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Single-cell sequencing techniques from individual
to multiomics analyses
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Abstract

Here, we review single-cell sequencing techniques for individual and multiomics profiling in single cells. We mainly
describe single-cell genomic, epigenomic, and transcriptomic methods, and examples of their applications. For the
integration of multilayered data sets, such as the transcriptome data derived from single-cell RNA sequencing and

chromatin accessibility data derived from single-cell ATAC-seq, there are several computational integration methods.
We also describe single-cell experimental methods for the simultaneous measurement of two or more omics layers.
We can achieve a detailed understanding of the basic molecular profiles and those associated with disease in each cell

by utilizing a large number of single-cell sequencing techniques and the accumulated data sets.

Main
Introduction: single-cell sequencing analysis

Recently, single-cell sequencing technologies have been
rapidly developed for observing the multilayered status of
single cells. Single-cell sequencing has the power to elu-
cidate genomic, epigenomic, and transcriptomic hetero-
geneity in cellular populations, and the changes at these
levels. A large number of reports on this topic have been
published worldwide from various regions. Under an
international approach, the Human Cell Atlas (HCA;
https://www.humancellatlas.org/) has been generating
comprehensive molecular maps of all human cells'. The
HCA platform utilizes single-cell sequencing techniques
to obtain single-cell genomic information from healthy
and diseased cells. To study all types of cells and omics
layers, we should consider single-cell sequencing methods
from both laboratory and clinical perspectives. In this
review, we introduce basic information and describe
several applications of single-cell sequencing techniques.
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Single-cell transcriptome sequencing

Single-cell RNA sequencing (scRNA-seq)> has been
widely utilized worldwide. RNA-seq analysis con-
ventionally measures transcripts in a mixture of cells
(called a “bulk”). Bulk RNA-seq analysis allows the mea-
surement of only the average transcript expression in a
cell population. For example, in the RNA-seq of cancer
tissue, transcripts from various types of cells, including
tumor cells, immune cells, fibroblasts, and endothelial
cells, are analyzed. To precisely understand the tran-
scriptomic status of such heterogeneous cell populations,
we can use scRNA-seq techniques (Table 1). For the
analysis of tissues, cell dissociation is the most important
step, as the conditions of this step directly affect the
molecular profiles of cells, and the impacts of stress and
damage depend on the cell type. For the measurement of
transcripts in individual cells, reverse transcription (RT)
and ¢cDNA amplification must be performed from very
small amounts of RNA. Smart-seq’ is a whole-
transcriptome amplification (WTA) method that has
been developed for full-length cDNA amplification with
oligo-dT priming and template switching. Smart-seq2®,
Quartz-Seq’, and CEL-seq® have also been developed to
stably measure mRNAs from a single cell. RamDa-seq’
detects non-poly(A) transcripts, including long noncoding
RNAs and enhancer RNAs, in a single cell. Although
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Table 1 Single-cell transcriptome sequencing.
Method Feature References
Smart-seq WTA method; template 3
switching
CEL-seq WTA method; in vitro 6
transcription
Quartz-seq WTA method; poly(A) tagging  °
C1-CAGE 5-end RNA-seq 1
RamDa-seq Total RNA-seq /
Drop-seq Microdroplet-based method 8

Microwell-seq  Microwell-based method

diverse WTA methods exist, it is still difficult to perform
scRNA-seq because the processing of hundreds to thou-
sands of single cells and small amounts of liquid are
conditions inherent to WTA methods. A number of
methods for the simple procedure of scRNA-seq library
construction have been reported. Several protocols based
on microdroplet technology have been reported, such as
Drop-Seq® and DroNc-seq’. In these methods, a cell/
nucleus, reaction liquid, and a barcoded bead are included
in an oil droplet, and RT is conducted with molecular/cell
barcoding within each oil droplet. On the other hand, in
the microwell-seq'® approach, a cell and barcoded bead
are isolated in a well. Nxl-seq'' and Seq-Well'* are
reported to be portable, low-cost microwell-based plat-
forms. These microdroplet- and microwell-based proto-
cols enable the easy handling of thousands of single cells.
For higher-throughput and lower-cost scRNA-seq analy-
sis, sci-RNA-seq'® is a combinatorial indexing method
(the recent version is sci-RNA-seq3'*) that has been
developed. Vendors have also developed automatic
scRNA-seq platforms that can automatically conduct cell
isolation, cell lysis, RT, and PCR amplification for each
individual cell. The C1 Single-Cell Auto Prep system
(Fluidigm) was launched in 2013. This platform enables
the automatic isolation of 96 cells, cDNA synthesis, and
amplification based on Smart-seq through microfluidics.
C1-CAGE can also be conducted using the C1 system,
which enables the profiling of the 5’ end of transcripts
with strand information in a single cell'®. Microdroplet-
based systems such as Chromium (10x Genomics),
ddSEQ (Bio-Rad/Illumina), Nadia (Dolomite), and inDrop
(1CellBio) and microwell-based systems such as Rhapsody
(BD) and ICELLS (Takara) also exist. Researchers can
select various methods and platforms for scRNA-seq
(Table 1). However, problems such as limited cell capture,
low RT efficiency, amplification bias and the requirement
for a large number of sequencing reads remain, depending
on the platform. Users should select appropriate methods
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Technology
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For individual cells
in detail

Fig. 1 Comparison of scRNA-seq platforms. Characteristics of two

major scRNA-seq platforms, C1 and Chromium.
- J/

of scRNA-seq for their sample type and research purpose
(Fig. 1). For example, although only 96 cells can be ana-
lyzed per run with a C1 chip, as determined by its size, the
C1/Smart-seq platform can be used to obtain full-length
c¢DNA libraries for each cell separately and can perform
additional sequencing of libraries in user-selected wells;
therefore, we can obtain in-depth transcriptome infor-
mation for each cell. Chromium enables the analysis of
thousands of cells with simple protocols, while the
libraries of selected cells cannot be reanalyzed because
libraries are mixed after barcoding. In several studies,
multiple methods have been applied to the same samples
to complement the weak points of each method. We also
conducted two types of scRNA-seq assays, bead-seq'®
(involving a small number of cells and providing a large
amount of information for each cell) and Chromium
(involving many cells and providing less information per
cell), to monitor transcriptome changes under anticancer
drug treatment, and we extracted cells that exhibited an
atypical expression pattern from bead-seq data and vali-
dated the cells in a larger population using Chromium
data'’. Furthermore, as scRNA-seq platforms and their
consumables are frequently updated, we should be aware
of their different versions. In particular, 10x Genomics
updated the reagent kit from v2 to v3 for the Chromium
system, and the detection sensitivity was greatly
improved. They also recently modified the chip archi-
tecture of Next GEM technology. It is important to
recognize the differences in the detection limits and
dynamic ranges of gene expression levels when we com-
pare or merge data across different versions of machines
or kits.

Recent scRNA-seq studies have been conducted in
various research fields, such as immunology, develop-
mental biology and oncology. In the field of cancer
genomics, researchers have conducted the scRNA-seq of
cancer cells and their surrounding stromal cells in the
tumor microenvironment. Several groups have reported
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the scRNA-seq of brain tumors and revealed intratumor
transcriptional heterogeneity and diverse evolutionary
paths'®~%°, Tirosh et al.*' performed the first large-scale
scRNA-seq study of the tumor ‘ecosystem’ and performed
the scRNA-seq of CD45" and CD45™ cells in 19 mela-
noma patients. They specifically elucidated different types
of T cell exhaustion programs in each patient, which
might be relevant for immunotherapy strategies. Chung
et al.* also focused on tumor and immune cells, including
T cells, B cells and macrophages, in 11 breast cancer
samples. Tumor-infiltrating lymphocytes in various types
of cancers, such as hepatocellular carcinoma®, non-
small-cell lung cancer®*, and colon cancer, have also been
targeted for scRNA-seq. In our group, to elucidate tumor
evolution and the mechanism of acquired resistance to
anticancer drugs, we conducted the scRNA-seq of lung
cancer cell lines stimulated by receptor tyrosine kinase
inhibitors. We observed different transcriptional respon-
ses to the drug among sensitive and insensitive cells*®, and
identified distinct transcriptional modules that might be
associated with early resistance responses, such as dor-
mancy'’. The number of studies utilizing scRNA-seq is
continuing to increase rapidly.

For the computational analysis of scRNA-seq data, we
cannot simply use the bioinformatics approaches
employed for bulk RNA-seq analysis because single-cell
sequencing generates sparse multidimensional data.
Seurat®® is an R package for scRNA-seq analysis that
includes data filtering, normalization, scaling, dimen-
sional reduction, clustering and visualization. To further
analyze single-cell transcriptome data, various types of
algorithms and tools have been developed, such as
MAGIC?, SAVER?*, and scImpute® for imputation,
Seurat CCA*® and ZINB-WaVE®' for batch effect
removal, Monocle3®* and cellTree®® for pseudotime tra-
jectory, and velocyte®® for RNA velocity and NicheNet>
for ligand—receptor interaction determination. There are
an increasing number of tools for scRNA-seq analysis; as
a result, we should select suitable tools for our own
research purposes and data sets.

Single-cell genome sequencing for understanding genetic
heterogeneity

Single-cell genome sequencing enables the elucidation of
genetic heterogeneity; thus, it can be used for the analysis
of de novo germline mutations and somatic mutations in
normal and cancer cells (Table 2). To uniformly amplify
genomic DNA in individual cells, whole-genome amplifi-
cation (WGA) methods have been developed®, such as
multiple displacement amplification (MDA)*®, multiple
annealing and looping-based amplification cycles (MAL-
BAC)*”” and degenerate oligonucleotide-primed PCR
(DOP-PCR)*. WGA is challenging for reasons such as the
presence of only two copies of genomic DNA in human
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Table 2 Single-cell genome sequencing.
Method Feature References
MDA WGA method; isothermal amplification 36
DOP-PCR WGA method; PCR-based »
MALBAC WGA method; hybrid 3

cells. This strategy occasionally misses an allele within a
large genomic region (allelic dropout) and fails to achieve a
uniform sequencing depth because of amplification bias.
Care must be taken in the analysis of such genome
sequencing data, especially in the detection of point
mutations. Bioinformatics methods such as SCcaller®,
Monovar®®, LiRA*!, and Conbase*? have been developed
to detect single-nucleotide variants (SNVs) considering
allelic dropout and amplification artifacts. For automatic
library construction, the C1 system supports single-cell
whole-genome and whole-exome sequencing. Further-
more, 10x Genomics recently released a copy number
variant (CNV) solution for the Chromium system to
profile copy numbers in single cells. The procedure for
library construction is simplified, but a large number of
sequencing reads are required, and the sequencing cost is
very high.

Single-cell genome sequencing reveals genetic hetero-
geneity. Mutations independently accumulate in cells and
cause aging and diseases such as developmental diseases
and cancers. Zhang et al.*> reported a single-cell whole-
genome sequencing study of somatic mutations in B
lymphocytes and observed the accumulation of somatic
mutations with age and mutational signatures associated
with the carcinogenesis of B cell cancers. They used the
MDA method for WGA and obtained whole-genome
sequencing data that covered approximately half of the
genome regions at 20x and achieved greater sequencing
depths. Neurogenerative diseases have also been analyzed
through single-cell genome sequencing because most
neurons exhibit longevity and cannot be renewed; thus,
mutations tend to accumulate®™. In a previous report*®, a
total of 159 single neurons from healthy and diseased
individuals were sequenced to evaluate the accumulation
of somatic mutations caused by aging or defects in DNA
damage repair. Bae et al.* also conducted the genome
sequencing of single neurons from the prenatal brain and
detected 200-400 SNVs per cell. In cancers, researchers
have attempted to identify intratumor genetic hetero-
geneity generated during cancer evolution. Dr. Navin’s
group reported a series of single-cell genome analyses of
cancer cells, focusing on breast cancer cells in particular.
They elucidated tumor progression through analyses of
punctuated copy number evolution and the gradual evo-
lution of point mutations by conducting single-cell
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Table 3 Single-cell epigenome sequencing.
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Method Target Feature References
scBS-seq DNA methylation Whole-genome BS-seq >3

SCRRBS DNA methylation RRBS 4
scAba-seq DNA methylation 5hmC sequencing 7
sCATAC-seq Chromatin accessibility ATAC-seq 8
Drop-ChIP Histone modification ChIP-seq; microdroplet-based »
scChiC-seq Histone modification Ab-Mnase 8
CUT&Tag Histone modification Ab + protein A-Tn5 transposase 57
Single-cell Hi-C Chromatin structure Hi-C 0

Ab antibody.

genome sequencing and profiling mutations and CNVs in
each individual cancer cell*’~*°, They also reported mul-
ticlonal invasion, which is a model of cancer evolution
from ductal carcinoma in situ (DCIS), as an early stage in
the progression of breast cancer to invasive ductal carci-
noma (IDC)*. In another report, the adaptive selection of
pre-existing clones was used as a model of chemoresistance
to neoadjuvant therapy”'. Furthermore, to understand the
clonal evolution that leads to the acquisition of resistance
to FLT3 inhibitors in acute myeloid leukemia (AML),
McMahon et al>® performed single-cell targeted DNA
sequencing using the Tapestri platform (Mission Bio).
They found that clones harboring RAS/MAPK mutations
were selected after treatment with FLT3 inhibitors.

Single-cell epigenome sequencing for detecting footprints
of differentiation of individual cells

Single-cell sequencing technologies for studying epige-
nomics also exist (Table 3). By elucidating the epigenomic
status of cells, such as DNA methylation and chromatin
states, we can observe the cell lineage and differentiation
state of individual cells. Single-cell DNA methylation
profiling can be analyzed by single-cell bisulfite sequen-
cing (scBS-seq)®® and single-cell reduced representation
bisulfite sequencing (scRRBS)**.

For the investigation of chromatin status, several
methods can be used to measure the patterns of histone
modifications in individual cells. Single-cell ChIP-seq can
be conducted via a droplet microfluidics-based procedure
known as Drop-ChIP*®. This study reported the
H3K4me2 and H3K4me3 patterns of mouse ES cells,
embryonic fibroblasts and hematopoietic progenitors.
Grosselin et al.>® recently conducted single-cell chromatin
immunoprecipitation followed by sequencing (scChIP-
seq) to analyze the H3K27me3 landscapes of patient-
derived xenografts (PDXs) of breast cancers. They
revealed differences between cells that were sensitive and
resistant to chemotherapies and found that a fraction of
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sensitive tumors already harbored the distinct H3K27me3
patterns observed in resistant cells. Cleavage under targets
and tagmentation (CUT&Tag)®’ is another method used
to profile chromatin components. First, an antibody
identifies a target chromatin protein, such as a histone
modification. Then, protein A and Tn5 transposase fusion
proteins bind to the antibody and are tagged to the
genomic regions where the target protein is bound.

Assay for transposase-accessible chromatin using
sequencing (ATAC-seq) elucidates open chromatin pat-
terns using a small number of cells. Open chromatin
regions are tagged with sequencing adaptors by Tn5
transposase, amplified by PCR and sequenced. Several
single-cell platforms, including the C1 and Chromium
systems, enable single-cell ATAC-seq (scATAC-seq). In
the C1 system, all steps of library preparation, from cell
lysis to PCR amplification, are automatically conducted
with microfluidics®®. For the Chromium Single-Cell
ATAC Solution approach, researchers must prepare iso-
lated nuclei and conduct Tn5 tagmentation before
separation in droplets. scATAC-seq is useful for analyzing
transcriptional regulatory programs in mixed cell popu-
lations including various lineages and developmental
stages, such as blood cells. Corces et al.”® reported the
application of “enhancer cytometry” for the identification
of cell types in a mixed population of blood cells using
ATAC-seq data, which included the in silico deconvolu-
tion of cell types based on enhancer patterns. They con-
structed a regulatory map of hematopoiesis and
elucidated the AML cell population with the projection of
scATAC-seq data for validation.

Proteomics analysis at the single-cell level

To comprehensively measure the expression patterns of
each protein, researchers generally use mass spectrometry
or flow cytometry rather than sequencing. Technical
challenges related to factors such as the required sample
amounts and detection coverage are encountered in the
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application of mass spectrometry to single-cell pro-
teomics, such that various study groups are now making
an effort to develop methods for measurement of more
protein molecules using a lower sample input. In recent
single-cell studies, CyToF, which is a method based on
mass cytometry, has been used to analyze tens of surface
and intracellular proteins by using antibodies tagged with
metal labels. For immune cells, in particular, the profiling
of cell surface proteins is useful for the classification of
cell types. There have been many studies using CyToF,
including general and cancer immunology studies, often
in combination with scRNA-seq analysis.

Integration of different layers of single-cell data sets

Single-cell sequencing enables the elucidation of the
omics features of each layer of genomic, epigenomic and
transcriptomic data. Many studies have attempted to
integrate single-cell data sets that are independently
obtained from multiple layers.

To integrate different layers of single-cell omics data,
several computational methods have been developed,
such as Seurat Label Transfer® and LIGER®'. To provide
an overview multiomics single-cell analysis, we describe a
representative case for analysis involving the mouse lung.
As shown in Fig. 2, we conducted scRNA-seq and
scATAC-seq of mouse lung cells using the Chromium
system and tried to integrate the results using Seurat
Label Transfer. We generated scRNA-seq data sets using
Chromium after the dissociation of mouse lung tissue
according to the manufacturer’s protocol. We also
extracted nuclei from the mouse lung tissue for scATAC-
seq. We used Cell Ranger and Cell Ranger ATAC, which
are analytical pipelines provided by 10x Genomics, to
extract matrices of RNA expression and open chromatin
patterns from each data set for individual cells. For
scRNA-seq, we used Seurat v3 and annotated cell sub-
populations (clusters) according to known cell type mar-
kers, such as Epcam and Cdhl for epithelial cells and
Cd109 for B cells, following the filtering of low-quality data,
dimensional reduction and clustering (Fig. 2b). To inte-
grate the scATAC-seq data (Fig. 2c) with scRNA-seq
clusters annotated by cell-type markers, we conducted
Seurat Label Transfer (Fig. 2d). Briefly, scATAC-seq reads
in promoters and gene bodies were counted to represent
the open chromatin status of each gene as gene activities.
From the gene expression level (scRNA-seq) and gene
activity (scATAC-seq) data, the shared characters of the
two data sets were extracted as anchors. Using these
anchors, scRNA-seq clusters were transferred as a refer-
ence into scATAC-seq patterns. This integration ignored
several regulatory factors, such as transcription factor
binding and enhancers. We suggest that each layer of
single-cell data sets is carefully analyzed in detail before
different multiple layers are integrated. We may be
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successful in roughly integrating scRNA-seq and
scATAC-seq at the cell type level (i.e., epithelial cells,
immune cells) using Seurat and LIGER. However, inte-
gration focusing on detailed cellular states including
unknown cell subpopulations and transition events that
are only determined by the epigenome would be more
difficult because these tools use scATAC-seq data as
RNA-seq data, ignoring binary patterns of open chro-
matin data and complicated transcriptional regulation.
Methods such as scAI°® have indicated the weakness of
gene activity-based integration, and different approaches
have been reported to overcome these weaknesses. The
mouse lung data sets are provided in our DBKERO data-
base (https://kero.hgc.jp/).

A different group developed single-nucleus droplet-
based sequencing (snDrop-seq) for gene expression pro-
filing and single-cell transposome hypersensitive site
sequencing (scTHS-seq) for the analysis of chromatin
accessibility in more than 60,000 human brain cells and
integrated the two data sets®®. They used a gradient
boosting model (GBM) to associate differential accessi-
bility with differential gene expression and to understand
cell-type-specific transcriptional regulation in the human
brain. This integration strategy is helpful for annotating
cell types from both chromatin accessibility data and gene
expression data and for understanding the association
between transcriptional regulation and gene expression
for each of the cell types. To identify the causes of mixed-
phenotype acute leukemia, Granja et al.®* conducted
CITE-seq (see below), scATAC-seq and scRNA-seq ana-
lysis. They integrated chromatin accessibility and gene
expression data by using Seurat CCA and identified
responsible transcription factors in leukemia.

Multilayered sequencing from the same cells

Once an individual cell is used for the sequencing
analysis of a single omics layer, we cannot profile different
layers of omics information from the same cell. Methods
that analyze two or more omics layers from a single cell
have been reported® (Fig. 3 and Table 4). G&T-seq*® and
DR-seq”” were developed for simultaneously analyzing
genomic DNA sequences and mRNA profiles. The copy
number profile and expression profile accuracy of these
methods is similar to that achieved via conventional WGA
and WTA methods, respectively. scDam&T-seq®® mea-
sures both protein—DNA interactions and transcriptome
profiles in the same cell and can thus couple transcrip-
tional regulation analysis and gene expression analysis in
individual cells by focusing on chromatin-associated
proteins such as the lamina and Polycomb complex. As
described above, the rapid development of scRNA-seq
platforms has enabled us to easily obtain single-cell
transcriptome profiles. However, it is still difficult to
obtain single-cell genome sequences for joint analysis
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with transcriptome data from the same cell because no
automatic platforms have been developed for the simul-
taneous measurement of the only two copies of genomic
DNA and the 0.1-1 million mRNA molecules per cell,
let alone for addressing the difficulty of avoiding dropout
and detection bias. There are still only a small number of
reports of the use of these methods.

Transcript-indexed ATAC-seq (T-ATAC-seq)®® com-
bines open chromatin profiling with the analysis of T cell
receptor genes and thus analyzes epigenomic profiles in T
cell clones. SNARE-seq”’, Paired-seq”", and scCAT-seq’>
enable the measurement of chromatin accessibility and
whole-transcriptome profiles. In addition, 10x Genomics
is scheduled to release the Single-Cell ATAC + Gene
Expression platform for the simultaneous profiling of the
epigenome and transcriptome by combining scRNA-seq
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Table 4 Multilayered sequencing from the same cells.

Method Target Cell isolation technique Method feature References
G&T-seq Genome, transcriptome FACS (96 well plate) MDA/PicoPlex (WGA), SMART-seq2 (WTA) 66

DR-seq Genome, transcriptome Pipet (low throughput) No physical separation of DNA and RNA o
scM&T-seq DNA methylation, transcriptome  Same as G&T-seq Based on scBS-seq and G&T-seq o
scDam&T-seq  Chromatin, transcriptome FACS (384 well plate) Based on DamID and CEL-seq o8
T-ATAC-seq Open chromatin, TCR C1 Single-Cell Auto Prep System Based on scATAC-seq and TCR-seq 9
SNARE-seq Open chromatin, transcriptome  Drop-seq (high throughput) Tn5-DNA/mRNA captured by beads 0
scCAT-seq Open chromatin, transcriptome  FACS (96 well plate) Separation of nucleus and cytoplasm 72

CITE-seq Surface protein, transcriptome Drop-seq/Chromium (high throughput)  Protein detected by barcode-conjugated antibodies "
REAP-seq Surface protein, transcriptome Chromium (high throughput) Protein detected by barcode-conjugated antibodies *

with ATAC-seq (https://www.10xgenomics.com/product-
updates/). We can expect that researchers will be able to
access a simple protocol and platform for this purpose.
Epigenomic landscapes determine the basic character-
istics of cells, such as the cell lineage and differentiation
state, while the transcriptome status represents the con-
sequences of the cell conditions in a given state. Methods
that can measure both transcriptome and open chromatin
status in a single cell enable the elucidation of the direct
link between transcriptome networks and their regulation,
including the epigenome landscape and responsible
transcription factors in each cell, resulting in an increas-
ing number of reports and data sets arising from the
simultaneous measurement of gene expression and
ATAC-seq profiles.

For the simultaneous expression profiling of transcripts
and cell surface proteins, CITE-seq”> and REAP-seq’*
were developed, which are used mainly in immune cell
analysis. Antibodies conjugated to barcode sequences are
used to capture target cell surface proteins, and mRNAs
and the barcode sequences of antibodies are analyzed for
each cell. Feature Barcoding (10x Genomics) enables the
combined profiling of targeted cell surface proteins with
scRNA-seq via the Chromium system. The protocol is
very simple and easily conducted: antibodies conjugated
with each Feature Barcode oligo used to mark cell surface
protein expression are mixed, single-cell separation, and
amplification are conducted via the Chromium platform,
and libraries of both cDNA and antibody-derived tags are
constructed. Several cell types, especially immune cells,
have historically been classified according to patterns of
cell surface proteins. For example, naive, memory, and
effector T cells are distinguished using CD45 isoform
patterns (CD45RA/CD45RO antigens); however, these
isoforms are not measured via general 3’ scRNA-seq,
which indicates that information on the expression of cell
surface markers may support the classification and
interpretation of cell subsets. 10x Genomics also
announced that they will release a method for the
detection of intracellular proteins combined with gene
expression profiling in a cell The application of
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multilayered single-cell sequencing has expanded to
include its combination with proteomics analysis.

Conclusion

In this review, we summarized single-cell sequencing
methods applied at the genome, epigenome and tran-
scriptome levels and their combinations, even including
proteome-level analysis. An increasing number of
experimental and computational methods are being
rapidly developed for single-cell analysis, and we need to
understand the advantages and disadvantages of each of
these methods. We can obtain various omics profiles from
each individual cell and should utilize the obtained
information to understand the heterogeneity of molecular
profiles, their changes in a given population, and the
interaction among cells, although the obtained data sets
include high-dimensional and mostly sparse data and,
thus, are not easy to handle. Multiomics data analysis
from the same single cell is more reliable than the inte-
gration of single omics layers because less sampling bias
and fewer batch effects are involved, as shown by CITE-
seq, for example. However, it is still easier to obtain
single-layered data from single cells, and their integration
may allow more cost-effective and less time-consuming
analysis to be achieved by utilizing publicly available data.
The data coverage (sequencing depths and the number of
detected genes/regions) may be better for single omics
data because more sequencing reads are required to cover
two or more layers in multiomics sequencing. We can
utilize a combination of single and multilayered sequen-
cing depending on the omics layers involved.

Furthermore, the results obtained with single-cell
sequencing technologies lack spatial information because
a tissue is dissociated into single cells before sequencing
analysis. Recently, spatial transcriptome techniques in
which gene expression analysis is conducted in tissue
sections have been reported, where spatial information is
retained via molecular barcoding; these include methods
such as the Slide-seq’” and Visium (10x Genomics/Spatial
Transcriptomics) approaches’®. Using Visium, gene
expression profiles from one to tens of cells can be
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measured in up to 5000 spots (55 pm diameter per spot)
on a slide for each tissue section. A frozen tissue section
with a 10-20 pm thickness is prepared on the slide with
oligos containing spatial barcodes and UMIs. By sequen-
cing the synthesized cDNA libraries, we obtained RNA-
seq data for each local spot with spatial information. By
comparing these data with an H&E-stained image, we can
compare gene expression patterns with histopathological
information. Although existing spatial transcriptome
techniques are still not available at a single-cell resolution,
they enable us to identify differential expression patterns
depending on the condition of each local microenviron-
ment within tissues. We need to not only deal with single-
cell multiomics information but also integrate temporal
and spatial information to understand the diverse omics
features of each individual cell.
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