the unit step function, which is 0 for 𝑥 < 0 and 1 for 𝑥 ≥ 0. In Figure 6, we alter the game to 
include punishment applied to defectors (e.g., fines, higher tariffs, or taxes), by an amount 𝜄𝑐, 0 ≤ 𝜄 ≤ 1. 
The value of 𝜄 represents how the fines imposed compare with the costs paid by cooperators, with 𝜄 = 0 
meaning that no punishment is imposed and 𝜄 = 1 that all the payoff advantage of defectors, in comparison 
with cooperators, is removed. Eq. (1) is thereby modified to Π"[𝑗] = O𝑏𝑐 + 𝑓𝑐(𝑗 −𝑀)TΘ[𝑗 − 𝑀] − 𝜄𝑐. 

 

Infinite populations: At each time unit, individuals have the same probability of considering changing their 
strategy. Changing strategy depends on the outcome they expect to get from their interactions, given the 
number of cooperators (and defectors) they perceive will be present. An actor playing 𝑋 will compare the 
expected payoff of cooperation, 𝑓#[𝑥Z!], to the average payoff of defectors, 𝑓"[𝑥Z!], when interacting in a 
group of size 𝑁, depending on the perceived fraction of cooperators in the population perceived by that 
player, 𝑥Z!. Each individual assumes they are equally likely to interact with all others, resulting in expected 
payoffs of 

𝑓#[𝑥Z!] = [ \𝑁 − 1𝑘 ^ (𝑥Z!)$(1 − 𝑥Z!)%&'&$Π#[𝑘 + 1]
%&'

$()

	and	 (3)

𝑓"[𝑥Z!] = [ \𝑁 − 1𝑘 ^ (𝑥Z!)$(1 − 𝑥Z!)%&'&$Π"[𝑘]
%&'

$()

. (4)

 

The player with strategy 𝑋 will change to the strategy 𝑌 if the expected average payoff is not worse, with 
a probability of 𝑝!→+[𝑓+ − 𝑓!] = Θ[𝑓+ − 𝑓!]. Finally, the perceived fraction of cooperators by each strategy, 
though influenced by the actual number of cooperators in the population, 𝑥, is affected by biases, which 
only act on the strategies of the other players. If 𝜒 and 𝛿 represent the biases affecting cooperators and 
defectors, respectively, then a cooperator will estimate a fraction of cooperators 𝑥Z#[𝑥] = 𝑥')!" =
expc10&,ln[𝑥]d and a defector will estimate a fraction of defectors 𝑥Z"[𝑥] = 𝑥')!# = exp e10&-ln[𝑥]f (where 

the second equality serves to clarify that −𝜒	and −𝛿 are exponents of 10). The previous equalities are also 
usefull to clarify that the choice of basis 10 is arbitrary and does not affect the generality of our results; 
different basis can be considered and, by rescaling 𝜒 and 𝛿, the same results would follow — for example, 

we could consider basis 𝑒 instead of 10, 𝑥Z"[𝑥] = 𝑥.!#
$
 and 𝑥Z#[𝑥] = 𝑥.!"$ , in which case the results under 

basis 10 are recovered by equating 𝜒̅ = ln[10]𝜒 and 𝛿̅ = ln[10]𝛿. This formulation guarantees that positive 
(negative) values of 𝜒 and 𝛿 indicate overestimation (underestimation) of cooperation (see Figure 1 in the 
main text). If 𝜒 = 𝛿 = 0 then 𝑥Z#[𝑥] = 𝑥Z"[𝑥] = 𝑥, which recovers the typical no-bias scenario where 
perceptions match reality. Thus, we can write the probability that the number of 𝐶s increases, and the 



number of 𝐷s decreases, per time unit as 𝑇/[𝑥] = (1 − 𝑥)𝑝"→# e𝑓#c𝑥Z"[𝑥]d − 𝑓"c𝑥Z"[𝑥]df and the probability 
that the number of 𝐶s decreases, and the number of 𝐷s increases, per time unit as 𝑇&[𝑥] =
𝑥	𝑝#→" e𝑓"c𝑥Z#[𝑥]d − 𝑓#c𝑥Z#[𝑥]df. The gradient of selection (Figure 4 and Figure S1) indicates the most likely 

direction of evolution of the population and is given by 𝑔[𝑥] = 𝑇/[𝑥] − 𝑇&[𝑥]; when 𝑔[𝑥] > 0, the number 
of cooperators is likely to increase and 𝑔[𝑥] < 0 implies that cooperation is likely to decrease.  

 

Finite populations: Let us now consider a population of size 𝑍. As before, players interact in groups of 
fixed size 𝑁 ≤ 𝑍 to obtain a payoff Π! that depends on their action, 𝑋 = 𝐶	or 𝐷, and other players' actions 
(as detailed above).  

Each time unit, individuals have the same probability of considering changing their strategy based on the 
outcome they expect to get from their interactions, given the number of cooperators (and defectors) they 
perceive will be present. An actor playing 𝑋 will compare the average payoff of cooperation, 𝑓#[𝑥Z!], to the 
average payoff of defectors, 𝑓"[𝑥Z!], depending on the perceived fraction of cooperators in the population 
seen by that player, 𝑥Z!. We assume a complete graph of interactions from which the interaction groups 
are sampled, resulting in average payoffs of  

𝑓#[𝑥Z!] = [ \𝑍 − 1𝑁 − 1^
&'
\𝑍	𝑥Z

! − 1
𝑘 ^\𝑍(1 − 𝑥Z

!)
𝑁 − 1 − 𝑘

^Π#[𝑘 + 1]
%&'

$()

	and	 (5)

𝑓"[𝑥Z!] = [ \𝑍 − 1𝑁 − 1^
&'
\𝑍	𝑥Z

!

𝑘 ^ \𝑍(1 − 𝑥Z
!) − 1

𝑁 − 1 − 𝑘
^Π"[𝑘]

%&'

$()

. (6)

 

The player with strategy 𝑋 will change to strategy 𝑌 with a probability that increases with the difference of 
expected average payoffs. The player can also change spontaneously from one strategy to another at a 
rate 𝜇, due to some exogenous event. Combining those effects resuls in a probability of changing strategy 

of 𝜇 + (1 − 𝜇)O1 + 𝑒&0(2%&2&)T&'. Finally, the actual fraction of cooperators in the population, 𝑥, affects the 
perceived fraction of cooperators by each strategy. However, biases on the strategies of others also affect 
the latter. If 𝜒 and 𝛿 represent the bias affecting cooperators and defectors, respectively, then a cooperator 
will estimate a fraction of cooperators 𝑥Z#[𝑥] and a defector will estimate a fraction of defectors 𝑥Z"[𝑥] given 
by 

𝑥Z#[𝑥] = o
𝑍𝑥 − 1
𝑍 − 1 p

')!"

+
1
𝑍 	and	 (7)

𝑥Z"[𝑥] = o
𝑍𝑥
𝑍 − 1p

')!'

. (8)
 

This formulation guarantees that positive (negative) values of 𝜒 and 𝛿 indicate overestimation 
(underestimation) of cooperation. Again, we note that, in Eqs. (7) and (8), −𝜒 and −𝛿  are exponents of 10, 
and basis 10 was chosen without loss of generality. Thus, we can write the probability that the number of 
𝐶s increases, and the number of 𝐷s decreases, per time unit, 𝑇/[𝑥], and the probability that the number 
of 𝐶s decreases, and the number of 𝐷s increases, per time unit, 𝑇&[𝑥], as  

𝑇/[𝑥] = (1 − 𝑥)q𝜇 + (1 − 𝜇) o1 + 𝑒&042(567
)[6]/':;&2)567

)[6];<p
&'
r 	and (9)

𝑇&[𝑥] = 𝑥 q𝜇 + (1 − 𝜇) o1 + 𝑒&042)567
([6]&':;&2(567

([6];<p
&'
r . (10)

 



We note that this update resembles a smooth best-response (Fudenberg et al., 1998) and, in the past, was 
also used to model so-called counterfactual thinking (Pereira and Santos, 2018). As when considering 
infinite populations, the gradient of selection indicates the most likely direction of evolution of the 
population and is, thus, given by 𝑔[𝑥] = 𝑇/[𝑥] − 𝑇&[𝑥]. In this case, diffusion indicates the level of noise 
of the system at any configuration and is given by 𝑑[𝑥] = (𝑇/[𝑥] + 𝑇&[𝑥]) 𝑍⁄ . 

 

Analysis of the dynamics for infinite populations 

The gradient of selection and diffusion govern the dynamics, which can be written as: 

𝑥̇ = 𝑔[𝑥] + w𝑑[𝑥]	Γ[𝑡], (11) 

where Γ[𝑡] is a random variable with gaussian distribution of zero mean and unit variance. Thus, when 𝑔[𝑥] 
is positive, 𝑥 tends to increase. When 𝑔[𝑥] is negative, 𝑥 tens to decrease. The sign of 𝑔 alone contains 
the information of the preferential direction of evolution of the fraction of cooperators in the population.  

In the case of an infinite population, 𝑍 → ∞, and perfect best response, 𝛽 → ∞, we get 

𝑥̇ = 𝜇(1 − 2𝑥) + (1 − 𝜇) o(1 − 𝑥)	Θ e𝑓#c𝑥Z"[𝑥]d − 𝑓"c𝑥Z"[𝑥]df − 𝑥	Θ e𝑓"c𝑥Z#[𝑥]d − 𝑓#c𝑥Z#[𝑥]dfp , (12) 

and 

𝑓#[𝑥Z!] = [ \𝑁 − 1𝑘 ^ (𝑥Z!)$(1 − 𝑥Z!)%&'&$(𝑏𝑐 + 𝑓𝑐(𝑘 −𝑀) + 𝑓𝑐) − 𝑐
%&'

$(=&'

(13)

𝑓"[𝑥Z!] = [ \𝑁 − 1𝑘 ^ (𝑥Z!)$(1 − 𝑥Z!)%&'&$O𝑏𝑐 + 𝑓𝑐(𝑘 −𝑀)T
%&'

$(=

(14)

 

and 

𝑓#[𝑥Z!] − 𝑓"[𝑥Z!] = [ \𝑁 − 1𝑘 ^ (𝑥Z!)$(1 − 𝑥Z!)%&'&$(𝑏𝑐 + 𝑓𝑐(𝑘 −𝑀) + 𝑓𝑐)
%&'

$(=&'

− 𝑐

− [ \𝑁 − 1𝑘 ^ (𝑥Z!)$(1 − 𝑥Z!)%&'&$O𝑏𝑐 + 𝑓𝑐(𝑘 −𝑀)T
%&'

$(=

= 𝑏𝑐 \𝑁 − 1M− 1^ (𝑥Z
!)=&'(1 − 𝑥Z!)%&> + 𝑓𝑐 [ \𝑁 − 1𝑘 ^ (𝑥Z!)$(1 − 𝑥Z!)%&'&$

%&'

$(=

− 𝑐

= 𝑓𝑐(1 − CDF[Binomial[𝑁 − 1, 𝑥Z!],𝑀 − 1]) + \𝑁 − 1𝑀 ^(𝑥Z!)>&'(1 − 𝑥Z!)%&>𝑏𝑐 − 𝑐. 

Notice that 𝑓#[0] − 𝑓"[0] = −𝑐 < 0 and, when 𝑓 > 1, 𝑓#[1] − 𝑓"[1] = 𝑓𝑐 − 𝑐 > 0. If 𝑋 = 𝐷, this change of 
signs guarantees that, from the perspective of a defector, there is at least one coordination dilemma, i.e., 
there is no incentive to change strategy if there are too few cooperators, and there is an incentive to 
become a cooperator if there are enough cooperators. Identically for the perspective of cooperators, when 
𝑋 = 𝐶, irrespectively of the bias function. 

Analysis of the dynamics for finite populations 

Recovering Eqs.(5-6) and Eqs.(1-2), we can write 



𝑓"[𝑥Z!] = [ \𝑍 − 1𝑁 − 1^
&'
\𝑍	𝑥Z

!

𝑘
^ \𝑍(1 − 𝑥Z

!) − 1
𝑁 − 1 − 𝑘

^Π"[𝑘]
%&'

$()

= [\𝑍 − 1𝑁 − 1^
&'
\𝑍	𝑥Z

!

𝑘
^ \𝑍(1 − 𝑥Z

!) − 1
𝑁 − 1 − 𝑘

^ O𝑏𝑐 + 𝑓𝑐(𝑘 −𝑀)TΘ[𝑘 −𝑀]
%&'

$()

= [ \𝑍 − 1𝑁 − 1^
&'
\𝑍	𝑥Z

!

𝑘
^ \𝑍(1 − 𝑥Z

!) − 1
𝑁 − 1 − 𝑘

^ (𝑏𝑐 + 𝑓𝑐(𝑘 −𝑀))
%&'

$(>

(15)

 

𝑓#[𝑥Z!] = [ \𝑍 − 1𝑁 − 1^
&'
\𝑍	𝑥Z

! − 1
𝑘 ^o𝑍(1 − 𝑥Z

!) − 𝛿!"
𝑁 − 1 − 𝑘

pΠ#[𝑘 + 1]
%&'

$()

= [\𝑍 − 1𝑁 − 1^
&'
\𝑍	𝑥Z

! − 1
𝑘 ^\𝑍(1 − 𝑥Z

!)
𝑁 − 1 − 𝑘

^ O𝑏𝑐 + 𝑓𝑐(𝑘 + 1 −𝑀)TΘ[𝑘 + 1 −𝑀]
%&'

$()

− 𝑐

= [ \𝑍 − 1𝑁 − 1^
&'
\𝑍	𝑥Z

! − 1
𝑘 ^ \𝑍(1 − 𝑥Z

!)
𝑁 − 1 − 𝑘

^ O𝑏𝑐 + 𝑓𝑐(𝑘 + 1 −𝑀)T
%&'

$(=&'

− 𝑐

= \𝑍 − 1𝑁 − 1^
&'
\𝑍	𝑥Z

! − 1
𝑀 − 1 ^ \𝑍(1 − 𝑥Z

!)
𝑁 −M ^𝑏𝑐 +

+[ \𝑍 − 1𝑁 − 1^
&'
\𝑍	𝑥Z

! − 1
𝑘 ^ \𝑍(1 − 𝑥Z

!)
𝑁 − 1 − 𝑘

^ O𝑏𝑐 + 𝑓𝑐(𝑘 + 1 −𝑀)T
%&'

$(=

− 𝑐 (16)

 

 

To compute 𝑇/ we need 

𝑓# }𝑥Z"[𝑥] +
1
𝑍~ − 𝑓"c𝑥Z

"[𝑥]d =

= \𝑍 − 1𝑁 − 1^
&'
\ 𝑍	𝑥Z

"

𝑀− 1^\
𝑍(1 − 𝑥Z") − 1

𝑁 −M ^𝑏𝑐 +

+𝑓𝑐 [ \𝑍 − 1𝑁 − 1^
&'
\𝑍	𝑥Z

"

𝑘 ^ \𝑍(1 − 𝑥Z
") − 1

𝑁 − 1 − 𝑘
^

%&'

$(=

− 𝑐

= 𝑓𝑐O1 − CDFcHyperGeo[𝑍 − 1,𝑁 − 1, 𝑍𝑥Z"],𝑀 − 1dT +

+\𝑍 − 1𝑁 − 1^
&'
\ 𝑍	𝑥Z

"

𝑀− 1
^\𝑍(1 − 𝑥Z

") − 1
𝑁 −M

^𝑏𝑐 − 𝑐. (17)

 

To compute 𝑇& we need 

𝑓" }𝑥Z#[𝑥] −
1
𝑍~ − 𝑓#c𝑥Z

#[𝑥]d =

= −\𝑍 − 1𝑁 − 1^
&'
\𝑍	𝑥Z

# − 1
𝑀 − 1 ^ \𝑍(1 − 𝑥Z

#)
𝑁 −𝑀 ^𝑏𝑐 −

−𝑓𝑐 [ \𝑍 − 1𝑁 − 1^
&'
\𝑍	𝑥Z

# − 1
𝑘 ^ o𝑍(1 − 𝑥Z

#)
𝑁 − 1 − 𝑘

p
%&'

$(=

+ 𝑐

= −𝑓𝑐O1 − CDFcHyperGeo[𝑍 − 1,𝑁 − 1, 𝑍𝑥Z# − 1],𝑀 − 1dT −

−\𝑍 − 1𝑁 − 1^
&'
\𝑍	𝑥Z

# − 1
𝑀 − 1

^ \𝑍(1 − 𝑥Z
#)

𝑁 −𝑀
^𝑏𝑐 + 𝑐. (18)

 

Importantly, we can write 



𝑥Z![𝑥] = o
𝑍𝑥 − 𝛿!#
𝑍 − 1 p

')!*&

+
𝛿!#
𝑍 , (19) 

with	𝑏! = 𝜒𝛿!# + 𝛿	𝛿!".	 Here, 𝛿!+ represents the Kroneker delta and should not be confused with 𝛿 
(without subscripts and representing defectors’ bias): 𝛿!+ = 1 if 𝑋 = 𝑌 and 𝛿!+ = 0 otherwise. For any 𝜇 >
0 and finite 𝛽 we can define a Markov chain of the number of cooperators over time, 𝑖, using the 
probabilities of increasing and decreasing 𝑖 by one unit as 𝑇/[𝑖/𝑍] and 𝑇&[𝑖/𝑍], respectively. The evolution 
of 𝑖 is governed by a Master-equation of the form 

𝑑𝑝?[𝑡]
𝑑𝑡 = 𝑝?&'[𝑡]𝑇/ }

𝑖 − 1
𝑍 ~ + 𝑝?/'[𝑡]𝑇& }

𝑖 + 1
𝑍 ~ − 𝑝?[𝑡] o𝑇/ }

𝑖
𝑍~ + 𝑇

& }
𝑖
𝑍~p ,

(20) 

where 𝑝?[𝑡] is the probability of finding the system in configuration 𝑖 after a period 𝑡 in which the system 
was in some configuration 𝑖), 𝑝?[0] = 𝛿??+. The solution will converge to a stationary solution, 𝑝?∗, which is 
independent of the initial condition 𝑖). Thus, 𝑝?∗ reflects the probability of finding the system with 𝑖 
cooperators a longer time after we observe 𝑖) cooperators (which is our best bet if there are no 
observations at all).  

With it, we can compute the expected number of groups that reach the threshold, which we call group 
achievement, 𝜂. The group achievement is computed as 

𝜂 =[𝑝?∗ [ \𝑍𝑁^
&'
\𝑖𝑘^ \

𝑍 − 𝑖
𝑁 − 𝑘^

%

$(>

:

?()

. (21) 

We can also compute the average level of cooperation simply as 

〈
𝑖
𝑍
〉 =[𝑝?∗

𝑖
𝑍

:

?()

. (22) 

 

A note on the definition of false uniqueness 

We note that the operationalization of false uniqueness that we use throughout our main text does not 
perfectly match all previous definitions of this social perception bias: false uniqueness was referred to as 
the tendency for individuals to underestimate the proportion of those sharing their desirable attributes 
(Baumeister and Vohs, 2007; Suls et al., 1988); an alternative would be using pluralistic ignorance, 
previously defined as the tendency for individuals to wrongly assume that their behaviors differ from 
everybody else’s, which happens as public actions can differ from private beliefs and opinions (Baumeister 
and Vohs, 2007; Miller and McFarland, 1987). A completely accurate implementation of false uniqueness 
would require defining desirability, while a completely accurate implementation of pluralistic ignorance 
would require distinguishing public and private strategies in or model. As explicitly introducing desirability 
or private behaviors would increase the complexity of our model beyond the scope of the analysis we 
intend to perform (for the complexity of modeling desirability and private information associated with 
cooperation see, respectively, (Ohtsuki and Iwasa, 2004; Santos et al., 2018) and (Hilbe et al., 2018; 
Ohtsuki et al., 2015)), we opted to use false uniqueness to simply denote the tendency for individuals to 
underestimate the representativeness of their own strategy in the population, following works such as 
(Galesic et al., 2018; Krueger, 2000; Lee et al., 2019).   
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