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ABSTRACT
Von Hippel-Lindau (VHL) disease is an autosomal 
dominant hereditary tumour susceptibility disease caused 
by germline pathogenic variation of the VHL tumour 
suppressor gene. Affected individuals are at risk of 
developing multiple malignant and benign tumours in a 
number of organs.
In this report, a male patient in his 20s who presented 
to the Urologic Oncology Branch at the National Cancer 
Institute with a clinical diagnosis of VHL was found to 
have multiple cerebellar haemangioblastomas, bilateral 
epididymal cysts, multiple pancreatic cysts, and multiple, 
bilateral renal tumours and cysts. The patient had no 
family history of VHL and was negative for germline VHL 
mutation by standard genetic testing. Further genetic 
analysis demonstrated a germline balanced translocation 
between chromosomes 1 and 3, t(1;3)(p36.3;p25) with 
a breakpoint on chromosome 3 within the second intron 
of the VHL gene. This created a pathogenic germline 
alteration in VHL by a novel mechanism that was not 
detectable by standard genetic testing.
Karyotype analysis is not commonly performed in 
existing genetic screening protocols for patients with 
VHL. Based on this case, protocols should be updated to 
include karyotype analysis in patients who are clinically 
diagnosed with VHL but demonstrate no detectable 
mutation by existing genetic testing.

INTRODUCTION
Von Hippel-Lindau (VHL) disease is an autosomal-
dominant hereditary tumour susceptibility disease 
where patients are at increased risk of developing 
multiple malignant and benign tumours in a number 
of organs. Patients affected with VHL are at risk 
for the development retinal haemangiomas, central 
nervous system (CNS) haemangioblastomas, clear 
cell renal cell carcinomas (ccRCC) and renal cysts, 
pheochromocytomas and paragangliomas, pancre-
atic neuroendocrine tumours, endolymphatic sac 
tumours, pancreatic neuroendocrine tumours and 
epididymal and broad ligament cystadenomas.1 The 
genetic cause of VHL was identified as germline 
mutation of the VHL tumour suppressor gene.2

An individual with a family history of VHL can 
be diagnosed if they present with a single VHL-
associated tumour, such as a retinal or cerebellar 
haemangioblastoma or a renal cell carcinoma 
(RCC). To receive a positive diagnosis, individ-
uals with no family history of VHL must present 

with two or more retinal or cerebellar haemangio-
blastomas, or a single haemangioblastoma and a 
visceral tumour.3–5 Mutational analysis of the VHL 
gene is important for diagnosis of VHL as it allows 
for presymptomatic identification of mutation-
positive at-risk individuals. This enables optimal 
surveillance of these patients allowing for the early 
detection of tumours and timely surgical or thera-
peutic intervention.

Germline VHL mutations have been identified in 
over 900 families worldwide. Numerous mutation 
types have been observed including single nucleo-
tide substitutions, small insertion–deletion muta-
tions, splice site mutations and larger deletions 
resulting in partial or complete loss of the VHL 
gene and these data can be found in the UMD-VHL 
mutations database (http://www.​umd.​be/​VHL/).6–10 
Current Clinical Laboratory Improvement Amend-
ment (CLIA)-based genetic testing has a very high 
detection rate of germline VHL sequence alterations 
in patients with VHL, but to date, germline chro-
mosomal translocation has not been reported in 
association with VHL.11 12 Germline translocations 
involving chromosome 3 have been reported that 
occur away from the VHL locus, but these patients 
present with bilateral and multifocal ccRCC and 
show no evidence of susceptibility to other VHL-
associated tumours.13–16

This report presents a patient with no family 
history of VHL, who had multiple VHL-associated 
phenotypic features consistent with a clinical diag-
nosis of VHL, but who had no discernable germ-
line sequence alteration of the VHL gene detected 
by standard genetic testing. Further in-depth 
genomic analysis demonstrated the first example 
of a germline-balanced chromosomal translocation 
of chromosomes 1 and 3 in which the breakpoint 
occurred within the VHL gene, resulting in a novel 
genetic mechanism for VHL.

MATERIALS AND METHODS
Patient material procurement and consent
This patient was seen at the Urologic Oncology 
Branch (UOB) of the National Cancer Institute 
(NCI), National Institutes of Health (NIH) for clin-
ical assessment.

CLIA evaluation of VHL mutation and patient 
karyotype
Patient blood DNA was evaluated for VHL gene 
mutation or deletion/duplication by GeneDx 
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(GeneDx, Gaithersburg, Maryland, USA), a CLIA (Clinical 
Laboratory Improvement Amendments) approved facility, and 
the CLIA karyotype analysis was performed by Quest Diagnos-
tics (Quest Diagnostics, Chantilly, Virginia, USA).

Germline nucleic acid extraction
Germline DNA from the patient’s blood, saliva and skin samples 
were extracted using a Promega Maxwell 16 Blood DNA Purifi-
cation Kit or Tissue DNA Purification Kit following manufactur-
er’s protocol (Promega, Wisconsin, USA). DNA concentration 
and purity were evaluated using a NanoDrop 2000 UV-Vis Spec-
trophotometer (Thermo Fisher Scientific, Massachusetts, USA).

Whole-genome sequencing (WGS)
The DNA from the patient was pooled with 11 other WGS 
samples and sequenced on HiSeq4000 using Illumina TruSeq 
Nano DNA Library Prep and paired-end sequencing for three 
runs. The HiSeq Real Time Analysis software (RTA 1.18) was 
used for processing image files, and the Illumina bcl2fastq v1.8.4 
was used to demultiplex and convert binary base calls and qual-
ities to fastq format. The samples had 513 to 948 million pass 
filter reads with base call quality above 77% of bases having Q30 
and above. Adapters and low-quality bases in raw reads were 
trimmed using Cutadapt v1.18 before alignment with the refer-
ence genome (Human—hg19) using BWA v0.7.10. The average 
mapping rate of all samples was approximately 98% and the 
average sequencing genome coverage was 30×. The samples had 
89%–93% non-duplicate reads and the GC content of mapped 
reads ranged from 39% to 40%.

WGS analysis
Germline variants were called using GATK’s Haplotype-
Caller in joint genotyping mode. Variants were then filtered 
for quality with the following criteria: QD (quality by depth) 
<2.0, FS (Fisher strand) >60.0, MQ (mapping quality) <40.0, 
MQRankSum <−12.5, ReadPosRankSum <−8.0 for SNPs; 
QD <2.0, FS >200.0, ReadPosRankSum <−20.0 for INDELs 
(insertions or deletions of bases in the DNA). To prioritise 
cancer-related germline variants, we used the Cancer Predispo-
sition Sequencing Reporter (version 0.5.1) to analyse the 218 
manually curated cancer predisposition genes (Panel 0) for 
known or predicted pathogenic variants. Structural variants 
were called using Manta in paired germline mode and anno-
tated using AnnotSV. Alignments around candidate translocation 
events were further reviewed using IGV (Integrative Genomics 
Viewer).

PCR and Sanger DNA sequencing
PCR primers were designed on either side of the two potential 
breakpoint regions on the derivative versions of chromosomes 
1 and 3 identified by WGS. The primer pairs used to amplify 
and sequence the translocation breakpoints were the following: 
chr1F (​GAGT​CATA​CATC​AACC​TCTAG)/chr3R (​TGAG​AATG​
AGAC​ACTT​TGAAAC), and chr3F (​CTCAGCTAGGCAGT-
TACTCT)/chr1R (​CAAG​GATT​CTTT​TCAG​CCTTC). DNA 
sequencing was performed by PCR using a Qiagen Taq PCR Core 
Kit (Qiagen, Maryland, USA) according to the manufacturer’s 
specifications, followed by bidirectional sequencing using the Big 
Dye Terminator v.1.1 Cycle Sequencing Kit (Applied Biosystems, 
California, USA) according to the manufacturer’s specifications 
and run on an ABI 3130xl or 3730 Genetic Analyzer (Applied 
Biosystems). The three VHL coding exons were also amplified 
and sequenced using conventional methods. Sanger sequencing 

was conducted at the CCR Genomics Core at the NCI, NIH, 
Bethesda, Maryland, USA. Forward and reverse sequences were 
evaluated using Sequencher 5.0.1 (Genecodes, Michigan, USA).

RESULTS
A male patient in his 20s initially presented to the UOB at the 
NCI with several clinical phenotypic manifestations consistent 
with a diagnosis of VHL. At an outside institution, the patient 
had previously had multiple resections of CNS haemangioblas-
tomas, a left robotic partial nephrectomy for multifocal ccRCC 
(five tumours ranging from 1.3 cm to 4.6 cm in largest dimen-
sion) and a right ablation of a central renal tumour. Previous 
germline mutation testing had been negative for VHL mutation 
and the patient reported no family history of kidney cancer or 
any other clinical manifestations consistent with VHL.

Further evaluation and imaging at the UOB revealed that the 
patient had bilateral epididymal cysts, numerous pancreatic cysts 
and numerous bilateral renal cysts with two solid lesions in the 
left kidney (2.3 cm and 1.7 cm) and one solid lesion in the right 
kidney (2.1 cm) (figure 1A). Currently, the adrenal glands appear 
unaffected. These clinical manifestations were consistent with a 
diagnosis of VHL. Germline genetic analysis was repeated using 
DNA derived from peripheral blood leucocytes to evaluate for 
point mutations, insertions, deletions or duplications in VHL 
and was negative. To assess the possibility of mosaicism, germ-
line genetic testing was additionally performed on DNA derived 
from saliva containing buccal epithelial cells and from fibroblasts 
acquired via a skin punch biopsy. No alterations of the VHL gene 
were detected.

Germline translocations involving chromosome 3 have been 
reported and shown to result in an increased risk of kidney 
cancer, but to date no other VHL-associated clinical manifes-
tations have been seen.13–16 To investigate whether a transloca-
tion could cause these clinical features, a karyotype analysis was 
performed. The patient was shown to have a germline transloca-
tion between chromosomes 1 and 3, 46, XY, t(1;3)(p36.3;p25). 
The predicted breakpoint at chromosome 3p25 was in the same 
region as the VHL gene, potentially directly disrupting the VHL 
gene (figure 1B).

Paired-end WGS was performed on the DNA derived from 
peripheral blood leucocytes and several paired reads were found 
with one pair mate on chromosome 1 and the other within intron 
2 of the VHL gene on chromosome 3. To confirm the break-
points, primers were designed to amplify and Sanger sequence 
the breakpoint regions in both derivative chromosomes. The 
breakpoint on the derivative chromosome 3 had a 2 bp sequence 
present in both the wild-type sequences for chromosomes 1 and 
3 with the last unique base of chromosome 1p at 716 702 bp 
(hg19) and the first unique base of chromosome 3p at 10 191 
126 bp (hg19) (figure 2). The breakpoint on the derivative chro-
mosome 1 had an insertion of 10 bp which was a duplication of 
an upstream region of chromosome 3, with the last unique base 
of chromosome 3p at 10,191,119 bp (hg19) and the first unique 
base of chromosome 1p at 716 698 bp (hg19) (figure  2). This 
results in a few base pairs being lost from wild-type sequence of 
chromosome 3 but no loss of sequence compared with wild-type 
chromosome 1. The break on chromosome 3p was confirmed to 
be within the second intron of the VHL gene creating a germline 
alteration that would result in either a truncated VHL protein 
or no protein being produced by this allele. However, the break 
on chromosome 1p did not occur within a gene, and the nearest 
telomeric gene, LOC100288069, was ~2.6 kb away and the 
nearest centromeric gene, FAM87B, was ~36 kb away. Neither 
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of these genes were mutated in any of the 426 sporadic ccRCCs 
analysed by the Cancer Genome Atlas suggesting that alterations 
in either of these genes is unlikely to influence the risk of kidney 
cancer in this patient.

DISCUSSION
The identification of patients with a clinical diagnosis of a 
disease, such as VHL, but no alteration in the known gene after 
standard genetic testing raises two questions. Are the current 
genetic tests unable to detect all the possible genetic abnormal-
ities in the known gene or is there an alternative gene in which 
germline mutation produces the same clinical phenotype? An 
example of the first scenario would be a mutation within the 
intronic sequence that is not evaluated or detected by existing 
genetic tests and results in an aberrant splice event that inacti-
vates the gene. This has previously been observed in patients with 
VHL from two separate studies in which a germline mutation 
was identified within the intron 1 of the VHL gene that created 
a cryptic exon.17 18 This cryptic exon (termed E1’) dysregulated 
VHL splicing and resulted in loss of protein expression and the 
germline mutation would not have been detected by standard 
genetic testing.17 18 Whereas, an example of the second scenario 
would be mutation of the TCEB1 gene which is another compo-
nent of the VHL E3 ligase complex and has been reported as a 
potential mimic for VHL loss in sporadic ccRCC.19 20 This report 
identifies a germline translocation that disrupts the VHL gene 
as a novel mechanism of gene loss in VHL that would not be 
detected by standard genetic testing.

The patient reported here demonstrated a relatively typical 
presentation of the clinical features of VHL with no additional 
phenotypic features. The break on chromosome 3p obviously 
disrupted the VHL gene, but the break at the end of chromosome 
1p did not occur within a gene. A significant number of germ-
line VHL deletions have been reported in patients with VHL and 
the position of the breakpoints for these deletions frequently 
occur within DNA repeats, specifically Alu repeat regions.21 In 

our patient, the translocation breakpoint in the second intron 
of VHL on chromosome 3 occurred within an MLT1H long 
terminal repeat region (chr3:10 191 097-10 191 334) and 
~30 bp upstream of an AluJo repeat (chr3:10 190 785-10 191 
096), but the breakpoint on chromosome 1 was not near any 
DNA repeat region.

The patient had no family history of VHL suggesting than the 
germline translocation was a de novo event, but knowledge of 
this novel alteration will allow for screening of any subsequent 
offspring of the patient and confirmation of this de novo status. 
The patient can be managed by the current protocols for patients 
with VHL and counselled on the likelihood of any offspring 
inheriting VHL. In this specific case, the patient should also be 
counselled that a higher rate of miscarriage is associated with 
inheritance of a balanced translocations from either parent.22

Previous reports have identified patients with RCC with 
germline translocations involving chromosome 3 that occur 
away from the VHL locus and in these cases a three-hit model 
of carcinogenesis has been proposed.13–16 23 24 The first hit 
is the translocation and the second hit is loss of the deriv-
ative chromosome containing 3p and the VHL gene. The 
cells would then require a third hit to the remaining wild-
type version of VHL.23 24 These patients tend to present with 
later onset of disease, due to the increased number of genetic 
events required, and only demonstrate bilateral and multi-
focal ccRCC with no evidence of the other VHL-associated 
tumours.13–16 23 24 The patient in this study would not require 
the loss of the derivative chromosome as the translocation 
through the gene is analogous to deletion of the VHL gene and 
the normal two-hit hypothesis would apply. Thus, the patient 
shows the expected early age of onset for ccRCC and a full 
spectrum of additional VHL-associated tumours.

The discovery of this novel mechanism for germline VHL gene 
inactivation highlights the importance of continual refinement 
of mutational screening protocols. The existing screening proto-
cols for patients with VHL do not include a karyotype analysis, 

Figure 1  Imaging and karyotype analysis of patient with von Hippel-Lindau (VHL) disease. (A) Coronal (upper) and axial (lower) MRI images of the 
abdomen of the patient with VHL showing multiple bilateral renal cysts (green arrows), one of the left-sided solid lesions (red arrows) and multiple 
pancreatic cysts (blue arrow). (B) Karyotype analysis of the germline DNA of the patient with VHL demonstrating a translocation between chromosomes 1 
and 3.
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but this should now be considered in patients who are clinically 
diagnosed with VHL but demonstrate no detectable germline 
mutation by current genetic testing protocols.
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Figure 2  Breakpoint mapping of germline translocation between chromosomes 1 and 3. Whole-genome sequencing identified the potential breakpoints 
on the derivative chromosomes resulting from the t(1;3)(p36.3;p25) translocation, and PCR primers were designed to amplify both breakpoint regions. 
Sanger sequencing of the resulting PCR products demonstrated the exact breakpoints on both derivative chromosomes. The breakpoint on the derivative 
chromosome 1 had an inserted 10 bp duplication of upstream chromosome 3 sequence, with the last unique base of chromosome 3p at 10 191 119 bp 
(hg19) and the first unique base of chromosome 1p at 716 698 bp (hg19). The breakpoint on the derivative chromosome 3 had a 2 bp sequence overlap 
with the last unique base of chromosome 1p at 716 702 bp and the first unique base of chromosome 3p at 10 191 126 bp (hg19). The breakpoint on 
chromosome 3p occurred within intron 2 of the von Hippel-Lindau (VHL) gene.
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