Skip to main content
. 2021 Apr 28;11:9218. doi: 10.1038/s41598-021-87534-y

Table 4.

Equivalence class formed by eight circular codes. Each column represents one of the 216 circular codes Xi, where i{1,,216}. The codes are related through the group of transformations D8. For instance AAC X173 and KM(AAC) = CCA X192.

I (AT) (CG) SW YR (ACTG) (AGTC) KM
X173 X176 X203 X206 X183 X182 X193 X192
1 AAC TTC AAG TTG GGT GGA CCT CCA
2 GTT GAA CTT CAA ACC TCC AGG TGG
3 AAT TTA AAT TTA GGC GGC CCG CCG
4 ATT TAA ATT TAA GCC GCC CGG CGG
5 ATC TAC ATG TAG GCT GCA CGT CGA
6 GAT GTA CAT CTA AGC TGC ACG TCG
7 CAC CTC GAG GTG TGT AGA TCT ACA
8 GTG GAG CTC CAC ACA TCT AGA TGT
9 CAG CTG GAC GTC TGA AGT TCA ACT
10 CTG CAG GTC GAC TCA ACT TGA AGT
11 CTC CAC GTG GAG TCT ACA TGT AGA
12 GAG GTG CAC CTC AGA TGT ACA TCT
13 GAA GTT CAA CTT AGG TGG ACC TCC
14 TTC AAC TTG AAG CCT CCA GGT GGA
15 GAC GTC CAG CTG AGT TGA ACT TCA
16 GTC GAC CTG CAG ACT TCA AGT TGA
17 GCC GCC CGG CGG ATT TAA ATT TAA
18 GGC GGC CCG CCG AAT TTA AAT TTA
19 GTA GAT CTA CAT ACG TCG AGC TGC
20 TAC ATC TAG ATG CGT CGA GCT GCA