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Abstract

As the field of precision medicine progresses, treatments for patients with cancer are starting to be
tailored to their molecular as well as their clinical features. The emerging cancer subtypes defined
by these molecular features require that dedicated resources be used to assist the discovery of drug
candidates for preclinical evaluation. Voluminous gene expression profiles of patients with cancer
have been accumulated in public databases, enabling the creation of cancer-specific expression
signatures. Meanwhile, large-scale gene expression profiles of cellular responses to chemical
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compounds have also recently became available. By matching the cancer-specific expression
signature to compound-induced gene expression profiles from large drug libraries, researchers can
prioritize small molecules that present high potency to reverse expression of signature genes for
further experimental testing of their efficacy. This approach has proven to be an efficient and cost-
effective way to identify efficacious drug candidates. However, the success of this approach
requires multiscale procedures, imposing considerable challenges to many labs. To address this,
we developed Open Cancer TherApeutic Discovery (OCTAD; http://octad.org): an open
workspace for virtually screening compounds targeting precise groups of patients with cancer
using gene expression features. Its database includes 19,127 patient tissue samples covering more
than 50 cancer types and expression profiles for 12,442 distinct compounds. The program is used
to perform deep-learning-based reference tissue selection, disease gene expression signature
creation, drug reversal potency scoring and in silico validation. OCTAD is available as a web
portal and a standalone R package to allow experimental and computational scientists to easily
navigate the tool.

Introduction

Many cancers are understudied because they are rare or of little public interest, such as
Ewing sarcoma, a rare pediatric cancer!, and hepatocellular carcinoma (HCC), a common
adult malignancy in Asia but an orphan disease in the United States2. As the field of
precision medicine progresses, and we start to tailor treatments for patients with cancer who
are classified not only by their clinical features but also by their molecular features (such as
MY C amplification and PIK3CA mutation), more cancer subtypes are emerging. The effect
of each understudied cancer or cancer subtype in healthcare might be limited, but the
cumulative effects of all these diseases could be profound. Ewing sarcoma is one of over
6,000 rare diseases in the United States, affecting ~2.9 per million peoplel, and all rare
diseases combined affect an estimated 25 million people in the United States3. HCC affects
fewer than 50,000 people in the United States but is the cause of half a million deaths
annually worldwide2. One common research challenge for these diseases is that the
resources allocated to them are relatively limited. Compared to common conditions, the
large-scale screening of compounds is often challenging, if not impossible, to perform in
small labs owing to limited resources.

The decreasing cost of sequencing, however, means that it is now more common to generate
gene expression profiles of samples from patients with cancer (e.g., RNA sequencing (RNA-
Seq)). Integrating these profiles with the increasing amount of other available open data
(such as the effect of chemical compounds on gene expression; Box 1) provides a
tremendous opportunity to computationally identify new potential therapeutic candidates.

Finding drugs that reverse the disease signature

Like many other investigators*’, we use a systems-based approach where we analyze gene
expression profiles of disease samples and drug-induced gene expression profiles from
cancer cell lines to predict new therapeutic candidates. We have used this approach in our
studies on HCC8, Ewing sarcoma? and basal cell carcinomal©.
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A disease signature is defined as a list of differentially expressed (DE) genes between
disease samples and control samples (i.e., normal tissues). The essential idea is to identify
drugs that reverse the gene expression signature of a disease by tamping down overexpressed
genes and stimulating weakly expressed ones.

In the Ewing sarcoma study, this systems approach achieved a hit rate of >50% in predicting
effective candidates®. This means that, for every ten compounds suggested in the output,
more than five turned out to be effective against Ewing sarcoma in vitro.

In the HCC study, we identified deworming pills as therapeutic candidates for HCC and
demonstrated that the expression of disease genes was reversed in a clinically relevant
mouse model after drug treatment8. The recent pan-cancer analysis demonstrated that the
reversal of cancer gene expression correlates to drug efficacyll. Compared to the commonly
used target-based drug discovery approach that focuses on interfering with individual
targets, this systems approach aims to target a list of critical features of the disease
(Supplementary Fig. 1). The previous studies suggested that this efficient and cost-effective
approach could be explored to virtually screen novel compounds or existing drugs using
existing drug libraries, such as LINCS L100012-14, Looking at a wide selection of existing
drugs allows the possibility of repurposing drugs where the safety, toxicology and side
effects are already well understood.

We have shown that the success of this approach is made possible by multiscale procedures,
such as quality control of tumor samples, selection of appropriate reference normal tissues,
evaluation of disease signatures and integration of drug expression profiles from multiple
cell lines. For example, the scarcity of adjacent normal tissues for many cancers (e.g.,
pediatric brain cancers) prevents the creation of disease gene expression signatures using
traditional methodologies®®. In this study, we estimated that a minimum of ten samples of
adjacent normal tissue would be preferred to account for normal tissue heterogeneity. To
address this challenge, we developed a deep learning (DL)-based method to select potential
reference tissue samples for the selected case samples based on their expression profilesl®
and implemented in (Open Cancer TherApeutic Discovery) OCTAD.

Doing this makes a substantial difference; for example, in The Cancer Genome Atlas
(TCGA), an adult cancer genomic database, fewer than half of cancers have at least ten
adjacent normal tissues. In the pediatric cancer genomic database TARGET, none of cancers
has at least ten adjacent normal tissues. Of these tumor tissues, a substantial number of
tissues are impure owing to the infiltration of stromal cells and immune cells, leading to a
significant bias in the subsequent genomic analysis, including disease signature
creation®17. Some of these impure samples could be detected by correlating their
expression profiles with those from cancer cell lines, which are more purel.

There is a plethora of relevant datasets and analysis modules that are publicly available, but
these are isolated in distinct silos (different databases requiring different methods for
harmonization). For many labs, it would be tedious or even impossible to collate all these
data to implement this approach. In this work, we describe in detail how these resources and
data types can be used, as well as challenges with the process. Further, we introduce our
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publicly available framework and workflow, OCTAD, to streamline the various
computational tasks required for the drug discovery.

We have made OCTAD available both as a standalone software package in R for
bioinformaticians as well as a web server resource for investigators without a coding
background. This protocol provides more detail describing the power of our approach and
the novel aspects that enable more refined prediction methods. Since the publication of
original key papers, we have substantially improved the protocols in many aspects, including
the coverage of samples, the computing performance and the usability. In the “Anticipated
results’ section, we demonstrate the importance of key parameters, the consistency of the
results between the new version and our previously published HCC work?® and the
feasibility of using the new version to predict candidates for MY C amplification lung
adenocarcinoma and P/K3CA mutation breast cancer.

OCTAD pipeline
Overview of OCTAD

The system includes four main components: OCTAD Dataset, OCTAD Core, OCTAD
Desktop and OCTAD Portal (Fig. 1a). OCTAD Dataset stores all sample expressions,
processed using the Toil RNA-Seq pipeline, an open-source workflow software that can be
used to run scientific workflows on a large scale in cloud or high-performance computing
environments®. OCTAD Core includes all R functions needed for all analyses. OCTAD
Desktop is an R package that can run on a regular laptop. Its customized functions allow
computational biologists to perform more advanced analyses (Fig. 1b). The OCTAD Portal
is the web version of the system; it has a front end based on Python Flask and HTMLS5,
supported by the back-end OCTAD Core. We developed a simple four-step strategy to allow
scientists without any programming skills to easily perform drug candidate predictions (Fig.
1c). We opted to use Python Flask and HTMLY5, as the portal uses advanced features, such as
sample visualization, job management and parallel computing.

OCTAD Dataset

To minimize the batch effect from multiple studies, we use the same pipeline Toil developed
by UCSC to process all raw RNA-Seq profiles. We estimated transcript abundance estimated
from STAR (an RNA-Seq sequence aligner)2% and RSEM (for transcript quantitation)?L.
Because the UCSC Treehouse initiative has already used this pipeline to process samples
publicly available, we use their processed samples and extend this pipeline to process new
samples. The datasets processed through this pipeline were employed in our recent
studies!®22,

Any new samples from the major RNA-Seq repositories, including the Gene Expression
Omnibus (GEO), dbGAP and the European Bioinformatics Institute European Genome-
phenome Archive (EBI EGA), can be easily processed by our pipeline. We have included
samples from TCGA, TARGET, GTEx and Met50, totaling 19,127 samples covering 50
cancer types (Fig. 2 and Table 1) and will continue adding more samples from open RNA-
Seq repositories. When possible, we also collected their clinical features (e.g., age, gender
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and tumor stage) and molecular features (e.g., mutation status, amplification and tumor
molecular subtype) that allow the selection of a specific set of disease samples
(Supplementary Text). In addition to tissue samples, we compiled 66,612 compound gene
expression profiles consisting of 12,442 distinct compounds profiled in 71 cell lines (with
83% of the measurements made primarily in 15 cell lines), using data downloaded from the
LINCS consortium. Each profile includes the expression measurement of 978 ‘landmark
genes’. The changes in the expression of these landmark genes were computed after
compounds were tested in different concentrations (62% of the measurements were made in
conditions under 10 pM) for 24 h (49%) or 6 h (ref. 11).

Reference tissue selection

Case samples could be manually defined based on disease clinical and molecular features.
Selecting appropriate corresponding normal samples is essential for creating a disease
signature. In OCTAD, users can choose adjacent normal tissue samples as control, whereas
plenty of cancers, such as brain cancer, have no or insufficient adjacent tissue samples. From
Table 1, it is clear that there are not enough data for adjacent normal tissues, but there are a
lot of data for normal tissue samples from GTEX, a repository of tissue samples from healthy
individuals. Owing to variation of normal tissue samples, only some of them are appropriate
to serve as case samples®. We could compute per-gene interquartile range and choose top
varying genes to calculate the Spearman correlation between each case sample and all
normal samples, although selecting top varying genes might ignore many critical genes. Top
features derived from principal component analysis (PCA) could also be used, although
PCA might not capture the non-linear relationship between genes. Autoencoder, a type of
artificial neural network used to represent input data in an unsupervised manner, can capture
non-linear relationships between input features and normalize input data, presenting unique
advantages in handling such high-dimensional expression data. Our previous work
demonstrated the utility and advantage of autoencoder in control sample selection and the
feasibility of adopting highly correlated normal samples taken from the different tissue of
origin1®. Accordingly, in OCTAD, we use new features encoded by DL autoencoder to select
highly correlated normal samples given a set of disease samples.

By default, the top 50 control samples that are mostly correlated to the case samples are
selected for further analysis. Control sample selection can be customized in the desktop
version. For example, advanced users can compare metastatic cancer samples and primary
cancer samples, or 7P53 mutation and wild-type samples, although the feasibility of
predicting drugs for these types of comparisons needs to be evaluated individually. It is rare,
yet possible, that none of normal samples is highly correlated with the case samples; users
are encouraged to examine the absolute correlations from the result file.

Disease signature creation

A disease gene expression signature is defined as a list of DE genes between a specific set of
case samples and matched reference normal samples. Because case and control samples are
often from different studies, raw counts are first normalized through RUVSeq?23, where a set
of empirical negative control genes (least significantly DE genes based on a first-pass DE
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analysis) that are assumed to have constant expression across samples are used to adjust for
technical effects.

With two groups of samples, standard DE analysis methods (e.g., edgeR?4, limma voom?2®
and DESeq_2 (ref. 26)) could be performed, followed by pathway enrichment analysis
through the Enrichr AP127, Pathway enrichment analysis allows users to examine critical
pathways or biological processes associated with dysregulated genes from the disease
signature (Box 2). The comparison of the DE methods was performed elsewhere?8. EdgeR,
one of the most popular and fastest methods for DE analysis, is the default, whereas limma,
which uses quantile normalization and is extremely useful for microarray analysis, is another
option. Because of the low efficiency, DESeq?2 is supported only in the R package. Popular
databases, including KEGG and GO, are used as default in the enrichment analysis.

Reversal of cancer expression

SRGES

In our earlier studies, we quantified the reversal of disease gene expression as the Reversal
Gene Expression Score (RGES)!1, a measure modified from the connectivity score
developed in other studies*12. To compute the RGES, we first rank genes based on their
expression values in each drug signature. A score for each set of upregulated and
downregulated disease genes is computed separately using a Kolmogorov—-Smirnov-like
statistic, followed by the merge of scores into an RGES from both sides (up/down). The
RGES is based on the number of the upregulated (or downregulated) genes enriched at either
the top (or bottom) of a drug—gene list ranked by expression change after drug treatment. A
negative RGES means upregulated disease genes are downregulated in the drug profile,
and/or downregulated disease genes are upregulated in the drug profile. One compound
might have multiple available expression profiles owing to having been tested in various cell
lines, drug concentrations, treatment durations or even different replicates, resulting in
multiple RGESs for one drug—disease prediction. Therefore, we developed a summarization
method to mitigate bias and to compute a score representative of the overall reversal potency
of a compound to a particular cancer. We refer to this score as SRGES.

SRGES is calculated using the following equation:

N
sRGES = Z (RGES(i) + f(dose(i), time(i))) X w(i) / N
i

where Nis the number of drug profiles. fdose(/), time(/)) was estimated by a computational
model. Correlation between cell(/) and tumor samples was estimated as the average of
correlations between the cell line and individual tumors. The maximum correlation between
cell lines and tumor samples can be used to normalize correlation. We set a reference
condition (i.e., concentration of 10 uM and treatment duration of 24 h) and used a model to
estimate a new RGES if the drug profile under the reference condition was not available. We
then weighted the RGES by the degree of correlation between the gene expression profiles
of the disease and the cell line in which the compound was tested.
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We demonstrated that SRGES is correlated to drug efficacy (measured by log(ICsp nm) or
area under the curve (AUC) derived from the dose response curves), and such correlation is
retained even when the disease is not represented by cell lines of its own lineage in the drug
expression databases. The analyses suggested the feasibility of applying this approach for
large-scale screening of compounds for a given disease signature.

I CAUTION At the moment, it is better to calculate SRGES using ranked genes rather than
the absolute magnitude of expression changes. Previous attempts to use any form of absolute
expression magnitude have resulted in less robust resultsl. While computing SRGES,
restricting the cell lines to the cancer of the same lineage used by LINCS L1000 causes
significant loss in the number of drugs evaluated and has not been shown to improve the
specificity of results!?.

Hit prediction and selection

Previous drug repositioning efforts considered only a couple of thousand Food and Drug
Administration (FDA)-approved drugs with more potential to translate into the clinic,
leaving over 10,000 compounds in LINCS unused for a broad chemical space for discovery
(Fig. 3a; a two-dimensional #distributed stochastic neighbor embedding (~#SNE) projection
of the compounds based on their chemical structural similarity). Three compound structures
are displayed to show the structural diversity and complexity of the compound collection.
Including those unused compounds might increase the chance of discovering novel
compounds. Of these compounds, 14% are commercially available in ZINC2®, which is one
of the largest collections of commercially available compounds (Fig. 3b). An additional 5%
of compounds are structurally similar to ZINC compounds (similarity >0.9), leaving >80%
of compounds that are not directly purchasable (Fig. 3b). According to synthetic
accessibility scores3, 70% of these inaccessible compounds can be easily synthesized (Fig.
3c). This protocol added several enrichment analyses of drug hits, including enriched
Medical Subject Headings (MeSH) terms, protein targets and chemical scaffolds (Box 2).
MeSH pharmacological classification and protein targets of LINCS compounds were
retrieved from PubChem3! and ChEMBL32, respectively (Fig. 3d,e). Chemical scaffolds of
LINCS compounds were created using RDKit (Supplementary Materials and https://
www.rdkit.org). We expect such information will facilitate the selection of representative
compounds that could be quickly obtained for testing.

Selection of cell lines and in silico validation

The efficacy of compounds is often first evaluated in cancer cell lines. The transcriptomic
comparison of cell lines with disease samples could be employed to select appropriate cell
lines to use for the following efficacy validation!822:33, The emerging large-scale drug
sensitivity (or efficacy) data across a variety of cancer cell lines34:3% even enable the
validation of predictions using published experimental data without biological experiments.
Here we use the transcriptome profiles to select a cell line related to case samples and then
leverage published drug sensitivity data of the selected cell line to validate the prediction.
We rank transformed gene reads per kilobase of transcript, per million mapped reads
(RPKM) values for each CCLE3® cell line and then ranked all the genes according to their
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rank variation across all CCLE cell lines. The 1,000 most-varied genes were kept as ‘marker
genes’. (In addition to 1,000 genes, we explored multiple gene sizes in the early preliminary
analysis and did not find the large variation of correlated cell lines, so, in this study, we
chose 1,000 most-varied genes.) Given RNA-Seq profiles of a cell line and case samples, we
compute the Spearman rank correlation (across the 1,000 marker genes) between the cell
line and each case sample. The median value of computed Spearman rank correlation values
is defined as the transcriptome similarity between the cell line and the case samples. If the
drug sensitivity database Cancer Therapeutics Response Portal (CTRP)3° provides the
sensitivity data of the LINCS compounds in the selected cell line, OCTAD allows you to
pull out this drug sensitivity data and correlate them with SRGES to evaluate drug
predictions. A significant correlation with experimental data would increase the confidence
of investigating other drug hits that have not been tested.

Overview of OCTAD Desktop and Portal

To enable users to make use of our pipeline, we release both a freely available and open-
source web portal and a workflow in a computational pipeline. The web portal runs many of
the OCTAD core functions in the back end but requires no programming expertise. It allows
users to perform all key parts of the pipeline, including selecting case and control samples,
performing DE analysis to generate a disease signature and generating drug candidates. To
make the process as efficient as possible, users can register for the web server, and the
various parts of the pipeline can be saved as jobs that will be saved for future visits. The
portal assigns each job with a permanent URL and also allows the submission of an
anonymous job and the uploading of disease signatures computed from elsewhere. The web
server is interactive and produces informative plots and tables that users can interact with
and download. The web server also incorporates some, but not all, advanced features of the
pipeline, including autoencoder-recommended control sample selection. The full set of
features of the web server can be found in both the ‘Procedure’ section and the
Supplementary Materials.

The desktop version (R package) can not only perform all of the above components but also
provides more flexibility and features. The computational pipeline is built in the R
framework and incorporates publicly available Bioconductor and R packages for processing
and analyses. Advanced users can perform large-scale drug predictions and explore multiple
control selection methods, and it includes in silico validation. We provide a breakdown of
the R pipeline in the ‘Procedure’ section and the Supplementary Materials.

Availability

The web portal can be used by anyone without programming expertise or extensive domain
knowledge. Users with genetics and molecular biology knowledge will find the results
highly interpretable. To use the desktop version, a user will need to have basic skills in R
and Bioconductor packages and have knowledge of genomics data. The web portal is
available at http://octad.org. The R package.tar.gz, datasets and a tutorial can be accessed at
the download page (http://octad.org/download). Alternatively, the files can be accessed here:
https://www.synapse.org/#!Synapse:syn22101254/files/.
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To reduce the R package to a manageable size, the desktop version, by default, includes
expression for 978 genes from the LINCS database to compute SRGES and/or differential
gene expression. However, DE analysis using the reduced set might result in bias because
count normalization is performed in a smaller gene set. Users are advised to download the
entire dataset from the download page (with an h5 format, >2G).

Alternative methods

The related datasets and analysis modules are publicly available but isolated in distinct silos.
Genomic data of patients with cancer could be searched and visualized in platforms such as
cBioPortal3”, Oncoscape38 and TumorMap3°. Massive RNA-Seq samples are processed in
platforms such as Treehousel?, Rcount? and ARCHS441. Disease signatures could be
created by R packages such as edgeR2* and DESeq? (ref. 26). A comprehensive enrichment
analysis of disease signatures could be performed in Enrichr2” and DAVID*2. Given a
disease signature, clue.io could predict drug hits using LINCS datal3. To be able to predict
drugs using public RNA-Seq profiles, researchers have to use different platforms and various
tools to accomplish the task. To address this issue, we developed a portal to streamline this
process. We provide an agile desktop version that allows computational scientists to
customize the code and a web portal version that allows bench scientists and clinicians to
easily navigate and predict drug hits.

There are also several existing web resources, tools and applications that can perform
somewhat similar procedures and analyses. Rnama (https://rnama.com) is a freely available
web application that allows for meta-analysis of publicly available RNA data, seamlessly
extracted from the GEO. Comparing case and control groups can be interactively performed,
which results in an interactive plot of DE genes. DEBrowser is an R shiny-based package
that creates an interactive dashboard to facilitate DE analysis and visualization of RNA
count data*3. Users can upload their own data, and the application allows for multiple
quality control steps and visualization. DrugSig is a web resource that allows for prioritizing
potential drug repurposing opportunities and submitting upregulated and downregulated
genes from pre-computed disease DE profiles**. RE:fine drugs is an interactive dashboard
that pre-calculates potential drug repurposing opportunities, combining information from
previously published genome-wide association studies and PheWAS results*®. Users can
search for a drug name, disease name or gene symbol to see suggestions based on these
levels of evidence. DeSigN is an interactive web tool that allows for prediction of drug
efficacy against cancer cell lines#®. In this application, users can enter a list of upregulated
and downregulated genes to be compared against 1Csq values to prioritize potential drugs.
Drug Gene Budger is a web tool and mobile app to interactively rank drugs to modulate
user-specified genes based on transcriptomic profiles’. With this, users can search for a
specific gene, and the tool prioritizes drugs to either upregulate or downregulate them using
CMAP, LINCS L1000 or CREEDS data. Although the aforementioned tools and
applications are indeed useful, none can perform the full gamut of steps necessary for this
process. Furthermore, the flexibility of our application, the incorporation and integration of
multiple datasets, along with enhancements and incorporation of novel methodologies (e.g.,
autoencoder reference normal sample identification) makes OCTAD truly a unique and
powerful resource.
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Many other computational resources and repositories demonstrate the power of drug
repurposing. The Drug Repurposing Hub contains an app that allows for dynamic search and
exploration of annotated information pertaining to over 8,000 compounds, including targets,
mechanism of action and even vendor information!4. RepurposeDB“8 and repoDB*° collect
and curate information about known drug repurposing experiments. These, together with
studies from other researchers, demonstrate the feasibility of applying a systems approach to
screen drug hits in cancers.

Advantages, limitations and future directions

Our pipeline has several advantages. First, OCTAD covers nearly 20,000 open RNA-Seq
samples from multiple sources processed in the same computational pipeline, so that any
pipeline effect is minimized. Coupling with the robust control sample selection module
makes it possible to predict drugs for cancers or cancer subtypes with no empiric controls.
Second, the one-stop drug prediction web portal allows clinicians and bench scientists who
might not have sufficient programming expertise to run the various computational tasks
necessary to prioritize drug hits for further experimental validation. Third, the flexible
desktop-based R package allows advanced users to perform customized drug discovery
computations. Fourth, collected molecular and clinical samples enable precise stratification
of patient samples and prediction of drug candidates for subsets of patients. Fifth, our unique
DL-based models enable appropriate selection of normal samples. Finally, an optimal
outcome is generated thanks to the rigorous quality control in each step (e.g., in silico
validation of drug hits).

Despite these advantages of OCTAD, a few issues remain to be addressed in future versions.
First, the application is limited by the quality and structure of the input data, and some data
sources provide more information than others, which restricts search functionality. For
instance, TCGA provides a much more comprehensive coverage of clinical and molecular
features than many individual studies. Similarly, these various datasets have different
nomenclatures in which phenotypes and diseases are characterized. In future iterations, we
will perform more intensive harmonization of these labels using common data model
ontologies. For now, users will have to curate their selections based on necessity, but the
application provides the framework to do so. Additionally, this pipeline is focused only on
cancer. We envision that this application could extend easily to other phenotypes. In future
iterations of the web application, we will allow for more seamless integration of data from
other sources and repositories, such as the GEO, the Sequence Read Archive, the EBI EGA
and Treehouse. Furthermore, OCTAD uses only one repurposing methodology (reversal of
gene expression) and one molecular datum (gene expression). Finally, the pipeline has been
validated only for several cancers; as with all drug repurposing in silico exploration,
predictions will have to go through extensive biological and clinical validation experiments
to verify utility and efficacy.

Gene expression captures only one aspect of biological systems. With the rapid advances of
‘omics’ technologies, we envision that the system that we developed will greatly facilitate
the use of other omics data (proteins, metabolites and single cells) in future therapeutic
discovery®0. As indicated, identifying therapeutic treatments involves multiple biological
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systems, and, as such, it is only natural that the drug discovery or repurposing process
should involve multiple data types across domains. The types of data that exist to broadly
assess therapeutics with phenotype are vast and cross several biological domains. These
include, but are not limited to, genome, transcriptome, proteome, metabolome, epigenome
and microbiome. In the space of drug discovery and repurposing, it is important to look at
these domains not only across different cell types and tissues but also under different time
points and conditions, particularly when exposed to drugs. There are also many models in
which to perform such experiments, including animals (e.g., rodent and zebrafish), cell lines,
organoids, xenografts and tissues.

Materials

For the web server (http://octad.org): developed and tested in Google Chrome

For the desktop version:
. R v.4.0.0 or newer (https://www.r-project.org)
. RStudio (https://www.rstudio.com/)

. Download and install “octad’ package with all requisitions from the GitHub
directory https://github.com/Bin-Chen-Lab/octad

. Whole OCTAD expression can be downloaded from the web portal or directly
via https://chenlab-data-public.s3-us-west-2.amazonaws.com/octad/
octad.counts.and.tpm.h5

. Whole combined tutorial link: https://chenlab-data-public.s3-us-
west-2.amazonaws.com/octad/octad_tutorial . pdf

. Code with five examples: https://chenlab-data-public.s3-us-
west-2.amazonaws.com/octad/octad_example.R

Required hardware for the desktop version:
. Computer with 28 GB RAM
. Hard drive with =10 GB free

. A stable broadband internet connection

Procedure 1

Desktop version

A CRITICAL We illustrate the utility of the desktop pipeline by highlighting a use case for
HCC. We provide code and data for investigating DE, pathway enrichment, drug prediction
and hit selection and in silico validation using an external dataset. In this workflow, we will
select case tissue samples from our compiled TCGA data and compute control tissues from
the GTEXx data.
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Note that our compiled data also contain adjacent normal TCGA HCC samples that can also
serve as control tissues. More detailed description of functions and result files is illustrated

The links used for setting up are listed in the ‘Materials’ section.

Zeng et al.
in Fig. 4.
Setup
1.
2.

Install required libraries. Refer to the script to install required R packages that
can be found in the ReadMe file from the GitHub directory https://github.com/
Bin-Chen-Lab/octad.

Customize the Setup folders. By default, the octad package uses the Small
OCTAD dataset containing expression values only for LINCS landmark genes
required for SRGES score computation. To download the full expression values,
refer to the links to the whole expression dataset. By default, computation results
of the pipeline are stored in the working directory.

First-time setup and loading the package

3

Before running the pipeline for the first time, install the required packages by
typing the following in the R command:

packages=c(“magrittr’, “dplyr’, “ggplot2”, “doParallel”, “foreach’,
“Ime4”, “Rfast’)

if (length(setdiff(packages, rownames(installed.packages()))) > 0)
{

install _packages(setdiff(packages, rownames(installed.packages())))

}

Install the required Bioconductor packages:

bioconductor_packages=c(“edgeR”, “RUVSeq’, “DESeq2”, “limma’, “rhd-
57, “artMs”)

if (length(setdiff(bioconductor_packages,

rownames(installed.

packages()))) > 0) {

if (YrequireNamespace(“BiocManager”, quietly = TRUE))
install._packages(“BiocManager’)

BiocManager: :install (setdiff(bioconductor_packages,

rownames

(installed.packages())))

Install the OCTAD version and octad.db that was downloaded. Note that,
because the package contains lots of pre-compiled data, it might take ~10 min to
install.
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install _packages(“https://chenlab-data-public.s3.amazonaws.com/

octad/octad.db_0.99.0.tar.gz%3Fd1%3D0”,
method=*“libcurl”,repos=NULL,type=‘“‘source”)
devtools::install_github(“Bin-Chen-Lab/octad” ,build_vignettes =
TRUE)

6 When the package is installed, load it into R:

library(“octad™)

The package will first check dependable packages and then load necessary
packages and datasets. After this step, the pipeline is ready to run.

Case and control samples

A CRITICAL Choosing which cases (tumor samples from the phenoDF data.frame) and
controls (corresponding samples treated as background samples—e.g., normal tissue,
adjacent normal tissue or tumor samples without mutation) to use are the two most
important factors in achieving the best results when using this pipeline. Several methods
included in the provided code evaluate controls relative to cases, but there are no built-in
validation steps that evaluate cases. Each group of cases needs to be evaluated individually
for validity by the investigator. Visualization of cases in a £SNE plot could help understand
their relations with other OCTAD samples. Samples sharing similar transcriptomic profiles
tend to cluster together in the £SNE plot. The cases scattering in multiple clusters are not
recommended to choose as a group.

A CRITICAL The case_id and control_id variables must be simple character vectors
containing sample IDs. They are most easily generated by subsetting the metadata matrix
phenoDF, but advanced users may assemble them using other means (including querying
cBioportal or the NCI GDC portal).

Select case samples

7 Phenotype data contains tissue types, such as normal tissue, adjacent normal
tissue, primary cancer, recurrent cancer and metastatic cancer. We will select for
primary HCC. To list all available samples from the OCTAD database, use the
phenoDF data.frame.

To select HCC samples, use the code below:

head(phenoDF)
HCC_primary=subset(phenoDF,cancer==“liver hepatocellular carcino-
ma’&sample.type == “primary’) #select data

case_id=HCC_primary$sample.id #select cases
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The sample IDs will be stored in the character vector case_id.

This code can be easily modified to select other cancers or a set of samples
based on mutations and copy numbers (e.g., 7P53 mutation or MYC
amplification). It is also recommended to use the R package cgdsr to select
TCGA samples based on more clinical and molecular features.

#choose breast invasive carcinoma samples with PIK3CA mutation
BIC_with_PIK3_primary=subset(phenoDF,cancer==“breast invasive car-
cinoma’&sample.type == “primary’ &grepl(“PIK3CA” ,mutation_list))

Compute or select control samples

8

10

11

Use the function computeRefTissue to compute appropriate normal tissues via
comparing gene expression features between case samples and normal tissue
samples. Users can select adjacent normal tissue samples if available. By
default, features from the precomputed autoencoder file are used, but other
features, such as top varying genes across samples, can be employed as well.
Pairwise Spearman correlation is computed between every case sample and
every normal sample using these features. For each normal sample, its median
correlation with all case samples is then computed. Top correlated normal
samples (defined by control_size) are then selected as control.

#computing top 50 reference tissues
control_id=computeRefTissue(case_id,outputFolder=",output=T,adja-

cent=T,source = ‘“octad”,control_size = 50)

The list of normal IDs is stored into the variable control_id. Use the following
code to select adjacent control samples from phenoDF. This code can also be
used to select any set of OCTAD samples (including cancer samples) as control.

HCC_adjacent=subset(phenoDF,cancer==*liver hepatocellular carcino-
ma’&sample.type == “adjacent’&data.source == “TCGA”)
control_id=HCC_adjacent$sample.id

Figure 5a shows the top 50 normal tissues, highlighted in red, that have the
highest median correlation with HCC tumors. Check the absolute correlations
from this plot or the case_normal_median_cor.csv file to assess the relevance of
the control samples. By default, we consider a correlation coefficient >0.285 to
be significant according to the background distribution (Supplementary Fig. 2).
It is rare, but possible, that none or few control samples in GTEX are highly
correlated to case samples. If this happens, users should not proceed.

The relationships among case, control and other samples are visualized in Fig.
5b. To generate this type of image, use the following code and pre-computed #
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SNE matrix. We applied the £SNE algorithm to the whole OCTAD database for
computation of the distance between all samples in the phenoDF for increased
visualization timings. £SNE is a non-linear dimensionality reduction technique
that is particularly well suited for the visualization of high-dimensional datasets.

tsne$type <- “others”

tsne$type[tsne$sample.id %in% case_id] <- ‘“case”
tsne$type[tsne$sample.id %in% control_id] <- “control”

#plot

(p2 <- ggplot(tsne, aes(X, Y, color = type)) + geom_point(alpha =
0.4) +

labs(title = paste (“TNSE PLOT”?), x= “TSNE Diml”, y=“TSNE Dim2~”,
caption="“0CTAD’)+

theme_bw())

Compute DE genes between case and control samples

12

DE can be computed via edgeR, limma + voom or DESeq2. By default, we use
edgeR in the analysis. Because the function diffExp computes DE genes
between case_idand control_idwithin the same data matrix, it can be used to
find DE genes between any two groups of samples. By default, a small dataset
containing only 978 genes shared with the LINCS database is used.

res=diffExp(case_id,control_id,source= “octad.small”,output=T)

If you need to use the whole OCTAD dataset as input (see ‘Materials’), make
sure that the required h5 file is stored in the R working directory or that the
whole path to the file is specified:

res=diffExp(case_id,control_id,source=“octad.whole”,output=T,
n_topGenes=10000, file=“octad.counts.and.tpm.h5”)

We can also perform DE analysis using an external dataset. Below is an example
of how to perform DE analysis between tumor and non-tumor samples using the
count data downloaded from the GEO (GSE144269).

data=read.table(“GSE144269 RSEM_GeneCounts.txt’ ,header=T,row.
names=1)

data=as.matrix(data)

data=log2(data) #log-convert gene expression for edgeR computation
data[is.infinite(data)]=0 #remove infinite numbers

samples=colnames(data) #define the case and control cohorts, A
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samples

were obtained from tumors, B samples were obtained from adjacent
tissue

case_id=samples[grepl (“A_S~”,samples)]
control_id=samples[grepl(“B_S~”,samples)]
res=diffExp(case_id,control_id,source=“side” ,output=T,n_top-

Genes=10000, expSet=data,annotate=F) #compute DE

A CRITICAL STEP If you are using a customized dataset, make sure that it is
a matrix with rows containing Ensembl gene names. After DE analysis,
diffExp() will annotate every expressed gene using Entrez Gene symbols.

Perform batch normalization. By default, the normalization and batch correction
step is performed (with option normalize_samples = TRUE) that uses RUVSeq
to normalize samples so that batch effects between studies can be minimized3”.
The parameters kand ntop_genes are required in RUVSeg?3 if
normalize_samples is set to TRUE. These options are used to compute an
empirical set of control genes via edgeR (stored in computedEmpGenes.csv).
We recommend this step when using samples from different resources (e.g.,
TCGA cancer and GTEx normal). The disease signature is visualized in a heat
map (Fig. 4c).

Compute reverse gene expression scores

14

15

16

The runsRGES function is used to identify the drugs that potentially reverse the
disease signature. Use the code below to choose significant genes; this works by
keeping genes that have low adjusted P values and high log-fold changes.

res=subset(res,abs(log2FoldChange)>1&padj<0.001)

Launch the SRGES computation. It takes a few minutes to compute RGESs.
After the job is finished, it will output files all_lincs_score.csv (RGES of
individual profiles), SRGES.csv (summarized RGES of individual drugs) and
dz_sig_used.csv (signature genes used for drug prediction). Figure 5d is a
sample output of drugs that are in clinical trials or are FDA approved. LINCS
also provides the imputed expression of the whole transcriptome based on the
978 genes. We will add it in the future when its usage is fully evaluated.

SRGES=runsRGES(res,max_gene_size=100, permutations=10000)
Identify the hits by choosing those that have SRGESs lower than —0.2.

A CRITICAL STEP Using sRGES lower than —0.2 is a method found to
produce the best results in a handful of validation cases. There is currently no
known superior way to compare hits to aid in lead optimization. Similarly,
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comparing the magnitude of SRGES results across runs is inappropriate because
SRGES is highly dependent on the size of disease genes.

Validate results using published pharmacogenomics data (optional)

17

18

As the pharmacogenomic database CTRPv2 consists of efficacy data of 481
drugs in 860 cancer cell lines3>51, we might leverage this database for further in
silico validation of our predictions, even without running any biological
experiments. We use the HepG2 cell line to validate the prediction of HCC
drugs. In our previous work, we showed that RGESs correlate with drug
efficacy, such as AUC or ICsg (ref. 11).

To perform this analysis, run the following chunk:

cell_line_computed=computeCellLine(case_id=case_id,returnDF=T,
source=“octad.whole”,file=“octad.counts.and.tpm.h5”)
topLineEval (topline = c(“HEPG2”),mysRGES = sRGES)

computeCellLine will produce an object with correlation scores for every cell
line and case samples (stored as CellLineCorrelations.csv).

topLineEval will produce CellLineEval*_drug_sensitivity_insilico_results.txt
and two .html documents:

*_auc_insilico_validation.html (correlation between drug AUC in the specified
cell line and sSRGES).

* icb0_insilico_validation.html (correlation between drug ICsg in the specified
cell line and sGRES).

Validate the predictions using a linear regression model (Fig. 5e). Note that we
could use this analysis to optimize the pipeline for the disease of interest by
changing various hyperparameters. We expect that a good prediction should be
highly correlated with drug sensitivity in a related cell line.

Compute drug enrichment (optional)

19

After calculation of SRGES on the L1000 compound dataset, perform drug
enrichment analysis to identify interesting drug classes whose member drugs are
significantly enriched at the top of the prediction. Example drug classes include
anti-inflammatories, EGFR inhibitors and dipines (calcium channel blockers).
We combine LINCS drugs into three lists: MeSH, CHEMBL and
CHEM_CLUSTER for MeSH term enrichment, target enrichment and chemical
structure enrichment, respectively. The enrichment score is calculated using
ssGSEA®2, and its significance is computed by a permutation test. Figure 5f
shows the enrichment of anti-metabolites (drugs that interfere with one or more
enzymes or their reactions that are necessary for DNA synthesis) and anti-
neoplastics (drugs used to treat cancer) in the top-ranked drugs, suggesting that
members of this drug class are more likely drug hits.
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octadDrugEnrichment(sRGES = sRGES, target_type = c(“chembl_tar-
gets”, “mesh”, “ChemCluster?))

This analysis provides much information for the following candidate selection
and experiment design. First, the candidates selected from the same enriched
class (i.e., MeSH term and target) are more likely to be true positive than those
randomly selected from the top list. Second, when the ideal candidate is not
available, it is reasonable to choose an alternative from the same class.
Sometimes, it is necessary to choose a new drug for testing (e.g., a second
generation of one inhibitor for the same target). Lastly, because many
compounds have multiple mechanisms of action (MOAS), this analysis would
help interpret the MOA of promising compounds.

Procedure 2

Web server version
Portal landing page/login

1. At the landing page, create a new account, log into an existing account or go
straight to submitting a job (Extended Data Fig. 1). Although having an account
is not required to submit the job, we recommend setting one up as it will save all
active and past jobs. User account settings can be accessed on the top right of the
header. In the main portal, a user’s Job History can be found in the tab on the
side menu, where all jobs are listed with information pertaining to disease of
interest, status (e.g., Completed and In-Progress), creation time, as well as the
access to view and download all output. Users can also delete previous jobs. At
the bottom of the screen, the details of the current job can be found by clicking
the Summary button; the current job can be saved by clicking the Save button;
and navigating forward or backward in the process can be done by clicking the
Previous and Next buttons, respectively.

Creating a new job: HCC—A CRITICAL Creating a job is separated into four sections:
Case, Control, Disease Signature and Drugs.In this procedure, we will go through all steps
along with expected output. We will highlight HCC as our featured example.

Case selection

2 Upon entering the Case section, all samples available from all included database
resources (see ‘Materials’ section; 77=19,127) are displayed in a table at the
bottom of the page, including cancer type (Cancer), site of derivation (Site),
gender, age, cancer subtype, tumor stage, mutation, gain of function (copy
number) and loss of function (copy number). Spend some time familiarizing
yourself with and exploring this page. The user is able to interact with this table,
such as searching in the top right and viewing more information about the
samples by clicking the green “+’ button under More Info, which shows
information such as patient demographics and status for certain mutations. Users
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can manually select samples to include as well by selecting the check box at the
left of the sample row.

A CRITICAL STEP For the first time loading, we recommend waiting ~20 s
before starting to select case samples, as it takes some time for the browser to
download the data from the server. One sign of complete loading is that all
samples should be automatically selected in the table during sample selection.

3 To begin a job, search for cancers of interest in the search box at the top of the
page beside Disease Name; multiple diseases can be selected.

4 Refine your search by adding filters (e.g., gender, tissue type and a known
mutation status); doing this will automatically update the selected samples
below.

5 Manually add and remove samples by checking or unchecking rows in the table,

respectively.

For the example shown in this protocol, start the search by typing
‘hepatocellular carcinoma’ into the Disease Name search box and choose the
corresponding option. After filtering for tissue type, we are left with 369
primary cancer samples.

6 Proceed to select Control samples in the next section by clicking the Next button
on the bottom of the screen.

Control selection

7 Click ‘compute control samples’. The portal will ask whether adjacent samples
should be included if available and how many control samples should be chosen.
The portal will recommend control samples automatically.

For the example in this protocol, if the DL method is used (which we
recommend), we are left with 50 samples. These Control samples are
highlighted along with all other normal samples.

8 By default, adjacent samples are included for computation. To remove them
from the list of potential control samples, uncheck the box ‘adjacent’ before
computation. Depending on the user’s goals, this can be a good way to visually
verify whether the current selections are adequate.

9 Continue to the Disease Signature section by clicking the Next button on the
bottom.

Disease sighature generation—! CAUTION Sometimes users might want to use a
disease signature computed elsewhere. In this case, the signature can be uploaded in the
page ‘Upload data’. The expression data must be submitted in a .csv format with the
following columns: Symbol containing uppercased HGNC gene symbol and
log,FoldChange containing numbers with DE values. An example file is available at the
bottom of the page.
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With the Case and Control samples selected, we can now create the disease
signature of interest. This section allows for multiple methods to accomplish
this, specifically using either edgeR or limma. The portal does not include
DESeq2, which takes even longer than edgeR or limma. For this example job,
select edgeR and press “View signature’ to begin. As indicated by the warning
pop-up, this task can take a few minutes, so one benefit of creating an account is
that the user can log out while this process is occurring. It is recommended to do
this step to quickly evaluate disease signatures (heat map of disease gene
expression and pathway enrichment analysis). For example, if case and control
samples are not well separated in the heat map, users might want to adjust
samples. Users can skip this step and proceed with the job submission by
clicking ‘Next’ at the bottom left of the page. In this case, signature creation will
be automatically performed before drug prediction.

Once the signature generation is finalized, this section produces a heat map of
DE genes as well as a table below with these data. Explore the data by setting
and changing the criteria metrics; two examples of criteria to change are the P
value and fold-change cutoffs. Changing these will affect the resulting plots and
tables. The heat map and table can be found in the output files for reference.

This section will provide pathway enrichments (GO terms and KEGG pathways)
of both upregulated and downregulated genes in the signature as both table and
bar plots.

Once satisfied with the disease signature that has been generated, proceed to the
final stage of the job to calculate the RGES for all available drugs by clicking
the Next button on the bottom panel.

Candidate drug selection

14

In this section, we can compare the disease signature to all drug signatures
obtained from the LINCS resource.

Job submission and tracking

15

Troubleshooting

After submitting the job, an encrypted URL is generated. The pipeline typically
takes 10—20 min to run. Use this URL to refresh the page to check the status or
revisit the job later. Users can also monitor job status through Job History. The

result files are the same as those generated from the R package.

The octad_output_readme.pdf file describes all the output files.

Troubleshooting advice for ‘Procedure 1’ section, using the R package, can be found in

Table 2.

Troubleshooting advice relating to Procedure 2, using the web portal version of OCTAD,
can be found in Table 3. The details of troubleshooting various issues are updated in the
portal (http://octad.org/faq).
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The test of the web portal was performed on Chrome 80, and the test of the desktop version
was performed in Rgui 3.6.3 on a laptop with an Intel Core i7-9700 3-GHz processor and
16G of memory. Code for the desktop example and the timing calculation are available in
the GitHub repository (https://github.com/Bin-Chen-Lab/octad; Table 4).

Anticipated results

In the procedure for the Desktop version and the related figures (Figs. 4 and 5), we
demonstrated the ability of the OCTAD pipeline to select a case of primary cancers from
TCGA, compute correlated reference tissues from GTEX to be used as control samples and
compute a differential gene expression signature to recommend candidate drugs. This
current pipeline is a complete framework with increased functionality compared to our
original iteration8. For instance, instead of using DESeq2 to compute DE, we adopted a less
time-consuming method: edgeR24. Furthermore, we integrated our methodology to select
reference tissue from GTEx data, making possible the prediction of cancers without adjacent
normal tissues?®. Lastly, we compiled more samples along with their clinical features,
enabling prediction of candidates for a subset of patient samples. Here, using HCC as an
example, we first demonstrate the consistency of results between the original method and the
optimized one in every major step (i.e., disease signature creation, drug prediction and drug
enrichment analysis).

To illustrate the potential applications of using OCTAD to screen compounds for identifying
putative personalized therapeutics, we predict compounds specifically targeting MYC
amplified lung cancer and PIK3CA mutant breast cancer.

Comparison of results obtained using different key parameters

Because the OCTAD pipeline comprises multiple steps, each of which involves multiple
parameters, the selection of each parameter might affect the accuracy of the final prediction,
and the importance of each parameter is not clear. Although we optimized each step in the
original papers!112, here using three cancers as examples, we systematically investigated
eight main parameters (Fig. 6 and Supplementary Fig. 3). For each parameter, we examined
a few values commonly used. We enumerated all the combinations and ran the pipeline for
each. The final prediction SRGES was compared with the efficacy data compiled in the
original paper. In HCC, the correlation in the original paper! is 0.61, and the average
correlation of all combinations here is 0.49 (s.d. = 0.08), suggesting that the selection of
parameters does affect the final prediction. Because the performance of each value might be
highly confounded by the values from other parameters, we then performed a multiple
variant linear regression (cor ~ parameters). The analysis of three cancers revealed that the
performance is highly dependent on the DE logsFoldChange threshold and the DE method
(Fig. 6 and Supplementary Fig. 3; multivariate regression, £< 0.01). It suggests that using
logoFoldChange = 1 and edgeR (or DESeq2) in DE analysis could lead to a consistently
better outcome. The effect of other parameters varies, whereas their overall effect on the
result is relatively low.
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Comparison between the original method and the current pipeline

We first compared the rank of DE log, fold change from our original work, which uses
DESeq2 (noted as Pub) to the rank of DE in our current pipeline, which uses edgeR (noted
as Adj); both use TCGA adjacent normal HCC as a reference control. Next, we compared
the original results with our current pipeline using edgeR and computed GTEx normal
tissues derived using the top correlated autoencoder method (noted as Ae), generated from
the desktop procedure section. Finally, we compared the results from the desktop version
with those derived from our online web portal (noted as Online), which also uses edgeR and
normal liver tissue from the GTEXx database, which was generated from the online procedure
section.

The correlation analysis of the DEs from different procedures shows that the workflow using
edgeR and adjacent tissues as control had the highest correlation to the original work (Fig.
7a). In addition, both the online and desktop disease signatures are equal to each other, as
the parameters for them are the same (Fig. 7a). Both online and desktop results using GTEx
as controls also retained high correlation to the original gene expression signatures,
indicating that it is feasible to use GTEXx controls (Fig. 7a).

Subsequent drug prediction sSRGES is computed using significant differential gene
expression. We first observed the small discrepancy of differential gene expression
computed using multiple different procedures. We then assessed whether SRGES results are
also similar to the original. Unsurprisingly, the workflow using edgeR and adjacent tissues
as control had the highest correlation to the original work. Both online and desktop results
(Ae) had lower but still significant correlation to the original work (Fig. 7b).

In our original work, we showed that SRGES correlated with drug efficacy data from the
CTRP database in which drugs were tested on cancer cell lines. We further compared the
correlation of SRGES to the AUC of the corresponding drugs found in CTRP of liver cancer
lineage. AUC is computed as the median AUC across all the liver cancer cell lines. The
significant correlation between drug efficacy data and SRGES computed from different
procedures suggested the utility of using the workflow to in silico predict drug efficacy, even
in the absence of adjacent tissue samples (Fig. 7¢).

One of the pitfalls of using individual scores such as SRGES is the possibility for false-
positive predictions. An additional function of our workflow includes enrichment of drug
targets, such as via MeSH terms. This allows for summary of drugs into classes to allow for
investigation of groups of drugs rather than individual compounds. A higher score indicates
a MeSH drug group to be efficacious against the cancer, whereas a lower score indicates a
non-effective MeSH drug group. We further compare the rank correlation of the MeSH
scores generated from the different procedures (Fig. 7d). Through drug enrichment analysis,
we are able to examine clusters of drugs based on their MOA (e.g., MeSH). Finding novel
classes of drugs (e.g., anti-helminths or unconventional chemical structures) allows for the
generation of hypotheses that can be prioritized for experimentation. Furthermore, the
pipeline also allows us to filter out for drug candidates that might have low value—for
example, poor scores were given for anti-hypertensives compared to more conventional
classes, such as intercalating agents and HDAC inhibitors.
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Screening compounds targeting MYC-amplified lung adenocarcinoma

Targeting MYC, an oncogene amplified in many cancers, including lung adenocarcinoma, is
under active research; however, MYC is considered an undruggable target>3. One
therapeutic strategy is to reverse the gene expression signature of these MY C-amplified
tumors. Here, we ran the two sets of TCGA lung adenocarcinoma through our pipeline. In
one set, we selected for cancer tissues with MY C amplification, defined as copy numbers of
1 or more. In the second set, we selected for cancer tissues without the MY C amplification,
defined as 0 copy numbers. Then we selected drug efficacy data from the CTRP non-small
cell lung cancer cell lines with the MY C amplification as a validation set. The Spearman
correlation between AUC and sRGES for the MY C run is significant and better than the
non-MYC run (rho: —0.415 versus —0.261; Supplementary Fig. 4). This suggests that
OCTAD can be used to search for candidates specifically targeting A YC-amplified cancers.

Screening compounds targeting PIK3CA mutation in breast cancer

Summary

Likewise, we applied OCTAD to screen compounds targeting tumors harboring PIK3CA
mutation. PIK3CA is highly mutated in cancers but currently considered undruggable®®. In
this case, we ran the two sets of TCGA breast cancers through our pipeline. In one set, we
selected for cancer tissues with PIK3CA mutation. In the second set, we selected for cancer
tissues without the mutation. Then, we selected drug efficacy data from the CTRP breast cell
lines with the PIK3CA mutation as a validation set. Similarly to the previous result, the
Spearman correlation between AUC and sRGES for the PIK3CA mutant run was significant
(P<0.05) and better than the non-mutant run (rho: —0.370 versus —0.273; Supplementary
Fig. 5). Although more extensive experimental validation of compounds is expected, this
exercise demonstrates the feasibility of quickly employing OCTAD to identify candidates
for subtypes defined by molecular features. Moreover, OCTAD enables the creation of
signatures for various subtypes, from which compounds selectively reversing the signature
of one subtype could be fished out.

The combination of clinical and molecular features in describing patients’ disease could lead
to the identification of numerous disease subtypes; for each of these subtypes, the resources
available for their study might be very limited. Using open datasets and advanced machine
learning methods, OCTAD provides an effective means to screen compounds for one
specific cancer subtype for further experimental testing. In this work, we optimized our
pipeline and developed OCTAD, which we demonstrate can reproduce results from a
previous study that are also consistent when selecting normal tissue data from a different
database. Furthermore, the two new cases illustrate the potential of using OCTAD to screen
compounds for precisely defined patient groups, although subsequent experimental testing is
desired to verify drug candidates. In short, OCTAD provides a useful resource to many wet
labs, especially those with limited screening capacity, to prioritize compounds for a specific
group of patients, and a powerful platform for computational biologists to run large-scale
drug predictions.
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Reporting Summary

Further information on research design is available in the Nature Research Reporting
Summary linked to this article.

Data availability

The data related to this protocol can be found at http://octad.org/download or https://
Www.synapse.org/#!Synapse:syn22101254. You can also refer to the preprint version of our
protocol: https://www.biorxiv.org/content/10.1101/821546v1. This pipeline was verified in
our previous research papers.

Software availability

The software is available from http://octad.org/download or https://www.synapse.org/#!
Synapse:syn22101254.
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Box 11
Public data sources and repositories

Results from laboratory experiments push scientific knowledge forward, but the raw data
generated are also of particular importance. By releasing raw data into an open
repository, scientists break their work out of a silo and facilitate further research and
reproducibility efforts®0:55, For instance, other researchers can re-analyze or combine
data from many experiments into meta-analyses that are not possible with each study in
isolation. This is especially important for experiments involving rare diseases or
uncommonly used cell or tissue types in which data are scarce. Here we detailed a few
key open repositories for both disease and drug data.

The Gene Expression Omnibus (GEO; https://www.ncbi.nlm.nih.gov/geo/) from the
National Center for Biotechnology Information is a public functional genomics data
repository consisting of over 3 million samples from over 110,000 studies as of
September 2019.

ArrayExpress (https://www.ebi.ac.uk/arrayexpress/) is another functional genomics
dataset that has over 55 TB of data from over 70,000 experiments as of September 2019.

The Immunology Database and Analysis Portal (ImmPort; https://www.immport.org) is a
collection of immunology-related studies with genomics and clinical outcome
measurements.

The Cancer Genome Atlas (TCGA; https://cancergenome.nih.gov) is a compilation of
cancer-related genomics data and outcomes.

The Genomics Data Commons Portal (GDC: https://portal.gdc.cancer.gov/) organizes and
harmonizes TCGA and TARGET data and consists of over 350,000 files from ~33,000
cases of 69 primary site cancers (Data Release 13.0).

The Cancer Cell Line Encyclopedia (CCLE; https://portals.broadinstitute.org/ccle) details
genetic and pharmacologic properties of human cancer cell line models. As of November
2018, CCLE has data for 1,457 cell lines comprised of over 136,000 datasets.

Met500 is a resource profiling whole-exome and transcriptome data from 500 adult
patients with metastatic solid tumors of various lineages and biopsy sites®®.

The Treehouse Childhood Cancer Initiative (https://treehousegenomics.soe.ucsc.edu/) is a
resource that collects and distributes genomic and clinical data related to childhood
cancers and contains over 11,000 tumor samples.

The Genotype-Tissue Expression (GTEX; https://gtexportal.org/home/) contains genotype
and expression data for almost 12,000 samples across 53 tissues from over 700 healthy
donors (version V7).

For drug-related data, Connectivity Map (CMap; https://www.broadinstitute.org/
connectivity-map-cmap and https://clue.io/cmap) from the Broad Institute is a large
database of chemical/genetic perturbations on cell lines. Specifically, CMap contains data
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on transcriptional expression changes due to administration of various chemical
compounds on various cell lines.

To scale this project up, CMap evolved into the Library of Network-Based Cellular
Signatures (LINCS; http://www.lincsproject.org/) project, where a ‘landmark gene set’ or
L1000 of a 978-gene panel has been used to characterize over 1 million profiles covering
various types of perturbagens (e.g., compounds, short hairpin RNA and overexpression).
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Box 2|
Enrichment analysis

Pathway enrichment analysis. The process of finding biological pathways that are
enriched in a set of genes (i.e., upregulated or downregulated disease genes) more than
random chance. OCTAD uses the results of enriched GO terms and KEGG pathways
computed from Enrichr. The significance computation in Enrichr is based on a
hypergeometric test.

Drug enrichment analysis. The process of finding drug classes that are enriched in the top
predicted drugs more than random chance. OCTAD has incorporated the following drug
classes: 1,072 drug targets, 2,695 structure clusters and 226 MeSH pharmacological
terms. The enrichment score is computed by ssGSEA, and significance is computed by a
permutation test.
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Fig. 5 I. Screen compounds targeting HCC.
a, Correlation between HCC tumor samples and all samples from normal tissues. Highly

correlated samples (colored by red) were selected as control. b, Distribution of the samples
selected for the HCC study in a cancer map. ¢, Disease signature visualization. Log TPM
value is used. Rows are disease genes; columns are case and control samples. Red and blue
show highly and weakly expressed genes, respectively. d, Top compounds that reverse the
disease signature. The first column shows a disease signature gene expression; the remaining
columns show drug signatures that reverse expression of the corresponding genes. In the first
column, red and blue indicate high and low gene expression compared to control samples,
respectively. In the remaining columns, red and blue indicate high and low gene expression
induced by drug treatment, respectively. e, Correlation between SRGES (predicted score)
and drug efficacy data in vitro. f, Enriched drug class. Drugs belonging to the antimetabolite
and anti-neoplastic classes are represented as black bars. Lower SRGES means higher
potency.

Nat Protoc. Author manuscript; available in PMC 2021 April 28.



1duosnuepy Joyiny 1duosnuely Joyiny 1duosnuey Joyiny

1duosnue Joyiny

Zeng et al.

Cor

0.6

05 4

0.4

0.3

0.6

0.5

0.4 -

0.3+

0.6 -

0.5

0.4 -

0.3

Adjacent tissue included

|

b

False True

DE method

DESeq2 EdgeR Limma

LINCS max gene size

100 200 50

06 -
0.5
0.4 -

0.3 -

0.6 4
0.5
0.4

0.3 -

0.6 -

0.5

0.4 -

0.3+

Control sample size

] + L L J
100 200 379 50

DE padj

0.001 0.01 1e-04

topGene size

10,000 5,000
Value

0.6 -
0.5 4
0.4 4

0.3 -

0.6 1
0.5 4
0.4 4

0.3 -

Page 37

DE log2FoldChange

15 2

Expression source

Octad.small

Octad.whole

Fig. 6 I. Correlation between sSRGES and efficacy data under different parameter values in HCC.
yshows correlation values; x shows the values commonly used. The following parameters

were examined: adjacent tissue included, control sample size, DE log, fold-change
threshold, DE method, DE padj threshold, expression source, max gene size in LINCS
prediction and topGene size in DE analysis. For each value, we enumerated all the values of
other parameters and reported the correlation for each combination. In the box plot, the
central line represents the median value, and the bounds represent the 25th and 75th
percentiles. The whiskers are 1.5 times the interquartile range plus 25th/75th quartiles.

Nat Protoc. Author manuscript; available in PMC 2021 April 28.



1duosnuepy Joyiny 1duosnuely Joyiny 1duosnuey Joyiny

1duosnuely Joyiny

Zeng et al.

Pub 0.992 0.895 0.895
Adj 0.896 0.896
Ae 1

Disease signature

: Online
consistency

(4

0.8

0.6

0.4

0.2

Pub

—0.299
Adj

—0.355
Ae

—0.299
Online

—0.306

Correlation with experimental data
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(a) Consistency of disease signatures, (b) consistency of SRGES, (c) correlation with

experimental data (ICsg) and (d) consistency of enriched MeSH. adj, using edgeR and

Pub 0.834
Adj
sRGES consistency
Pub 0.888
Adj

Enriched MeSH term
consistency

0.517

0.531

Ae

0.747

0.779

Ae

0.519

0.534

0.997

Online

0.736

0.77

0.994

Online

Page 38

0.4
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adjacent tissue as control; ae, using edgeR and normal tissues selected from the autoencoder
approach; online, online web portal; Pub, the published work.
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Table 11
Patient sample statistics
Database Tissue type
Normal Adjacent Primary Recurrent Metastatic n
St. Jude HGG 0 0 66 0 0 66
GTEX 7,412 0 0 0 0 7,412
Met500 0 0 0 0 387 387
TARGET 0 11 602 120 1 734
TCGA 0 726 9,365 44 393 10,528
Total 7,412 737 10,033 164 781 19,127
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Table 2 |

Troubleshooting when using the R package (Procedure 1)

Page 40

Function

Message

Possible cause

Solution

computeRefTissue

diffExp

runsRGES

computeCellLine

octadDrugEnrichment

topLineEval

Cannot open file “as//.../
case_normal_corMatrix.csv’: no such file or
directory

Error in apply(expSet_normal, 1, stats::IQR):
dim(X) must have a positive length

Error in expSet[, normal_id]: incorrect number of
dimensions

Expression data not sourced; modify expSet
option

Source case IDs and control 1Ds vector

Empty output

Error in h5checktypeOrOpenLoc (). Cannot open
file. File ‘octad.counts. and.tpm.h5’ does not
exist

Disease signature input not found

Either Symbol or log,FoldChange column in
Disease signature is missing

Warning message: in dir.create (outputFolder):
cannot create dir; reason ‘Invalid argument’

Case IDs vector input not found

Error in file(file, ifelse(append, “a”, “w”)):
cannot open the connection

SsRGES input not found

Error in.local (expr, gset.idx.list,...). No
identifiers in the gene sets could be matched to
the identifiers in the expression data

Either SRGES or pert_iname column in Disease
Signature is missing

Error in ‘[.data.frame’(x, r, vars, drop = drop):
undefined columns selected

Variable outputFolder:
name of the output folder
is incorrect

Variable source: fail to
call the expression matrix

Variable expSet: input
matrix has insufficient
samples for computation,
or some samples fail to
match to the samples
provided in the
expression matrix

Variable expSet: did not
source the object while
using custom expression
matrix

Either case or source
vector is not sourced

If row names of the
expSet do not contain
Ensembl gene IDs, it will
return empty output

Source

dz_signature

dz_signature

outputFolder

case_id

enrichFolder

SRGES
SRGES

SRGES

topline

Replace it with a valid name

Specify the path to the expSet while
source is octad.whole

Filter out non-matched samples
and/or increase sample size

Source the object

Add case IDs or control IDs

If annotate =TRUE, make sure row.
names of the custom input contain
Ensembl gene IDs

If source = ‘octad.whole’,
octad.counts. and.tpm.h5 should be
stored in the working directory, or
the full path should be sourced
through file option

Source disease signature should
include columns: Symbol and
log,FoldChange

Source disease signature should
include columns: Symbol and
log,FoldChange

Correct output folder

Case vector is not sourced

Correct output folder

sRGES is not sourced

Make sure column pert_iname is not
empty

Make sure SRGES input contains
both pert_iname and SRGES
columns

Make sure the cell line vector is
valid. You can compare output with
computeCellLine output
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Table 3 1

Troubleshooting when using the Web portal (Procedure 2)

Page 41

Step Problem Cause Solution

Case When disease name is clicked, The system is still loading the data Wait for ~20 s for samples to be loaded
no sample shows up
Not all samples are selected in The system is still loading the data; by default, all ~ Wait for ~20 s for samples to be loaded
the table samples should be selected

Control After clicking ‘compute control ~ Depending on the number of case samples, it Wait for a few minutes and restart the job
samples’, the page is inactive usually takes within 2 min to finish. It might get
and could not respond slower if many jobs are running

Output Job status is ‘Complete’, but The system will change the status to Complete Wait a few minutes for the system to
some result files are missing when all the key files are created. However, the assemble the output files

job is still running to create supplementary files
Upload No result file is created Input file does not conform to the required format ~ Recreate the input file following the
data example file format. Column names

include at least log,FoldChange and
Symbol
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Benchmarking test performed both for the website and standalone package

Table 4 1

Page 42

Step Description Web interface timing

Desktop timing Desktop memory usage

Load library Load data log-normalized transcripts for computation of case — 10.35s 566.87 Mb
samples

Compute reference IDs Compute top 50 healthy samples that match selected case 10.6 s 5.88s 581.14 Mb
samples

DE computation with Compute DE for case samples (7= 369) versus selected — 11.38s 733.72 Mb

default subset reference samples (/7= 50) on LINCS genes (7= 978)

DE computation with the Compute DE for case samples (/7= 369) versus selected 4.25 min 2.62min  736.75 Mb

whole OCTAD database reference samples (/7= 50) on the whole OCTAD database with
60,000 transcripts

SRGES computation Rank and compute reversed expression scores 7.25-8.3 1.01 min  1,347.88 Mb

min
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