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Abstract
Stem cells hold indefinite self-renewable capability that can be differentiated into 
all desired cell types. Based on their plasticity potential, they are divided into 
totipotent (morula stage cells), pluripotent (embryonic stem cells), multipotent 
(hematopoietic stem cells, multipotent adult progenitor stem cells, and 
mesenchymal stem cells [MSCs]), and unipotent (progenitor cells that differentiate 
into a single lineage) cells. Though bone marrow is the primary source of 
multipotent stem cells in adults, other tissues such as adipose tissues, placenta, 
amniotic fluid, umbilical cord blood, periodontal ligament, and dental pulp also 
harbor stem cells that can be used for regenerative therapy. In addition, induced 
pluripotent stem cells also exhibit fundamental properties of self-renewal and 
differentiation into specialized cells, and thus could be another source for 
regenerative medicine. Several diseases including neurodegenerative diseases, 
cardiovascular diseases, autoimmune diseases, virus infection (also coronavirus 
disease 2019) have limited success with conventional medicine, and stem cell 
transplantation is assumed to be the best therapy to treat these disorders. 
Importantly, MSCs, are by far the best for regenerative medicine due to their 
limited immune modulation and adequate tissue repair. Moreover, MSCs have 
the potential to migrate towards the damaged area, which is regulated by various 
factors and signaling processes. Recent studies have shown that extracellular 
calcium (Ca2+) promotes the proliferation of MSCs, and thus can assist in 
transplantation therapy. Ca2+ signaling is a highly adaptable intracellular signal 
that contains several components such as cell-surface receptors, Ca2+ 
channels/pumps/exchangers, Ca2+ buffers, and Ca2+ sensors, which together are 
essential for the appropriate functioning of stem cells and thus modulate their 
proliferative and regenerative capacity, which will be discussed in this review.
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Core Tip: Regenerative medicine has the potential to replace damaged tissues. Stem 
cells provide new hope for regenerative therapy as they have indefinite self-renewable 
capability and can differentiate into all cell types. Stem cells can be obtained from both 
exogenous and endogenous sources. Moreover, stem cells migrate towards the 
damaged organs; however, signaling molecules/factors that allow them to move to 
damaged organs and facilitate repair have not been fully identified. Ca2+ signaling is 
critical for appropriate functioning of stem cells. Importantly, Ca2+ signaling is highly 
adaptable, and how it modulates stem cell function and its regenerative capacity is 
discussed in this article.
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INTRODUCTION
Stem cells are unique, undifferentiated cells that possess two fundamental properties, 
indefinite self-renewable capability and differentiation capability into all types of cell 
lineages. These two stem cell traits make them special, and thus, they can be used for 
organ development or tissue therapy[1,2]. Self-renewal capability primarily means that 
cells have the ability to maintain an undifferentiated state, while undergoing multiple 
cell divisions. Similarly, differentiation capability or plasticity/potency of stem cells 
means that the cells have the capability to differentiate into different cell lineages. 
Thus, understanding the factors that make them proliferative as well identifying the 
niches/signaling events that allow them to develop into unique cell lineages is 
essential for their use in regenerative therapy. Based on their source, stem cells can be 
broadly divided into two types: “embryonic stem cells” (ESCs) and “non-embryonic 
adult/somatic stem cells”[3]. However, stem cells can also be named according to their 
origin and plasticity such as embryonic, germinal, and somatic (fetal or adult) stem 
cells. Furthermore, based on their differentiating potential, stem cells are also classified 
into totipotent, pluripotent, and multipotent cell types[4].

ESCs
After fertilization, the zygote divides into multiple cells, which are called the morula 
stage, and these individual cells are named totipotent cells. Totipotent cells exhibit a 
very high self-renewal capacity along with a similarly high differentiation potential 
into multiple lineages. These cells further grow, mature, divide, and develop into a 
blastocyst. Cells of the blastocyst’s inner cell mass are more specialized cells and thus 
are referred to as ESCs or pluripotent stem cells. ESCs have a unique property and can 
differentiate into all three germ layers that develop all potential organs with endless 
dividing potential, which makes them perfect for regenerative therapy. Although 
ethical concerns prevent them from being used for regenerative therapy, 
extraembryonic tissues or placental cells also have self-renewing capacity that 
maintains an undifferentiated state similar to that observed in ESCs, and thus are also 
a great source of non-ESCs[3,5-7]. However, these cells are in limited quantity and are 
sometimes contaminated with other cells, making them hard to be used for 
regenerative therapy.

Non-embryonic adult/somatic cells
Pluripotent stem cells can generate into multipotent stem cells, which are more 
“mature” cells but have restricted ability to differentiate into specialized cells. 
Multipotent stem cells are already committed to lineage-specific differentiation, and 
thus have minimal plasticity potential. These can be isolated from a variety of tissue 
sources[3,6] as described below and shown in Figure 1.

Bone marrow and bone marrow stem cells: Bone marrow niches are structurally 
organized in the medullary cavity and are protected within the bones. Importantly, 
bone cells serve as skeletal support for hematopoietic cells (HPCs) along with serving 
as calcium (Ca2+) reservoirs. The mammalian bone marrow is an organ of the immune 
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Figure 1 Stem cell properties and their types. A: Stem cells have two unique fundamental properties, self-renewal, and differentiation potential; B: Showing 
the development of different stem cells such as embryonic stem cells, hematopoietic stem cells (HSCs), mesenchymal stem cells (MSCs), and multipotent adult 
progenitor stem cells (MAPCs); C: Showing the generation of induced pluripotent stem cells (iPSCs) from mouse fibroblast cells using four factors (octamer-binding 
transcription factor 3/4, SRY-box transcription factor 2, c-Myc, Kruppel-like factor 4). SSEAs: Stage-specific embryonic antigens.

system, which is the largest semisolid organ of the human body. Bone marrow exists 
in the medullary cavity and epiphysis of the long bones such as humeri, ribs, femora, 
tibia, pelvis, and skull. It constitutes a soft gelatinous and dynamic tissue, which varies 
from person to person in its structure, quantity, and quality[8-10]. Bone marrow contains 
both soluble and cellular parts that change within the person over time. The soluble 
part is made up of cytokines, growth factors, chemokines, hormones, and various ions. 
The cellular portion comprises different cell types such as adipocyte, macrophage, 
fibroblast, osteoblast, and stem cells[11]. Importantly, bone marrow is the largest 
reservoir of non-ESCs that contains hematopoietic stem cells (HSCs), mesenchymal 
stem cells (MSCs), and multipotent adult progenitor stem cells (MAPCs). The 
hematopoietic region of the bone marrow contains HSCs and HPCs, whereas the 
vascular component contains non-HPCs such as MSCs and MAPCs[12]. Stem cells are 
not distributed randomly within the bone marrow; instead, they are highly organized 
and constitute the bone marrow microenvironment or niche where cells are protected 
and work in a synchronized manner[10,11].
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HSCs
HSCs are essential for making different types of blood cells and are present in 
specialized areas of bone marrow referred to as the “the primary hematopoiesis 
site"[13]. Hematopoiesis is a dynamic process that maintains homeostasis between the 
production and consumption of all terminally differentiated blood cells[14]. HSCs 
produce myeloid progenitor cells, which can be differentiated into granulocytes, 
monocytes, erythrocytes, platelets, and lymphoid progenitor cells, which further 
differentiate into lymphocytes and plasma cells. HSCs express specific surface markers 
such as stem cell antigen-1 (Sca-1), c-kit, cluster of differentiation 34 (CD34), Thy-1, 
CD201, and CD105/endoglin, whereas human HSCs express c-Kit, Sca-1, Thy-1, and 
CD133. Additional markers for individual cells are indicated in Table 1[15].

MAPCs
MAPCs were first isolated from rat bone marrow by Dr. Verfaillie’s group in 2002. 
Rodent bone marrow-derived MAPCs can differentiate into endothelial cells, 
adipocytes, chondrocytes, and osteocytes[16]. Rat MAPCs express c-Kit+, CD9+, CD13+, 
CD31+ but are negative for CD44, major histocompatibility complex class I, CD45, and 
Thy1 surface markers[17], while human MAPCs exhibit higher expression of CD44, 
CD13, CD73, and CD90. MAPCs also have immunomodulatory properties and show 
higher expression of pluripotency factors such as octamer-binding transcription 
protein 4 (Oct4), SRY-box transcription factor 7 (Sox7), Sox17, Rex-1, GATA binding 
protein 4 (GATA4), and GATA6 and thus are used for tissue regeneration (Table 1)[18].

MSCs
Friedenstein’s group first discovered adult bone marrow-derived MSCs in 1968[19] but 
Caplan gave the term ‘mesenchymal stem cell’[20]. Bone marrow is considered the 
primary source of MSCs; however, MSCs have extensive localization such as in 
adipose tissue, placenta, amniotic fluid, umbilical cord blood, umbilical cord, 
periodontal ligament, and dental pulp[19,21,22]. MSCs regulate and maintain stemness, 
proliferation, and differentiation (such as into adipocytes, osteocytes, chondrocytes, 
and other cells), and are essential for the self-renewal of HSCs and their progenitor 
cells[11]. As per the Mesenchymal and Tissue Stem Cell Committee of the International 
Society of Cellular Therapy guideline, the minimal criteria for MSC characterization 
include plastic adherent property and spindle-shaped morphology, along with the 
expression of MSC-positive markers such as CD29 (b1-integrin), CD44, and Sca-1, and 
negative for markers such as CD11b, CD34, and CD45 (Table 1). In addition, they 
should have a tri-lineage differentiation such as adipocytes, osteocytes, and 
chondrocytes and cells, those satisfy these criteria are thus called “MSCs,” and those 
that do not, are termed “multipotent mesenchymal stromal cells”[10,11,23-28]. Human 
MSCs must also be positive for certain surface markers and must be negative for 
specific surface markers as indicated in Table 1[29].

Very small embryonic-like stem cells
Another type of pluripotent stem cell that is present in multiple tissues, including bone 
marrow, cord blood, and gonads, are proposed as very small embryonic-like (VSEL) 
stem cells[30]. Kucia et al[31] in Ratajczak et al[32] first reported VSEL stem cells in adult 
mice bone marrow. Later, VSELs were found in various organs such as the human 
cord and peripheral blood. VSEL stem cells show multiple characteristics of ESCs, 
including differentiating ability into all three germ layers[30]. In addition, VSEL stem 
cells are the most primitive stem cells that migrate to the gonadal ridges during 
development and further relocate to all developing organs and survive throughout 
life[33].

Induced pluripotent stem cells
Although different types of stem cells are used in biomedical and clinical research, one 
of the challenges that remain is that they are not in sufficient quantity. In addition, 
they are not from the same individual and are thus considered foreign, thereby having 
immunological issues[34]. To overcome these issues, induced pluripotent stem cells 
(iPSCs) have come to light in recent years that can not only solve the ethical issues 
related to the use of ESCs but can also be developed from the same individual and 
thus can be a safer alternative. In 2006, Takahashi and Yamanaka[35] were able to 
generate iPSCs directly from mouse fibroblast using four critical factors, Oct3/4, Sox2, 
c-Myc, and Kruppel-like factor 4 (Klf4)[35,36]. Similarly, another group showed that four 
factors that include Oct4, Sox2, Nanog, and Lin28 were also essential to generate iPSCs 
from human somatic cells. Importantly, generated iPSCs exhibited essential 
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Table 1 Stem cells and their phenotypic markers and transcription factors

Embryonic stem cells (expression of SM/TF)

Positive 
SM

SSEA-3, SSEA-4, TRA-1-60, TRA-1-81, alkaline phosphatase (ALP), CD9, Thy1, HLA-I CD133, and CD326[92-94]

Negative 
SM

SSEA-1[92-94]

Human

TF Oct 3/4, Sox2, Nanog, activin/nodal, FGF, Esrrb, and Tfcp2l1, Klf4, Klf2, Tbx3, and Gbx2[92,94,95]

Mouse Positive 
SM

SSEA-1 and alkaline phosphatase[92,94]

Negative 
SM

SSEA-3, SSEA-4, TRA-1-60, and TRA-1-81[92,94]

TF Oct-3/4, Sox2, Nanog, LIF, BMP, genesis, germ cell nuclear factor, GDF-3, FGF-4, UTF1, Fbx15, and Sall4[92,94,96]

Hematopoietic stem cells (expression of SM/TF)

Human Positive 
SM

CD34, CD90, CD49R, and CD133[7,97,98]

Negative 
SM

Lin, CD38, and CD45RA[7,97,98]

TF AHR, BMI1, GFI1, HES1, HLF, Runx-1, Scl/tal-1, Lmo-2, MII, Tel, and GATA-2[97,99]

Mouse Positive 
SM

Sca-1, c-kit, CD49b, CD150, (endoglin), and Slamf1[7,97,100]

Negative 
SM

Lin, FLT3, CD34, CD41, Flk2, and CD48[7,97,100]

TF Runx-1, Scl/tal-1, Lmo-2, MII, Tel, Bmi-1, Gfi-1, and GATA-2[99,101]

Multipotent stem cells (expression of SM/TF)

Human Positive 
SM

CD146, CD44, CD13, CD73, CD90, CD105, and MHC class I[18,102]

Negative 
SM

CD34, CD45, c-kit, KDR, CD56, CD271, CD140a, CD140b, and ALP[18,102]

TF Oct-4 Rex-1, Nanog, and BmI-1[102,103]

Mouse Positive 
SM

c-Kit, CD9, CD13, CD31, SSEA-1, and Sca-1[17,104]

Negative 
SM

CD3, CD19, CD34, CD44, CD45, c-Kit Thy1, Flk-1MHC-I, MHC class II, Gr-1, and Mac-1[17,104]

TF Oct-4, Rex-1, and Nanog[16,102]

Mesenchymal stem cells (expression of SM/TF)

Human Positive 
SM

CD10, CD13, CD29, CD44, CD49e (a5-integrin), CD54 (intercellular adhesion molecule [ICAM]-1), CD58, CD71, CD73, CD90, 
CD105, CD140a, CD140b, CD146, CD166 (activated leukocyte cell adhesion molecule), CD271, Sca-1, ALP MHC class I, vimentin, 
cytokeratin (CK) 8, CK-18, and nestin[18,27-29]

Negative 
SM

CD4, CD8, CD11a, CD11b, CD14, CD15, CD16, CD19, CD25, CD31, CD33, CD34, CD45, CD49b, CD49d, CD49f, CD50, CD56, CD62E, 
CD62L, CD62P, CD79a, CD80, CD86, CD106 (vascular cell adhesion molecule [VCAM]-1), CD117, CD271, c-kit, KDR, HLA-DR, 
cadherin V, and glycophorin A[18,27-29]

TF Oct-4, Rex-1, and Sox-2[105]

Mouse Positive 
SM

CD29, CD44, CD73, CD90, CD105, and Sca-1, Thy1.2, and CD135[10,23,24,26,28]

Negative 
SM

CD11b, CD14, CD31, CD34, CD45, and CD86, CD135, c-Kit, and VCAM-1[10,23,24,26,28]

TF HOX, stage-specific embryonic antigen 1 (SSEA-1), Nanog, Oct-4, Rex-1, and GATA-4[25]

SM: Surface marker; TF: Transcription factor.

characteristics like ESCs such as normal karyotypes, telomerase activity, cell surface 
markers, and maintaining the developmental potential that also has differentiation 
potential[36,37]. Importantly, as a proof of concept, iPSCs are used to treat sickle cell 
anemia using mouse models that show its importance for therapeutic usage. However, 
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more research is needed to understand the key signaling changes due to 
overexpression of these transcription factors as they can lead to uncontrolled growth. 
Cost as well as time to develop these stem cells are also issues and moreover, as 
several factors and animal products are used to grow these cells, they hinder its use for 
regenerative medicine.

Stem cells and issues for using them for regenerative medicine: Stem cells are critical 
for the repair, replacement, and regeneration of damaged tissues that are able to 
restore organ function. Stem cells can act as regenerative medicine as they are valuable 
sources of new cells to treat various degenerative/aging, autoimmune and genetic 
disorders[38]. The rapid expansion of stem cell research and stem cell product 
commercialization has also created numerous ethical issues. The killing of embryos to 
obtain stem cells or create human ESC lines is considered the primary cause of 
controversy[39-41]. iPSCs provide an essential tool for stem cell therapy, but they are not 
ideal. Although the destruction of embryos is not required to generate iPSCs as they 
are obtained from somatic cells' reprogramming, they come with their own issues. 
Insertion of multiple copies of the retroviral vectors is needed to generate iPSCs from 
skin fibroblast cells, which can easily cause mutations and thus could be harmful. In 
addition, one of the four genes, c-Myc, is a proto-oncogene and can be oncogenic based 
on certain conditions and can induce tumors. Also, studies have revealed that 1 in 
5000-10000 transfected cells became iPSCs, i.e. only specific cells have the potential to 
be reprogrammed into iPSCs. Thus, iPSCs may not be the ultimate candidate for 
transplantation therapy[42]. Also, other ethical concerns remain if human iPSCs could 
be used in the generation of the embryo, germ cells, human clones[43]. Thus, in spite of 
the recent development, additional research is needed to overcome some of these 
issues. Although various factors and signaling mechanisms are required for self-
renewal and differentiation of stem cells, explaining all of them is beyond this review. 
Therefore, in this review, we will focus on essential and significantly less noticed 
factors, such as Ca2+ and other divalent cations Ca2+ signaling, and Ca2+ channels in 
stem cell functions and regulation.

CA2+ AND INTRACELLULAR CA2+ STORAGE
Ca2+ is the most crucial element in cells as it is an important intracellular secondary 
messenger. Evolution has utilized Ca2+ to bind to various biological macromolecules, 
which makes it unique that is able to effectively regulate the concentration of free Ca2+

[44]. Ca2+ modulates a diversity of cellular functions such as transcription, apoptosis, 
cytoskeletal rearrangement, immune response, growth, proliferation and 
differentiation, maintenance of pluripotency, and self-renewal of stem cells[45]. Ca2+ is a 
highly adaptable intracellular signal, and depending on the source, a Ca2+ signal may 
lead to opposing functions such as proliferation and cell death. Another important 
aspect of Ca2+ signaling is that it can trigger the response in microseconds (exocytosis 
at synaptic endings), to milliseconds (as observed in muscle contraction), and in 
minutes to hours (gene transcription and cell proliferation)[46]. One way it can control 
such diverse function is by modulating the spatial and temporal Ca2+ signals, which 
could be highly localized or widespread. Cells store intracellular Ca2+ in various 
organelles such as the Golgi apparatus, mitochondria, nucleus, lysosomes, and 
endoplasmic reticulum (ER). These individual Ca2+ stores are essential in modulating 
different functions, mechanism(s), and for the exchange of ions with other Ca2+ pools. 
For example, Ca2+ in the sarcoplasmic reticulum act as a rapidly mobilizable reservoir, 
mitochondrial Ca2+ is a crucial dynamic regulator of metabolism, and trans-Golgi 
network Ca2+ store is involved in the formation of secretory granules[47]. Furthermore, 
different intracellular organelles release sequestered Ca2+ using various Ca2+ mobilizing 
messengers and receptors such as ER use inositol 1,4,5-trisphosphate (IP3)-IP3 receptor 
and cADPR-ryanodine receptors (RyRs) while acidic endosomes and lysosomes use 
nicotinic acid adenine dinucleotide phosphate (NAADP) and two-pore channels 
(TPCs) channels[48] that modulate various cellular functions (Table 2).

Ca2+ signaling and Ca2+ channel in stem cells/MSCs
Ca2+ signaling is associated with several components. In a typical Ca2+ signaling 
process, changes in the intracellular Ca2+ stores start several counteracting processes, 
which may be “on” or “off”, which depends on if the intracellular Ca2+ concentration is 
increasing or decreasing. At physiological or “resting” state, cytosolic Ca2+ 
concentration is maintained between 100 and 300 nmol/L range, which favors the 
“off” processes. However, when the cells are stimulated by different stimuli such as 
hormonal and mechanical forces, cytoplasmic Ca2+ concentration is increased to 50-100 
µmol/L that represents the “on” processes[49]. Binding of the agonist activates the cell 
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Table 2 Calcium signaling toolkit

Component of toolkit Name of calcium signaling toolkit components

Cell-surface receptors G protein-coupled receptors and protein tyrosine kinase receptors such as muscarinic, bradykinin B2, cholecystokinin, α, β-adrenergic, P2X and P2Y, angiotensin II, Ca2+-sensing receptor, chemokine, 
metabotrophic glutamate, serotonin, oxytocin, epidermal growth factor receptor, and platelet-derived growth factor[46,106,107]

Calcium channels Voltage-gated channels (Cav1.1 to 1.4 [L-type], Cav2.1 to 2.3 [N-, P/Q- and R-type] and Cav3.1 to 3.3 [T-type]) and two-pore channels (TPCs)[46], voltage-gated K+ channel, Ca2+-activated K+ channel, ATP-
sensitive K+ channels, TRPC1-7 ORAI1-3, IP3R, and RyR2[108-110]

Calcium pumps and 
exchangers

Na+/Ca2+ exchangers, Na+/Ca2+-K+ exchangers, plasma membrane Ca2+-ATPase (PMCA) and sarcoplasmic/endoplasmic reticulum Ca2+-ATPase (SERCA) pumps[46,111]

Calcium buffers (Ca2+-
binding proteins)

Cytoplasmic buffers (PV [parvalbumin], CB [calbindin D-28k], and calretinin)[112] and buffers in lumen of the endoplasmic reticulum (ER) (calsequestrin, calreticulin, glucose-regulated protein [GRP] 78 and 
GRP94), ERp72, and mitochondrial calcium uniporter (MCU), Golgi buffers (Cab45, CALNUC P54/NEFA[46,113], troponin C, myosin, calmodulin, and sarcolemma (cellular buffers in myocytes)[114]

Calcium sensors EF-hand (CaM, TnC, calpains, miro1-2, S100A1-14, S100B, S100C, S100P, NCS-1, hippocalcin, neurocalcin, recoverin, VILIP1-3, GCAP1-3, MICU1 etc.) or C2 Ca2+-binding domains (annexin 1-13, otoferin, protein 
kinase C, RASAL etc.)[46], ER Ca2+ sensors STIM1 and STIM2[115]

surface receptor that generates downstream signals to activate the phospholipase C 
(PLC)-IP3 signal transduction cascade, which begins by the opening of intracellular 
receptors, IP3 receptors (IP3Rs) for the cytoplasmic influx of Ca2+. Increased 
intracellular Ca2+ binds to different cytoplasmic proteins such as calmodulin, protein 
kinase C (PKC), 4,5-bisphosphate (PIP2), calcineurin, and others that participate in 
Ca2+ signaling pathways. At the cellular level, cells use two crucial Ca2+ sources for 
generating intracellular downstream signals. First is the internal reservoir, where Ca2+ 
is released and second is the external sources, that includes the entry of extracellular 
Ca2+ into the cells through various plasma membrane channels (Table 2 and 
Figure 2A)[50,51].

In stem cells, extracellular Ca2+ influx into the cytoplasm is mediated mainly by 
store-operated Ca2+ channels (SOCCs) rather than the voltage-gated Ca2+ channels 
(VGCCs) or by the Na+/Ca2+ exchangers. Also, ER Ca2+ release is mediated by IP3Rs 
rather than the RyRs and Ca2+ is moved back by sarco-ER Ca2+ ATPase, which is 
located on the ER membrane in mouse pluripotent stem cells[52]. Like embryonic stems, 
human MSCs also showed that discharge of Ca2+ was mediated by IP3Rs, and 
extracellular Ca2+ entry through the plasma membrane was mainly mediated by the 
SOCCs. This study showed that store-operated Ca2+ entry (SOCE) is the leading player 
in stem cell proliferation instead of VGCCs[53]; however, the molecular identity of the 
SOCE channel is still not clear. Stimuli activated cells use different Ca2+ channels such 
as VGCCs, SOCE via the transient receptor potential (TRP) channels (TRPCs)/Orai’s, 
and purinergic receptors that are essential for Ca2+ diffusion. Several studies showed 
an essential role for VGCCs in tissue development, such as cartilage development and 
inactivation or inhibition of VGCCs in stem cells resulted in imperfect chondrogenesis, 
suggesting that VGCC might have a critical role in differentiation. Moreover, Members 
of the TRP channel superfamily also showed their involvement in chondrogenic 
differentiation of MSCs by activating the Sox9 pathway[51].
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Figure 2 Calcium toolkit and calcium signaling. A: Calcium (Ca2+) signaling toolkit components include cell-surface receptors (G protein-coupled receptors 
(GPCRs) and protein tyrosine kinase receptors), Ca2+ channels (voltage-gated channels and two-pore channels, voltage-gated K+ channel, Ca2+-activated K+ channel, 
ATP-sensitive K+ channels, TRPC1-7 ORAI1-3, IP3R, RyR2), Ca2+ pumps and exchangers (Na+/Ca2+ exchangers (NCX), Na+/Ca2+-K+ exchangers, plasma membrane 
Ca2+ ATPase (PMCA) and sarco-endoplasmic reticulum (ER) Ca2+ ATPase), Ca2+ buffers (parvalbumin, calbindin, and calretinin [cytoplasmic buffers] and Ca2+ buffers 
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of the ER lumen, calsequestrin, calreticulin, glucose-regulated protein [GRP] 78 and GRP94), Ca2+ sensors (EF-hand [CaM, TnC, calpains, NCS-1, hippocalcin, 
neurocalcin, recoverin, MICU1, etc.] or C2 Ca2+-binding domains [annexin 1-13, otoferin, protein kinase C, RASAL, etc.], ER Ca2+ sensors STIM1 and STIM2), and 
Ca2+-sensitive cellular process. In a typical Ca2+-sensitive cellular process, the hormone binds to a specific receptor. This binding causes GDP-GTP exchange on the 
G protein. G protein (GTP-bound) activates phospholipase C (PLC). Activated PLC breaks phosphatidylinositol 4,5-bisphosphate (PIP2) to inositol trisphosphate (IP3) 
and diacylglycerol. IP3 moves to a specific receptor on the ER, binds with the receptor, and triggers the release of sequestered Ca2+. Released Ca2+ and diacylglycerol 
activate protein kinase C enzyme. Activated protein kinase C phosphorylates cellular proteins and activates downstream proteins (Raf1 and other proteins). Activated 
Raf1 binds and activates MEK1/2 and MEK1/2, which phosphorylate extracellular signal-regulated kinase (ERK) 1/2. ERK1/2 enters the nucleus and on/off the genes 
against the hormone response. The released Ca2+ decreases ER calcium level. Low Ca2+ of ER sense by ER Ca2+ sensor (STIM) and activate it. An activated Ca2+ 
sensor binds the Ca2+ channel protein (ORAI) on the plasma membrane, opens the Ca2+ channel, and allows the Ca2+ entry into the cytoplasm from extracellular 
space. This process is called store-operated Ca2+ entry; B: Activated transcription factors and other proteins bind to DNA and increase the gene expression for self-
renewal, proliferation, and differentiation processes in the stem cells. CaR: Ca2+ receptor; CREB: cAMP response element-binding protein; IP3R: Inositol trisphosphate 
receptor; NFAT: Nuclear factor of activated T-cells; VDAC: Voltage-dependent anion channel; VGCC: Voltage-gated Ca2+ channel.

MSCs do express the L-type VGCCs and decreases in Cav1.1 expression are able to 
lower the immune response[54]. Blocking VGCCs by dihydropyridines (DHPs) can 
suppress the proliferation of immune cells and both DHPs and cyclosporine are 
frequently used in transplantation patients. Another investigation confirmed that L-
type VGCCs of skin-derived MSCs are involved in autocrine interleukin (IL)-6-
mediated cell migration. Importantly, patch-clamp experiments showed that 15% of 
human undifferentiated bone marrow stem cells (BMSCs) express functional L-type 
VGCCs. Moreover, blockade of L-type VGCCs by nifedipine suppressed the 
proliferation of rat BMSCs by downregulating bone morphogenetic protein (BMP)-2 
expression, which is an essential inducer of osteoblast differentiation[55]. Furthermore, 
Ca2+ also plays an essential role in osteoclast formation. HSCs lineage-generated 
osteoclasts possess different types of Ca2+ channels and receptors. Osteoclast 
precursors express IP3R2, while mature osteoclasts express the IP3R1 isoform and 
cytokine stimulation promotes osteoclast differentiation. Accumulated activities of 
these receptors initiate intracellular Ca2+ signals and modulate bone turnover[56]. Thus, 
Ca2+ channels are involved in the differentiation of osteoblasts and osteoclasts. 
Differentiated osteoblasts and osteoclasts are involved in the modeling and 
remodeling process resulting in new bone tissue regeneration or bone formation[13]. 
Moreover, considering the potential role of Ca2+ channels in stem cell function, it offers 
the hope of tissue engineering and tissue regeneration in the future. However, one of 
the main caveats that remains is that these stem cells are not excitable and thus it is not 
clear how these VGCCs are activated; therefore, more research is needed to fully 
establish their role.

ROLE OF CA2+ AND CA2+ CHANNELS IN THE VARIOUS CELLULAR 
PROCESS OF STEM CELLS/MSCS
Proliferation and self-renewal of stem cells
Studies have shown that Ca2+ mobilization plays a crucial role in the self-renewal and 
proliferation of stem cells by activating or inhibiting different Ca2+ channels. Previous 
studies on the cell cycle of progenitor and undifferentiated cells have shown that 
transient Ca2+ oscillation, maintained by Ca2+ stores, increases the levels of cell cycle 
regulators such as cyclins A and E and plays a crucial role during the G1 to S 
transition. IP3Rs and L-type channels (in differentiated cells) and ryanodine-sensitive 
stores (in neural progenitor cells) maintain the Ca2+ oscillations. This study suggests 
that Ca2+ oscillation is involved in cell cycle progression and proliferation[57]. Also, 
mouse ESC (mESC) proliferation is stimulated by epidermal growth factor via the 
phosphorylation of connexin 43 (involved in the influx of Ca2+ and translocation of 
PKC) and downstream activation of p44/42, p38 mitogen-activated protein kinase 
(MAPK) pathway (Figure 2B). Moreover, gamma-aminobutyric acid A receptors can 
modulate the proliferation of mESCs by regulating intracellular Ca2+. Furthermore, the 
expansion of ESCs is also regulated by ligands such as ATP (adenosine triphosphate) 
and lysophosphatidic acid, which activate the PLC/PKC/IP3 pathway by triggering a 
release of Ca2+[52].

Previous research has shown that SOCCs are important for Ca2+ influx in mESCs. 
SOCCs blockers (e.g., 2-aminoethoxydiphenyl borate [2-APB] and SKF-96365) reduce 
mESC proliferation, suggesting that SOCE is essential for ESC proliferation[58]. 
Similarly, SKF-96365 and 2-APB (SOCE inhibitors) treatment decreases the expansion 
of murine bone marrow-HSCs, human bone marrow, and umbilical cord blood 
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mononuclear cells[59]. Moreover, 2-APB downregulates pluripotent markers (Sox-2, Klf-
4, and Nanog), which suggests that SOCE is associated with the self-renewal property 
of mESCs (Figure 2B). Furthermore, estrogen enhances the proliferation of stem cells 
via enhancing SOCE; however, the molecular identity of the channel has not yet been 
identified. The nuclear factor of activated T-cells (NFAT) is involved in estrogen-
stimulated proliferation, indicating that NFAT is the downstream target of estrogen-
induced SOCE. This study showed how estrogen (a female sex hormone) affects ESC 
proliferation[58] (Figure 3). Another study showed that extracellular Ca2+ promotes the 
proliferation and migration of MSCs[60]. Our unpublished research on MSCs also shows 
that extracellular Ca2+ promotes proliferation and SOCE blockers (e.g., 2-APB and SKF-
96365) reduce MSC proliferation, suggesting that SOCE is essential for MSC 
proliferation.

Differentiation: Stem cells can generate any tissue cells by modulating the 
differentiation process. Previous research has shown that Ca2+ directly upregulates the 
catalytic activity of protein arginine methyltransferase 1 and enhances methylation. 
Increased methylation stimulates differentiation suggesting that Ca2+ plays a crucial 
role during erythroid differentiation[61]. Ca2+ provokes a signaling cascade in human 
bone marrow-derived mesenchymal stromal cells and promotes MSC osteogenic 
differentiation[62]. Also, physical stimuli activates the Ca2+ channel that results in 
increased intracellular Ca2+ concentration, leading to the chondrogenic differentiation 
of MSCs[51]. Ca2+-activated potassium channels also play a crucial role in MSC 
differentiation[63]. Similarly, Na+/Ca2+ exchanger in mESCs plays a crucial role during 
ESC differentiation into cardiomyocytes[64]. Studies have shown that L-VGCCs play an 
essential role in maintaining intracellular Ca2+ homeostasis in differentiating cells[65]. 
Ca2+ also plays a significant role in the neuronal differentiation process. A previous 
study suggested that the TPCs and NAADP-regulated Ca2+ channels play an essential 
role in the neural differentiation of mESCs. mESCs showed decreased expression of 
TPC2 during differentiation into neural progenitors at an early stage while gradually 
increasing again during the late stages of neural differentiation. TPC2 knockdown 
disrupts Ca2+ signaling and inhibits differentiation[48,66]. Another study suggested that 
TPCs and NAADP-regulated Ca2+ channels play essential roles in myogenesis 
differentiation. Ca2+ is critical in regulating the transcription factors that promote 
differentiation. For instance, Ca2+ signal transducer such as Ca2+/calmodulin-
dependent protein kinase and calcineurin regulate transcription factors, such as cAMP 
response element binding protein and NFAT, which activate the transcription of 
myogenin, a key regulator of muscle cell differentiation. Impairment of intracellular 
Ca2+ signaling inhibits muscle differentiation. These studies suggest the critical role of 
Ca2+ signaling and Ca2+ channels in cellular differentiation. Furthermore, the HPC and 
osteoclast differentiation process involves ADP-ribosyl cyclase CD38, which is 
associated with the generation of NAADP and cADPR. Thus, these studies suggest the 
critical role of Ca2+ signaling and Ca2+ channels in cellular differentiation[48].

The differentiation process is regulated by several biological and chemical factors, 
including steroid hormones, BMPs, BMP-2, BMP-4, BMP-7, (crucial for chondrogenesis 
differentiation and synthesis of aggrecan, collagen type 2, and other extracellular 
matrices proteins) and tumor growth factors-β (TGF-β), TGF-β1, and TGF-β3[67]. In 
many of these processes, Ca2+ plays a crucial role, e.g., the higher intracellular Ca2+ 
influx through Ca2+ channels and modulates the cell differentiation process. Several 
studies have shown that the inhibition of Ca2+ channels, VGCCs in stem cells, inhibits 
chondrogenesis. Therefore, activation of these Ca2+ channels in the stem cells opens a 
new research area, leading to innovative approaches to improve MSC self-renewal and 
differentiation potentials such as chondrogenic differentiation and cartilage repair of 
MSCs[51].

Adhesion, migration, and homing: Cytosolic Ca2+, a primary second messenger, 
regulates various cellular functions including cell migration. Temporal cytosolic Ca2+ is 
mediated by receptors such as G protein-coupled P2Y receptors and ligand-gated ion 
channel P2X receptors. P2X receptors mediate extracellular Ca2+ influx while P2Y 
receptors trigger the release of intracellular Ca2+ from the ER and reduce the ER Ca2+ 
level, which activates SOCE. These receptors perform an essential role in the migration 
process via ATP-induced regulation[68]. MSCs are found in the connective tissue that 
surrounds other tissues and organs. During injury and damage, MSCs migrate or 
homing to the damaged tissues or lesions, differentiation into desired cell types, and 
play a crucial role in normal tissue morphogenesis, homeostasis, and repair. The 
homing process begins with the interactions between MSCs and the vascular 
endothelium at the target tissue[25]. Adhesive MSCs migrate in the mesenchymal mode 
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Figure 3 Calcium-dependent stem cell proliferation. Stem cells cultured in 1, 2, and 5 mmol/L calcium. Our results (not published) reveal that higher 
calcium-treated stem cells show a high proliferation rate. MSCs: Mesenchymal stem cells.

from the healthy tissue area to the damaged area. MSC migration, a complex and 
highly coordinated process, has several steps (e.g., rear-to-front polarization, 
protrusion, adhesion formation, and rear retraction) managed by various proteins as 
integrin, tensin, paxillin, actin, and myosin. Furthermore, these proteins are controlled 
by multiple signaling molecules, such as Rho GTPase, Rho kinase, focal adhesion 
kinase (FAK), c-Jun N-terminal kinase (JNK), PKC, MAPK, and extracellular signal-
regulated kinase (ERK)[68]. A previous study showed that electromagnetic fields 
exposure increases intracellular Ca2+, which in turn initiates migratory signaling 
(FAK/Rho GTPase). Increasing MSC migration towards injury or diseases might be a 
novel way to improve the efficiency of MSC engraftment in clinical applications[69].

CA2+ AND CA2+ CHANNEL-ASSOCIATED DISEASES
Spatial and temporal Ca2+ concentrations are necessary for various Ca2+ signaling 
systems for the specific cellular functions of different cell types. The ER releases Ca2+ 
through IP3Rs, which activate various Ca2+ signaling systems. Ca2+ signaling systems 
are highly controlled and regulated for normal function. Dysregulation of Ca2+ 

signaling is linked to significant human diseases such as bipolar disorder, cardiac 
disease, and Parkinson’s disease, Alzheimer's disease (AD) and amyotrophic lateral 
sclerosis, Mucolipidosis type IV, Niemann-Pick disease, and bone disease[46,70-72]. Ca2+ 
influx from the extracellular space, maintained by Ca2+ release-activated channels 
(CRAC), also participates in various cellular functions. CRAC channels are composed 
of two components: ORAI1 proteins (ion-conducting pore-forming component) 
located in the plasma membrane, and stromal interaction molecule (STIM) 1 and 2 (Ca2

+ sensor and activator of ORAI1 channels) located in the ER. Alteration of ORAI1 and 
STIM1 function abolish CRAC channel function and SOCE, resulting in several 
diseases such as severe combined immunodeficiency-like disease, autoimmunity, 
muscular hypotonia, and ectodermal dysplasia. In addition, deformity in dental 
enamel formation and tooth development have been observed[73].

Ca2+ channels are the main signaling elements in neurons and interact with other 
modulatory proteins, resulting in modulation of Ca2+-sensing. Ca2+ channels regulate 
the release of bioactive molecules such as proteins, hormones, and neurotransmitters. 
Such Ca2+-sensing is required for many biophysical and pharmacological properties in 
neurons. Deformed Ca2+ channel activity contributes to disease progression[74]. Studies 
have shown that Ca2+ channels such as voltage-gated Ca2+ channels and glutamate 
receptor channels are mainly responsible for Ca2+ influx into the neuron. SOCE, a Ca2+ 

flow into cells mediated by depleted ER Ca2+ stores, with the help of STIM protein such 
as STIM1 and STIM2. Dysregulation of neuronal SOCE and glutamate receptors 
promotes acute neurodegenerative diseases such as traumatic brain injury and 
cerebral ischemia, and chronic neurodegenerative disorders such as AD and 
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Huntington's disease[75,76].

STEM CELLS IN DISEASE CONDITIONS
Preclinical studies have shown the great potential of stem cells for tissue engineering 
and considerable promise to rebuild damaged tissue such as bone, cartilage, marrow 
stroma, muscle, fat, and other connective tissues, which mark them an attractive 
option in tissue engineering, disease, cell therapy, and regenerative medicine[77,78]. 
Autologous and allogeneic transplantations of stem cells have shown promise for the 
treatment of various diseases such as Crohn’s disease, graft vs host disease, refractory 
systemic lupus erythematosus, multiple sclerosis, and systemic sclerosis, etc. 
(Table 3)[79].

Stem cells and their progeny cells secrete soluble factors including cytokines, 
growth factors, hormones, Ca2+, and chemokines. These factors are required for the 
proper functioning of bone marrow. For instance, MSCs and other cells such as 
osteoblasts and CAR cells secret stromal cell-derived factor-1 (SDF-1), a critical 
chemokine necessary for the supporting and homing of HSCs in the HSC niche[11]. 
Moreover, stem cells generated growth factors, recruit MSCs for lineage-specific 
differentiation, ensure proper modeling and remodeling, and promote bone tissue 
regeneration[80]. MSCs also produce other important secretory trophic factors such as 
angiopoietin-1, brain-derived neurotrophic factor, erythropoietin, fibroblast growth 
factor (FGF-1/2/4/7/9), glial cell-derived neurotrophic factor, granulocyte/ 
macrophage-colony stimulating factor (G/M-CSF), hepatocyte growth factor (HGF), 
insulin-like growth factor (IGF-1/2), leukemia inhibitory factor, nerve growth factor, 
platelet-derived growth factor, SDF-1, secreted frizzled-related protein 2, stanniocalcin 
1, TGF-β1/2/3, and vascular endothelial growth factor. These factors support 
engraftment and modulate tissue development, maintenance, repair of diseased 
tissues, and self-healing and exert regenerative effects. Interestingly, studies showed 
that MSCs secrete different trophic factors that modulate their function[81].

The fundamental immunomodulatory mechanisms of MSCs and how MSCs 
modulate the immune response remains to be fully investigated. However, some 
research has noted that the immunomodulatory capacity of MSCs is of two types: first, 
cell-to-cell contact-dependent, and second is an independent mechanism that do not 
involve contact. In cell-to-cell contact-dependent mechanisms, MSCs directly suppress 
and modulate the generation of various pro-inflammatory immune cells such as 
inhibition of natural killer (NK) cells, activated B cell, and dendritic cells and strongly 
suppress CD4+ T helper cells and cytotoxic CD8+ T cells. On the other hand, MSCs 
promote the production of immune-suppressive regulatory cells such as dendritic 
regulatory cells, B regulatory cells, CD4+ regulatory cells (Tregs), and NK regulatory 
cells. These regulatory cells actively suppress the immune response in the repair area 
and build a favorable and tolerogenic microenvironment for tissue repair and 
regeneration[11,28]. Importantly, Ca2+ especially Orai1/STIM1 plays a critical role in 
modulating the immune response and although it is not clear if they also contribute 
towards the immunomodulatory mechanism of stem cells, more research is needed to 
fully establish this.

Independent mechanisms on the other hand involve MSCs secretome. MSCs secrete 
both the soluble anti-inflammatory factors and pro-inflammatory factors[19]. Anti-
inflammatory factors including chemokines, cytokines, and hormones such as M-CSF, 
monocyte chemotactic protein 1, ILs (IL1, IL2, IL6, IL10, and IL13), HGF, intracellular 
adhesion molecule 1 indoleamine, 2,3-dioxygenase, human leukocyte antigen, 
prostaglandin E2, and TGF-β[11,19,25,82] are secreted from MSCs. Although pro-
inflammatory cytokines such as IL1β, IL6, IL8, and IL9 are also secreted by MSCs, the 
balance between these anti- and pro-inflammatory cytokines are essential for 
regeneration of the damaged tissue area[19]. MSCs differentiate themselves to provide 
the comprehensive types of the body cells such as cardiomyocytes, hepatocytes, 
fibroblasts, and neural cells, chondroblasts, chondrocytes, osteoblasts, and osteocytes 
and have shown their potential in bone regeneration and other tissue 
regeneration[78,83]. Although bone has the unique capacity to regenerate and repair 
itself, bone regeneration is improved when stem cells are used. Although osteoblasts 
and multipotent cells are available as sources of bone regeneration, exogenous stem 
cells secrete bioactive molecules that regulate the behavior of osteoblasts and resident 
MSCs. Importantly, for large and significant skeletal defects, stem cell/MSCs are 
cultured or seeded on a suitable scaffold/carrier that modulate bone growth. Thus, 
bone tissue engineering is significant for bone regeneration, especially with trauma or 
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Table 3 Stem cell transplantation therapy in disease

SCT SCT therapy in preclinical condition

BMCs Myelofibrosis[116]

HSCs Fanconi anemia[117], chronic granulomatous disease[118], and Friedreich's ataxia[119]

MAPCs Myocardial infarction[120], and neonatal hypoxic-ischemic injury[121]

MSCs Musculoskeletal disease[122], spinal cord injury[123], liver fibrosis[124], idiopathic pneumonia syndrome[125], Alzheimer’s disease[126], and 
Parkinson's disease[127]

SCT therapy in clinical condition

BMCs Post-myocardial infarction[128], and sickle cell diseases[129]

HSCs Sickle cell disease[130], human cytomegalovirus infection[131], childhood acute t-lymphoblastic leukemia[132], ankylosing spondylitis autoimmune 
disease[133], Crohn's disease[134], SARS-CoV-2[135], refractory lupus nephritis[136], Pemphigus disease[137], Richter syndrome[138]

MAPCs Parkinson’s disease[139]

MSCs Graft vs host disease[140], diabetes mellitus type 2[86], spinal cord injury[141], SARS-CoV-2[142], multiple sclerosis[143], systemic lupus 
erythematous[144]

BMCs: Bone marrow cells; HSCs: Hematopoietic stem cells; MAPCs: Multipotent adult progenitor stem cells; MSCs: Mesenchymal stem cells; SARS-CoV-2: 
Severe acute respiratory syndrome coronavirus 2; SCT: Stem cell transplantation.

tumor resection defect[84]. Implants (stem cell/scaffold) used in bone tissue engineering 
have shown good implant integration results, no late fractures, and long-term 
durability. Successful tissue engineering depends on several important factors 
including biocompatibility, scaffold chemistry/ surface properties, porosity, pore size, 
scaffold surface architecture, osteoinductivity of scaffold and cell number, passage of 
cells, physiological and developmental “state” of seeded MSCs[85]. Osteoblasts are 
already committed to bone lineage with a limited number of divisions and 
differentiate into osteocytes that maintain structural bone integrity. Importantly, 
osteoclasts can also be generated from monocytes and macrophage lineage of HSCs[13]. 
Osteoblasts communicate with HSCs through various signaling, including Notch 
signaling, Bmp-1/Bmp-1 receptor signaling, parathyroid/parathyroid receptor 
signaling, and Wnt-catenin signaling that has Ca2+ signaling as the few determinants. 
Osteoblasts secrete various factors, including G-CSF, angiopoietin, and osteopontin. 
These factors involve regulating HSC activity and expansion and maintenance of the 
microenvironment for specific functioning of stem cells. HSC and osteoblast cell 
populations constitute the osteohematopoietic niche, also known as the osteoblastic 
niche or endosteal nice, which maintains the proliferation, migration, quiescence, and 
specific functioning of HSCs[11]. MSC characteristics, comprising self-renewal, 
multipotency, differentiation properties, availability, immunomodulatory properties, 
and little ethical concern make them a potential candidate for regenerative 
medicine[21,78,86].

CONCLUSION
Future aspect (MSCs and coronavirus disease 2019)
Coronavirus disease 2019 (COVID-19) is a new global public health concern. This 
disease is caused by the novel coronavirus or severe acute respiratory syndrome 
coronavirus 2 (SARS-CoV-2)[87]. Coronavirus, a positive-stranded RNA virus, uses 
surface spike protein (has two important subunit S1 and S2) for binding to the 
angiotensin-converting enzyme 2 (ACE2) receptors on the host cell surface and 
mediate its entry into the host cells. S1 subunit mediates the attachment, and the S2 
subunit is responsible for membrane fusion and internalization of the virus. Lungs, 
having alveolar epithelial cells, are most affected by the SARS-CoV-2 infection because 
these cells have a high propensity of ACE2 receptors. The SARS-CoV-2 disease 
generates pro-inflammatory cytokines and chemokines storm, which cause severe 
inflammation. Inflammation is the driving power that leads to coronavirus infections 
such as severe shock, and multiple organ failure results in acute respiratory distress 
syndrome[88,89]. Another study showed that COVID-19 patients (mild to severe) showed 
low serum Ca2+. Low serum Ca2+ indicates that Ca2+-balance is the primary target of 



Ahamad N et al. Ca2+ and stem cells

WJSC https://www.wjgnet.com 273 April 26, 2021 Volume 13 Issue 4

Figure 4 Treatment of coronavirus disease 2019 patient. We hypothesize that calcium-treated mesenchymal stem cells (MSCs) are a better option to 
counter the coronavirus’s inflammatory storm response, treat the coronavirus disease 2019 (COVID-19) patient, and other deadly diseases.

COVID-19. Ca2+ balance, a biomarker of clinical severity, is associated with virus-
associated multiple organ injuries, and an increase in inflammatory cytokines[90]. Ca2+ 
channel blockers, also called antihypertensive drugs such as ACE inhibitors and 
angiotensin II receptor blockers, inhibited the post-entry replication events of SARS-
CoV-2 in vitro. In clinics, antihypertensive medications (along with chloroquine) are 
widely used to treat the Coronavirus disease. This study showed that Ca2+ is very 
crucial for the Coronavirus infection[87].

MSCs could be a solution for COVID-19 because MSCs transplantation generates 
tissue regenerative favorable microenvironment and inhibits the immune response 
activated by virus infection by modulating immune cells and the production of 
regulatory cells. MSCs also express several interferon-stimulated genes, ISGs 
(interferon induced transmembrane family), SAT1, IFI6, PMAIP1, ISG15, CCL2, 
p21/CDKN1) against viral infection. Apart from immunomodulatory properties, 
MSCs can be isolated from various sources, stored for future use, and have a less 
ethical concern. Since MSCs did not show any adverse side effects on the patient. Thus, 
MSCs could be a regenerative medicine for life-threatening diseases. Transplantation 
of MSCs into COVID-19 patients was studied in China that showed some promise in 
the treatment of COVID-19, but it is not recommended in other countries. Moreover, to 
date, MSCs used in 17 clinical studies and 70 trials have shown positive results in 
treating respiratory disorders. Since MSCs did not show any adverse side effects on 
the patient. Thus, MSCs could be a regenerative medicine for life-threatening 
diseases[88,91] (Figure 4).

86188
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