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Ahnak deficiency attenuates high-fat diet-induced
fatty liver in mice through FGF21 induction
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Abstract

The AHNAK nucleoprotein has been determined to exert an anti-obesity effect in adipose tissue and further inhibit
adipogenic differentiation. In this study, we examined the role of AHNAK in regulating hepatic lipid metabolism to
prevent diet-induced fatty liver. Ahnak KO mice have reportedly exhibited reduced fat accumulation in the liver and
decreased serum triglyceride (TG) levels when provided with either a normal chow diet or a high-fat diet (HFD). Gene
expression profiling was used to identify novel factors that could be modulated by genetic manipulation of the Ahnak
gene. The results revealed that fibroblast growth factor 21 (FGF21) was markedly increased in the livers of Ahnak KO
mice compared with WT mice fed a HFD. Ahnak knockdown in hepatocytes reportedly prevented excessive lipid
accumulation induced by palmitate treatment and was associated with increased secretion of FGF21 and the
expression of genes involved in fatty acid oxidation, which are primarily downstream of PPARa. These results indicate
that pronounced obesity and hepatic steatosis are attenuated in HFD-fed Ahnak KO mice. This may be attributed, in
part, to the induction of FGF21 and regulation of lipid metabolism, which are considered to be involved in increased
fatty acid oxidation and reduced lipogenesis in the liver. These findings suggest that targeting AHNAK may have
beneficial implications in preventing or treating hepatic steatosis.

Introduction

Nonalcoholic fatty liver disease (NAFLD) has been
identified as a common disorder that is characterized by
increased hepatic triglyceride (TG) accumulation. NAFLD
represents a broad spectrum of liver diseases ranging from
nonalcoholic simple fatty liver to nonalcoholic steatohe-
patitis (NASH), hepatic fibrosis, and cirrhosis'. Hepatic
lipid accumulation is known to be regulated by lipid
uptake, de novo synthesis, oxidation, and transport of
fatty acids to the circulation’. An imbalance in these
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complex metabolic processes can cause an excessive
amount of hepatic TG accumulation.

Fibroblast growth factor 21 (FGF21) is a member of the
fibroblast growth factor family consisting of 22 members
that have diverse functions in the regulation of physiolo-
gical homeostasis in metabolic tissues’. FGF21 is primarily
synthesized and secreted from the liver®, and the action of
circulating FGF21 is mediated through FGF receptors
complexed with B-Klotho®. The expression of Fgf21 is then
induced by the activation of peroxisome proliferator-
activated receptor alpha (PPARa). Nonesterified fatty
acids bind to and activate PPARa. Ligand-bound PPAR«a
then forms a heterodimer with retinoid X receptors to
induce the expression of Fgf2I. In cultured adipocytes,
FGF21 signaling is transduced by activating the B-Klotho-
FGFR1c complex. However, FGF21 signaling can be
transduced in PB-Klotho knockout mice, indicating the
existence of a B-Klotho-independent FGF21 signaling
pathway®. FGF21 has been known to act on adipose tissue
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to reduce plasma glucose and TGs, which in turn decreases
body weight”. FGF21 is a potent regulator of adiponectin
secretion in white adipose tissue and exerts body weight-
lowering effects in brown adipose tissues and beige cells
mediated by the induction of thermogenesis®’. FGF21 also
exerts direct effects on pancreatic islet cells to increase
beta-cell function, survival'®, and growth plate chon-
drocytes'". Treatment with FGF21 can reduce hepatic TG
accumulation and hepatic steatosis, thus attenuating body
weight gain in rodents and primates'>'?, Additionally,
FGF21 regulates energy homeostasis in adipocytes through
an AMP-activated protein kinase (AMPK)/sirtuin 1
(SIRT1)/peroxisome proliferator-activated receptor gamma
coactivator 1 alpha (PGCla) signaling cascade, resulting in
enhanced mitochondrial oxidative capacity14_16. Thus,
FGF21 may represent a novel therapeutic molecule based
on the findings that it protects animals from diet-induced
obesity and reduces hepatic lipid accumulation, enhances
glucose metabolism, and thus prevents hepatic steatosis,
fibrosis, and NAFLD when administered to diabetic
rodents'”'®,

AHNAK is a very large protein that acts not only on
calcium signaling or ion channels but also on nucleo-
proteins that are known to regulate a wide variety of
biological functions'®, such as adipogenesis®, browning>,
tumor development, and adipocyte differentiation®®. In
a previous study, we found that Ahnak KO mice exhibit
strong resistance to high-fat diet (HFD)-induced obesity.
Changes in the pattern of urinary metabolites in HFD-fed
Ahnak KO mice suggest that the strong resistance to
HED-induced obesity in Ahnak KO mice is related to
perturbations in amino acids that are related to fat
metabolism®*. Although Aknak KO mice showed strong
resistance to diet-induced obesity and hepatic steatosis,
the role of AHNAK in the regulation of hepatic steatosis
has not been studied.

In the present study, the role of AHNAK in diet-induced
fatty liver disease was determined by using Ahnak KO
mice. Ahnak KO mice have been shown to not have
excessive hepatic lipid accumulation when fed a HFD.
Gene expression analysis showed that a HFD upregulated
Fgf21 in the liver of Ahnak KO mice but not in WT lit-
termates. Increased hepatic and circulating levels of FGF21
in HFD-fed Ahnak KO mice were associated with increased
hepatic expression of genes involved in fatty acid oxidation
and decreased expression of genes involved in lipogenesis
compared with those in the WT littermates. Primary
hepatocytes from Ahnak KO mice consistently exhibited
decreased lipid accumulation and were accompanied by
increased FGF21 secretion and cellular FGF21 protein
levels. In addition, to enhance FGF21 production and
secretion, Ahnak-deficient hepatocytes also exhibited
increased expression of PPAR« protein and its target genes
in response to palmitate treatment. Characterization of
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phenotypic changes in Ahnak KO mice, such as reduced
hepatic steatosis, decreased adiposity, and increased energy
expenditure, establishes AHNAK as a novel regulator of
FGF21 in modulating hepatic fatty acid metabolism. Thus,
the present study establishes the role of AHNAK in the
regulation of hepatocyte lipid metabolism through PPARa/
FGF21 signaling.

Materials and Methods
Experimental animals

Ahnak KO mice were generated by disrupting exon 5 of
the Ahnak gene as described'®. Ahnak KO mice were
obtained by crossing heterozygous breeders. Eight-week-
old male KO and wild-type mice were randomly assigned
and fed either regular chow or a 60% HFD (D12492;
Research Diets Inc., NJ, USA) for 7 weeks. All animals
were maintained at 24 + 2 °C with 12 h of light per day and
had free access to water in a specific pathogen-free barrier
facility. These procedures were reviewed according to the
“Guide for Animal Experiments” (edited by the Korean
Academy of Medical Sciences) by the Institutional Animal
Care and Use Committee at Seoul National University.
The animal protocol was approved by the committee on
the Ethics of Animal Experiments at Seoul National
University (Permit Number: SNU-131024-6). All of the
experiments were conducted to minimize the number of
animals used”.

Measurement of metabolic parameters in mice

A comprehensive animal metabolic monitoring system
(CLAMS; Columbus Instruments, Columbus, OH) was
used to evaluate the activity, food consumption, and
energy expenditure of 8-week-old male KO and wild-type
mice by switching the feeding method, such as feeding an
NCD for 2 days, followed by a HFD for 4 days. Energy
expenditure and food intake data were normalized with
respect to lean body weight. The energy expenditure and
respiratory exchange ratio (RER) were then calculated
from gas exchange data [energy expenditure = (3.815 +
1.232 x RER) x VO,]. The RER was determined by the
ratio of VCO, to VO,, which changes depending on the
energy source of the animal. When carbohydrates are the
only substrate being oxidized, the RQ will be 1.0, whereas
it will be 0.7 when only the fatty acids are oxidized.
Activity was measured on the x- and z-axes using infrared
beams to count the number of beam breaks during a
specified measurement period. Feeding was measured by
recording the difference in the scale measurement of the
center feeder from one time point to another®,

Histochemical study

For histological examination, mouse liver tissues were
dissected and fixed in 10% neutral buffered formalin. The
samples were subsequently embedded in paraffin or OCT
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compound. For hematoxylin and eosin (H&E) staining, tis-
sue sections were cut at a thickness of 4 ym and were then
stained using a commercial kit (HHS123, Sigma-Aldrich, St.
Louis, MO). For Oil Red O staining, frozen samples were
sectioned at 5um in thickness using a cryostat”. These
sections were placed onto slides, washed with 60% iso-
propanol, and then stained with Oil Red O for 30 min.

Measurement of VLDL secretion and lipid clearance rates

To assess VLDL secretion, serum triacylglycerol (TG) was
measured in blood obtained from 4-hour-fasted mice for the
indicated times after i.p. injection of Poloxamer 407 (1 mg/g
of body weight) solution in PBS*®, For measurement of lipid
clearance rates, mice were fasted for 12 h and administered
olive oil (Sigma-Aldrich, St. Louis, MO) by oral gavage.
Blood was collected from the tail vein prior to gavage and 1,
2, 3, and 6 h after treatment. TGs were measured enzyma-
tically with TG reagent (BioVision, Korea).

Primary hepatocyte and HepG2 cell culture

Primary hepatocytes from WT and Asnak KO mice were
isolated using a two-step perfusion technique and cultured
as described previously”. After cell attachment, hepatocytes
were serum-starved for 4h and then treated with 250 uM
palmitate for 12 h. In some experiments, hepatocytes were
treated with AICAR for the indicated time periods. HepG2
cells were purchased from the American Type Culture
Collection and maintained in Dulbecco’s modified Eagle’s
medium (DMEM; Gibco-Life Technologies, Grand Island,
NY) containing high glucose, 10% FBS, 100 U/ml penicillin,
and 100mg/ml streptomycin, as described previously™.
Control siRNA and siRNA for the Ahnak gene (Bioneer,
Korea) were used for gene silencing. A cell steatosis model
was established by culturing HepG2 cells in DMEM with
BSA-conjugated palmitate (250 pM) for 12 or 24 h.

Quantitative real-time PCR

Total RNA was extracted from the liver using the Total
RNA Purification System (Invitrogen, Carlsbad, CA)
according to the manufacturer’s protocol. Messenger
RNA was reverse-transcribed using AccuPower Cycle-
Script RT PreMix (Bioneer, Daejeon, Korea). Quantitative
real-time PCR was performed with SYBR Green dye using
the StepOnePlus™ Real-Time PCR System (Applied Bio-
systems, Cheshire, U.K.). Expression of the respective
genes was normalized to the 36B4 signal as an internal
control, and relative gene expression was quantitated by
the comparative Ct method (AACt). The primer sequen-
ces of target genes are listed in Supplementary Table 1.

Western blot analysis

Total protein was extracted from the liver of each group
using protein lysis buffer (Invitrogen, Carlsbad, CA) con-
taining phosphatase inhibitor (GenDEPOT, Barker, TX,
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USA). Protein extracts were resolved by 10% or 12% SDS-
PAGE gels and were later transferred onto PVDF mem-
branes (Millipore, Billerica, MA). The protein bands were
detected with antibodies against pAMPK (Thr172), AMPK,
pACC, ACC, PPAR«a, SCD1, CPT1 (Abcam, Cambridge,
UK), and GAPDH (Cell Signaling Technologies, Beverly,
MA) using the appropriate secondary HRP-conjugated
antibodies (Cell Signaling Technologies, Beverly, MA). The
blots were developed and imaged using the MicroChemi
4.2 system (DNR Bio-imaging system, Israel).

FGF21 measurement

FGF21 concentrations in plasma and culture medium
were measured by ELISA (R&D Systems, Minneapolis,
MN) according to the manufacturer’s protocol. To mea-
sure FGF21 secretion, the hepatocytes were serum-starved
for 4h, and then the supernatants were collected and
preserved in a —80 °C freezer until further analysis.

Statistical analysis

The results are expressed as the means + SEM. Student’s
¢ tests were used to analyze gene expression differences
between WT and Ahnak KO mice as measured by
quantitative real-time PCR. Differences were considered
significant at p < 0.05.

Results
Ahnak KO mice are resistant to HFD-induced hepatic
steatosis

To determine the potential correlation between
AHNAK expression and hepatic steatosis, we examined
AHNAK expression in the livers of diet-induced and
genetically induced obese mice. Ainak mRNA was found
to be significantly increased in the livers of both obese
mouse models (Supplementary Fig. 1). To test the func-
tion of AHNAK in diet-induced hepatic steatosis, Ahnak
KO mice and their wild-type littermates were fed a HFD
containing 60% fat or a NCD. When 8-week-old male
mice were fed a HFD for 7 weeks, Ahnak KO mice
weighed less than WT mice in both the NCD and HFD
groups. In addition, HFD-KO mice gained significantly
less weight than WT mice (Fig. 1a, b).

In a previous study, we reported that the differences in
body weight caused by fewer fat pads are due to impaired
adipogenesis in KO mice™. Nevertheless, since the liver is a
secondary fat storage site and an essential metabolic organ,
subsequent studies have been conducted. The ratio of liver-
to-body weight was observed to be significantly decreased in
KO mice compared with WT mice fed a HFD (Fig. 1b).
Histological analysis revealed that WT mice receiving a HFD
exhibited severe hepatic steatosis with an accumulation of
intracellular lipid droplets, whereas Ainak KO mice did not
display fatty liver symptoms (Fig. 1c). Consistent with the
histological results, both hepatic and serum levels of TG
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Fig. 1 Ahnak KO mice are protected against diet-induced obesity and hepatic steatosis. a Body weight changes in mice receiving a 60% high-
fat diet for 7 weeks. b Macroscopic appearance of the liver and mice. The liver-to-body weight ratio was measured. ¢ H&E staining of WT and KO
mice. Oil Red O staining of lipid droplets. Original magnification, x200. d Fasting blood glucose levels, serum cholesterol, and serum and hepatic TG
contents were measured. Data were presented as the means + SEM. *p < 0.05; **p < 0.01.

decreased in the livers of HFD-fed Ahnak KO mice com-
pared with WT mice. The basal level of blood glucose was
also determined to decrease in the HFD-fed Ahnak KO mice
compared with HFD-fed WT mice (Fig. 1d). The HFD-fed
WT mice had elevated blood glucose levels, whereas HFD-
fed Ahnak KO mice did not exhibit hyperglycemia. Total
cholesterol levels were also reduced in HFD-fed Ahnak KO
mice compared with WT mice (Fig. 1d). Overall, these
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observations indicate that Ainak KO mice were significantly
protected from HFD-induced obesity and hepatic steatosis.

Ahnak-deficient mice exhibit decreased serum lipid
clearance but not VLDL secretion

To test whether lipid transport in the liver was altered in
Ahnak KO mice, olive oil was administered to WT and
KO mice, and the lipid clearance rate was evaluated.
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Ahnak KO mice were found to exhibit higher levels of
serum TG than WT mice after olive oil treatment in the
HED group (Fig. 2a). However, there were no significant
differences in serum TG levels between the WT and KO
mice in the NCD group (Supplementary Fig. 2). To
determine which molecular mechanism affects lipid
transport in Ahnak KO mice, the mRNA expression of
genes involved in lipid uptake was measured. The
expression of Cd36, a membrane protein that facilitates
the uptake of fatty acids and cholesterol, was markedly
reduced in the liver of Ahnak KO mice fed either a NCD
or a HFD, whereas the expression of fatty acid binding
proteins involved in fatty acid uptake, such as Fatpl,
Fatp2, and Fabp4, was similar or slightly altered between
WT and KO mice (Fig. 2b). The current data suggest that
Ahnak KO mice have reduced expression of genes related
to fatty acid transport, which could explain the observed
impaired lipid transport to the liver and reduced hepatic
lipid accumulation (Fig. 1c). Additionally, to examine the
effect of Ahnak deficiency on VLDL secretion, the animals
were treated with Poloxamer 407, which inhibits lipo-
protein lipase activity and VLDL secretion. The VLDL
secretion rate was estimated by measuring the serum TG
levels at each time point following Poloxamer 407 treat-
ment. The VLDL secretion rate was similar between WT
and KO mice fed either a NCD (Supplementary Fig. 2) or
a HFD (Fig. 2c). Consistent with the VLDL secretion
results, the expression levels of ApoB and Mtp, which
promote VLDL assembly and secretion, were also similar
between WT and KO mice (Fig. 2b).

Ahnak deficiency in mice increases the production and
secretion of hepatic FGF21

As part of a screening to identify novel secreted proteins
that could be modulated by AHNAK genetic manipulation,
gene expression profiling revealed that Fgf21 was increased
by ~3.2-fold in the livers of Ahnak KO mice compared with
those of WT mice under HFD conditions (accession No.
GSE70119). Hierarchical clustering revealed that gene
expression in the livers of WT mice that were fed a NCD
was closely aligned with that of Aknak KO mice. The livers
of HFD-fed Ahnak KO mice had a similar cluster of genes
compared with that of the NCD-fed group, whereas the
livers of HFD-fed WT mice showed a distinctive differ-
ential expression gene (DEG) profile (Supplementary Fig.
3a). A gene ontology analysis of the DEGs revealed that
Ahnak deficiency induced several metabolic pathways
(Supplementary Fig. 3b). Downregulated genes in the livers
of HFD-fed Ahnak KO mice were associated with the
immune response. Genes involved in proinflammatory
signaling were significantly downregulated in the livers of
Ahnak KO mice fed a HFD, including chemokine (C-C
motif) ligand 2 (Ccl2), chemokine (C-C motif) ligand 3
(Ccl3), tumor necrosis factor a (Tnfw), and F4/80. However,
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the expression levels of anti-inflammatory genes were not
changed (Supplementary Fig. 3c). As expected, hepatic
mRNA expression and protein levels of FGF21 also
increased in Ahnak KO mice compared with WT mice fed
a HED (Fig. 3a). However, no difference was determined in
Fgf21 expression when the animals were fed a NCD. FGF21
activity is mediated through FGF receptors that interact
with B-Klotho. A genetic deficiency of Ahnak was deter-
mined to have no effect on the hepatic expression of FGF
receptors or B-Klotho when fed either a NCD or a HED.
Interestingly, FGFR1 expression was dramatically increased
in the livers of both WT and Ahnak KO mice fed a HFD
(Fig. 3a). These results indicate that HFD-induced circu-
lating FGF21 acts primarily through binding to FGFRI1.
FGF21 is a significant metabolic regulator in several dia-
betic animal models. FGF21 can protect animals from diet-
induced obesity and reduce hepatic lipid accumulation,
enhance glucose metabolism, and thus prevent hepatic
steatosis, fibrosis, and NAFLD when administered to dia-
betic rodents®****1>1° To elucidate the role of AHNAK
in preventing diet-induced hepatic steatosis, we determined
whether Ahnak deficiency regulates HFD-induced pro-
duction and release of hepatic FGF21. As shown in Fig. 3c,
the protein expression of hepatic FGF21 was found to be
significantly increased in the livers of HFD-fed Ahnak KO
mice. Furthermore, plasma FGF21 and PPARa protein
levels were also elevated in Ahnak KO mice receiving a
HED (Fig. 3b, ¢). AMPK, SIRT1, and PGCla have been
identified as important regulators of mitochondrial bio-
genesis and function®"?, and LKB1, a serine threonine
kinase, directly activates AMPK activity®’. In addition,
FGF21 regulates energy metabolism by activating the
AMPK-SIRT1-PGCla pathway'*'®. Because the expres-
sion of FGF21 was increased in the livers of HFD-fed
Ahnak KO mice, we determined whether the expression
levels of these molecules were altered. Consistent with our
hypothesis, we observed increased protein levels of LKB1,
SIRT1, and PGCla and increased amounts of phosphory-
lated AMPK. In addition, the rate-limiting enzyme of fatty
acid oxidation, carnitine palmitoyltransferase 1 (CPT1),
was upregulated (Fig. 3c). Despite increased expression of
PGCla, no differences were observed between the HFD-
fed WT and Ahnak KO mice in the levels of mitochondrial
oxidative phosphorylation complex proteins (Supplemen-
tary Fig. 4). These results indicate that pronounced obesity
and hepatic steatosis are attenuated in Ahnak KO mice fed
a HFD. This may be attributed, in part, to increased
expression of genes associated with fatty acid oxidation and
induction of FGF21 in the liver.

Ahnak KO mice exhibit altered hepatic expression of key
genes involved in lipid metabolism

FGEF21 regulates hepatic fatty acid oxidation and keto-
genesis®*. To determine the functional consequence of
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FGF21 induction in Ahnak KO mice receiving a HFD, we
measured the expression of key genes involved in lipid
metabolism. The mRNA level of PPARq, a key regulator
of fatty acid oxidation, was not altered in either NCD- or
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HFD-fed Ahnak KO mice compared with WT mice.
However, PPAR« target genes, including Cptl, carnitine
palmitoyltransferase 2 (Cpt2), acyl-coenzyme A oxidase 1
(Acox), acyl-coenzyme A dehydrogenase (Lcad), and
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Pgcla, were found to be significantly increased in Ahnak
KO mice compared with WT mice (Fig. 4a).

The lipogenic pathway in the liver has been determined
to have been severely compromised during hepatic stea-
tosis. Therefore, we examined the changes in lipogenic
pathway-related gene expression. Ainak KO mice that
were fed a HFD showed inactivation of a hepatic lipogenic
pathway that included the downregulation of genes
required for fatty acid synthesis and TG esterification
(Fig. 4b). We observed decreased expression of sterol
regulatory element binding transcription factor 1c
(Srebfl) mRNA, a key regulator of de novo lipogenesis,
consistent with changes observed in the expression
of its targets, including fatty acid synthase (Fasn) and
stearoyl-coenzyme A desaturase 1 (ScdI). Hepatic mRNA
expression of peroxisome proliferator-activated receptor
gamma (Ppary) and its targets, including diacylglycerol
O-acyltransferase 1 (Dgatl) and diacylglycerol O-
acyltransferase 2 (Dgat2), which catalyze the final step
in TG esterification, was also decreased in HFD-fed
Ahnak KO mice compared with HFD-fed WT mice.
Additionally, the expression of cell death-inducing DNA
fragmentation factor alpha subunit-like effector A
(Cidea), a lipid droplet-associated protein that has
emerged as an important regulator of lipid storage, and
the formation of large lipid droplets in adipocytes and
hepatocytes35, was also decreased in the livers of HFD-fed
Ahnak KO mice compared with WT mice (Fig. 4b). These
results indicate that a deficiency in the Ahnak gene in
mice affects hepatic gene expression associated with the
lipogenic pathway.

HFD-fed Ahnak KO mice exhibit increased whole-body
energy expenditure

FGF21 has been identified to exert an effect on energy
metabolism and body weight®*?°. As shown in Fig. 1,
compared with their WT littermates fed a HFD, Ahnak
KO mice appeared to exhibit decreased fat mass®*
accompanied by reduced liver weight. Furthermore, the
production and circulation of FGF21 were increased in
Ahnak KO mice receiving a HFD (Fig. 3a—c). Therefore,
we determined whether Ahnak deficiency in mice affects
energy metabolism through increased FGF21 expression.
To assess whether the induction of FGF21 is responsible
for energy consumption in Aknak KO mice, calorimetry
was assessed in Ahnak KO mice fed a NCD for 2 days,
followed by a HFD for 4 days to induce FGF21 expression.
As shown in Fig. 5a—c, Ahnak KO mice exhibited an
increase in VO, rates during HFD conditions throughout
the light and dark cycles. Daily food intake was similar
between WT and Ahnak KO mice for both the NCD and
HED. Comprehensive animal monitoring studies indi-
cated that the rate of oxygen consumption (VO,) was
increased in Ahnak KO mice. The calculated daily energy
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expenditure was also increased in Ahnak KO mice when
switched to a HFD. Furthermore, the RER was reduced in
Ahnak KO mice during the light and dark phases (Fig. 5¢
and Supplementary Fig. 5). This suggests that Ahnak KO
mice prefer lipids as an energy source rather than car-
bohydrates compared with WT mice. Consistent with the
augmented hepatic and circulating levels of FGF21 in
HFD-fed Ahnak KO mice (Fig. 3b, c), Ahnak deficiency
was associated with improved energy expenditure (Fig. 5),
increased hepatic expression of genes involved in fatty
acid oxidation (Fig. 4a), and reduced expression of genes
that control lipogenesis (Fig. 4b).

Ahnak deficiency attenuates palmitate-induced lipid
accumulation in primary hepatocytes through FGF21
induction

To further analyze the role of Ahnak in lipid accumu-
lation in hepatocytes, we examined palmitate-induced
lipid accumulation in primary hepatocytes isolated from
Ahnak KO and WT mice. Oil Red O staining showed that
lipid droplets in palmitate-treated W'T hepatocytes were
higher than those in Ahnak-deficient hepatocytes
(Fig. 6a).

We next examined whether Ahnak deficiency regulates
both the production and secretion of FGF21 in primary
hepatocytes. As shown in Fig. 6b, the expression of Fgf21
was increased in Ahnak-deficient hepatocytes compared
with WT hepatocytes and further increased by palmitate
treatment of Ahnak-deficient hepatocytes (Fig. 6b). Con-
sistent with Fgf21 mRNA expression, FGF21 protein levels
were also increased in palmitate-treated Ahnak-deficient
hepatocytes compared with WT hepatocytes. A con-
comitant increase in the expression of PPARa protein was
also observed in palmitate-treated hepatocytes isolated
from Ahnak KO mice (Fig. 6¢). To determine the level of
FGF21 released from hepatocytes, we measured the con-
centration of FGF21 in the culture media obtained from
Ahnak-deficient and WT hepatocytes. As expected, the
level of secreted FGF21 was increased in Ahnak-deficient
hepatocytes compared with WT hepatocytes (Fig. 6b).

To identify which molecular mechanism regulates lipid
accumulation in Ahnak-deficient hepatocytes, the
expression of lipid metabolism genes was measured (Fig.
6d). Srebf1, a key transcription factor regulating de novo
lipogenesis, was significantly decreased in BSA- and
palmitate-treated Ahnak-deficient hepatocytes com-
pared with WT hepatocytes. Scdl expression was also
significantly decreased in Ahnak KO hepatocytes. Fur-
thermore, genes involved in fatty acid oxidation, such as
Acox, Cptl, Cpt2, and PPARa, were increased in Ahnak
KO hepatocytes. These results indicate that palmitate-
induced lipid accumulation was attenuated in Ahnak-
deficient hepatocytes and may be further attributed to
the induction of FGF21 and PPARa expression.
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Collectively, these data confirm that Ahnak deficiency
contributes to the induction of the PPARa-FGF21 hor-
mone axis in hepatocytes. This suggests that Ahnak
deficiency improves hepatic steatosis largely through
enhanced expression of FGF21 and genes associated with
fatty acid oxidation.
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Discussion

In the present study, we examined the role of AHNAK
in the regulation of hepatic lipid metabolism in diet-
induced fatty liver. We found that Ahnak KO mice were
resistant to diet-induced obesity and hepatic steatosis
when fed a HFD. To identify the molecular mechanism
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underlying the protection from diet-induced hepatic
steatosis, a microarray analysis was performed with liver
samples from HFD-fed Ahnak KO and WT mice. The
gene expression profiles revealed a similar cluster of genes
in the liver of HFD-fed Ahnak KO mice compared with
the NCD-fed WT and Ahnak KO mice. A gene ontology
analysis of the downregulated DEGs (GSE70119) revealed
that the oxidative reduction pathway, including fatty acid
oxidation and inflammatory signaling pathways, was
highly enriched in Ahnak KO mice. The expression of
several genes involved in proinflammatory signaling was
decreased in the Ahnak KO mice (Supplementary Fig. 3).
The results indicate that excessive lipid accumulation in
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the liver may induce oxidative stress and the inflamma-
tory response®”*®, Thus, attenuated lipid accumulation in
the liver of Ahnak KO mice fed a HFD may result in the
downregulation of inflammatory signaling.

The most important finding of this study is the iden-
tification of FGF21 as a novel regulatory protein modu-
lated by the genetic manipulation of Ahmnak. Gene
expression profiling revealed that Fgf21 was increased by
~3.2-fold in the livers of Ahnak KO mice compared with
WT mice fed a HFD. Ahnak deficiency in mice report-
edly results in increased hepatic FGF21 production and
release (Fig. 3a—c). It is well documented that FGF21
functions as a metabolic regulator in several diabetic
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animal models®. Administration of FGF21 can reduce
hepatic TG accumulation and thus reverse body weight
gain and hepatic steatosis in rodents and primates'>'?,
Additionally, FGF21 regulates energy homeostasis in
adipocytes through an AMPK/SIRT1/PGCla-dependent
mechanism, resulting in enhanced oxidative metabolism
and mitochondrial biogenesisM’lS. Therefore, we focused
on the role of FGF21 in preventing diet-induced hepatic
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steatosis in Ahnak-deficient mice. As expected, Ahnak
KO mice exhibited an increase in hepatic expression and
plasma levels of FGF21 compared with WT mice fed a
HFD (Fig. 3).

We also found that Ahnak KO mice exhibited reduced
expression of Srebfl (Fig. 4b) and its target genes, leading
to the inhibition of hepatic lipid accumulation. Further-
more, Ahnak KO mice showed increased expression of
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genes involved in fatty acid oxidation through the PPARa/
AMPK signaling pathway. Consistent with these results,
the excessive lipid accumulation induced by palmitate
treatment was prevented in Ahnak-deficient hepatocytes
and Ahnak knockdown HepG2 cells, accompanied by
increased expression of genes involved in fatty acid oxi-
dation through the increased expression of PPARa pro-
tein and AMPK activation. Therefore, our study
establishes that Ahnak deficiency in mice attenuates diet-
induced hepatic lipid accumulation by activating PPARa/
AMPK signaling. These findings also suggest that target-
ing AHNAK may have beneficial effects on the develop-
ment of hepatic steatosis.

Hepatic expression of FGF21 is induced directly by
PPARa in the liver in response to fasting and PPARa
agonists***>*!, The hepatic PPARa pathway plays a sig-
nificant role in ketogenesis and fatty acid oxidation*>*,
The mechanism is mediated, in part, by PPARa-depen-
dent expression of Fgf21, a gene that is upregulated by
Ahnak deficiency in mice. In the present study, we dis-
covered that AHNAK modulates PPARa function, which
is involved in fatty acid oxidation. Ahnak deficiency or
deletion promotes fatty acid oxidation in the liver, con-
tributing to the improvement in hepatic steatosis. How-
ever, PPARx mRNA and protein levels between Ahnak
KO and WT mice were not consistent. Although the
expression of Ppara mRNA was similar between HFD-fed
WT and KO mice (Fig. 4a), hepatic PPAR«a protein
expression was increased in Ahnak KO mice after HFD
feeding or palmitate treatment compared with that of WT
mice (Figs. 3c and 6c). This inconsistency may be
explained by earlier observations showing that PPAR«a
turnover can be regulated by the ubiquitin-proteasome
system in a ligand-dependent manner**. In addition, it
was recently reported that hepatic PPARa function is
controlled by polyubiquitination and proteasome-
mediated degradation through the coordinated actions
of PAQR3 and HUWE1*. Therefore, the discrepancy
observed between the expression of PPARx mRNA and
protein in Ahnak KO and WT mice could be due to
posttranslational modification of PPARa, which is regu-
lated by AHNAK. Furthermore, AHNAK has been iden-
tified as a new substrate of the ubiquitin-protein ligase
E3C (UBE3C) in the regulation of p53 activity*®. However,
the direct mechanism linking AHNAK to PPAR« stability
has yet to be identified.

Circulating FGF21 regulates energy homeostasis in
adipocytes through an AMPK/SIRT1/PGCla-dependent
mechanism, resulting in enhanced mitochondrial oxida-
tive capacity'®'”. Phosphorylation of AMPK and PGCla
protein expression was increased in the livers of HFD-
Ahnak KO mice compared with WT mice. These results
indicate that pronounced obesity and hepatic steatosis are
attenuated in Ahnak KO mice fed a HFD. This may be
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attributed, in part, to the induction of FGF21, fatty acid
oxidation, and inhibition of lipogenic genes in the liver.

To further understand how Ahnak deficiency inhibits
lipid accumulation in the liver, we analyzed the changes in
the expression of lipogenic genes. We found that hepatic
expression of several genes involved in fatty acid uptake
and lipid accumulation was decreased in HFD-fed Ahnak
KO mice (Fig. 4a). Ahnak KO mice also exhibited
decreased lipid uptake, consistent with decreased Cd36
expression and expression of the lipogenic genes SrebfI,
Fasn, Scdl, Dgatl, and Dgat2. SREBF1 and PPARy are
well-known transcriptional regulators of lipogenic gene
expression in the liver*”. Therefore, Ahnak KO mice may
inhibit hepatic lipid accumulation through regulation of
lipogenic gene expression. Although HFD feeding
increased Srebfl expression in Ahnak KO mice compared
with NCD-fed Ahnak KO mice (Fig. 4b), the expression of
SrebfI in primary hepatocytes of Ahnak KO mice was not
changed when comparing the BSA and palmitate treat-
ment groups (Fig. 6d). In addition, the expression patterns
of target genes such as Fasn and Scd1 differed in the liver
tissue (Fig. 4b) and primary hepatocytes (Fig. 6d),
respectively. Because Srebfl gene expression is regulated
by itself, it is difficult to explain this phenomenon based
on whether AHNAK affects the transcriptional regulatory
roles of SREBF1 or regulates SrebfI gene expression. To
activate SREBF1, cleavage of SREBFs by the site-2 pro-
tease (S2P) within a transmembrane segment or near the
membrane surface after an initial cleavage by site-1 pro-
tease (S1P) should occur due to sterols under HFD con-
ditions. Moreover, it is known that SREBF1-mediated de
novo fatty acid synthesis in the liver is negatively regulated
by the insulin-induced gene (INSIG) molecule*®. It was
recently reported that AMPK interacts with and mediates
phosphorylation of INSIG, resulting in the inhibition of
SREBF1 cleavage and processing and thus attenuating
lipogenic gene expression®. In the present study, the
phosphorylated active form of AMPK was increased in the
livers of HFD-fed Ahnak KO mice (Fig. 3c). Further stu-
dies are needed to clarify whether AHNAK has a reg-
ulatory role through the AMPK response in activating
SREBF1 during HFD conditions. In addition, because
whole-body Ahnak KO mice were used in our study, it
should be considered that decreased inflammatory sig-
naling in Aknak KO mice may result in attenuated lipid
accumulation. This has been strongly supported by an
earlier observation that Ainak KO mice showed CD4 + T
cell inactivation and decreased cytokine secretion®®. Thus,
attenuated lipid accumulation in the liver of Ahnak KO
mice fed a HFD may result in the downregulation of
inflammatory signaling.

It is well established that FGF21 has an effect on energy
metabolism and body weight®®?°. To directly assess
whether the induction of FGF21 in Ahnak KO mice is
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Fig. 7 Summary of the effect of Ahnak deficiency on liver
metabolism. High-fat diet-induced obese Ahnak-deficient mice
exhibited increased hepatic FGF21 production and release compared
with WT HFD-fed mice, thereby inducing the expression of genes
involved in the fatty acid oxidation pathway, decreasing lipogenesis,
decreasing hepatic steatosis, and increasing energy expenditure.

responsible for energy fluctuations, indirect calorimetry
was used to assess Ahnak KO mice placed on a NCD
followed by a HFD. As shown in Fig. 5a—c, Ahnak KO
mice exhibited increased VO, rates under HFD condi-
tions throughout the light and dark cycles but not under
NCD conditions. Daily food intake was determined to be
similar between WT and Akhnak KO mice for both the
NCD and HFD. Comprehensive animal monitoring stu-
dies indicated that the rates of oxygen consumption (VO,)
were increased in Ahnak KO mice. The calculated daily
energy expenditure was also increased in Ahnak KO mice
when switched to a HFD. Moreover, the RER was reduced
in Ahnak KO mice during the light and dark phases (Fig.
5a—c and Supplementary Fig. 5). This may indicate that
Ahnak KO mice use more lipids as an energy source than
carbohydrates when compared with WT mice. Overall,
the results in Ahnak KO mice were characterized by a
decrease in fat mass, an increase in energy expenditure,
and no significant alterations in food intake.

To better understand the effects of Ahnak deficiency at
the cellular level, we examined lipid accumulation in
primary hepatocytes following exposure to palmitate.
Ahnak deficiency in hepatocytes resulted in decreased
expression of lipogenic genes and increased expression of
genes involved in fatty acid oxidation, resulting in sig-
nificantly attenuated lipid accumulation in palmitate-
treated cells (Fig. 6d). We next examined whether Ahnak
deficiency regulates the production and secretion of
FGF21 in primary hepatocytes. As shown in Fig. 6b, Fgf21
expression was increased in Ahnak-deficient hepatocytes
compared with WT hepatocytes, and it was further
increased by palmitate treatment of Ahnak-deficient
hepatocytes. Consistent with mRNA expression, FGF21
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protein levels were also increased in palmitate-treated
Ahnak-deficient hepatocytes compared with WT hepa-
tocytes (Fig. 6¢). However, no differences were observed
between BSA-treated Ahnak-deficient and WT hepato-
cytes. Consistent with FGF21 expression, PPAR« protein
was significantly increased in palmitate-treated hepato-
cytes isolated from Ahnak KO mice (Fig. 6¢). To deter-
mine the level of secreted FGF21 from hepatocytes, we
measured the concentration of FGF21 in culture media
obtained from Ahnak-deficient and WT hepatocytes. The
concentration of FGF21 was increased in serum-starved
Ahnak-deficient hepatocytes compared with WT hepa-
tocytes (Fig. 6b). These results indicate that palmitate-
induced lipid accumulation was attenuated in Ahnak-
deficient hepatocytes and can be attributed, in part, to the
induction of FGF21 and PPARa expression in hepato-
cytes. These results are consistent with the observed
decreased lipid accumulation in Ahnak-deficient hepato-
cytes treated with palmitate.

Characterization of the phenotypic changes in Ahnak
KO mice, including reduced hepatic steatosis, decreased
adiposity, and increased energy expenditure, establishes
AHNAK as a novel regulator of FGF21 for the modulation
of hepatic fatty acid metabolism. Ahnak deficiency in mice
results in increased hepatic FGF21 production and
release, reduced lipogenesis, and increased expression of
genes involved in the fatty acid oxidation pathway (Fig. 7).
The discovery of FGF21 induction in Ahnak KO mice is
also supported by the fact that the production and
secretion of FGF21 can be increased by Ahnak knock-
down in hepatocytes. Therefore, our study establishes the
role of AHNAK in regulating hepatocyte lipid metabolism
through the PPARa/FGF21 axis. Ahnak deficiency has
been reported to suppress lipid accumulation in the liver
and may represent a novel therapeutic target to reduce
the formation of fatty liver.
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