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Abstract

As the field of precision medicine progresses, treatments for patients with cancer are starting to be 

tailored to their molecular as well as their clinical features. The emerging cancer subtypes defined 

by these molecular features require that dedicated resources be used to assist the discovery of drug 

candidates for preclinical evaluation. Voluminous gene expression profiles of patients with cancer 

have been accumulated in public databases, enabling the creation of cancer-specific expression 

signatures. Meanwhile, large-scale gene expression profiles of cellular responses to chemical 
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compounds have also recently became available. By matching the cancer-specific expression 

signature to compound-induced gene expression profiles from large drug libraries, researchers can 

prioritize small molecules that present high potency to reverse expression of signature genes for 

further experimental testing of their efficacy. This approach has proven to be an efficient and cost-

effective way to identify efficacious drug candidates. However, the success of this approach 

requires multiscale procedures, imposing considerable challenges to many labs. To address this, 

we developed Open Cancer TherApeutic Discovery (OCTAD; http://octad.org): an open 

workspace for virtually screening compounds targeting precise groups of patients with cancer 

using gene expression features. Its database includes 19,127 patient tissue samples covering more 

than 50 cancer types and expression profiles for 12,442 distinct compounds. The program is used 

to perform deep-learning-based reference tissue selection, disease gene expression signature 

creation, drug reversal potency scoring and in silico validation. OCTAD is available as a web 

portal and a standalone R package to allow experimental and computational scientists to easily 

navigate the tool.

Introduction

Many cancers are understudied because they are rare or of little public interest, such as 

Ewing sarcoma, a rare pediatric cancer1, and hepatocellular carcinoma (HCC), a common 

adult malignancy in Asia but an orphan disease in the United States2. As the field of 

precision medicine progresses, and we start to tailor treatments for patients with cancer who 

are classified not only by their clinical features but also by their molecular features (such as 

MYC amplification and PIK3CA mutation), more cancer subtypes are emerging. The effect 

of each understudied cancer or cancer subtype in healthcare might be limited, but the 

cumulative effects of all these diseases could be profound. Ewing sarcoma is one of over 

6,000 rare diseases in the United States, affecting ~2.9 per million people1, and all rare 

diseases combined affect an estimated 25 million people in the United States3. HCC affects 

fewer than 50,000 people in the United States but is the cause of half a million deaths 

annually worldwide2. One common research challenge for these diseases is that the 

resources allocated to them are relatively limited. Compared to common conditions, the 

large-scale screening of compounds is often challenging, if not impossible, to perform in 

small labs owing to limited resources.

The decreasing cost of sequencing, however, means that it is now more common to generate 

gene expression profiles of samples from patients with cancer (e.g., RNA sequencing (RNA-

Seq)). Integrating these profiles with the increasing amount of other available open data 

(such as the effect of chemical compounds on gene expression; Box 1) provides a 

tremendous opportunity to computationally identify new potential therapeutic candidates.

Finding drugs that reverse the disease signature

Like many other investigators4-7, we use a systems-based approach where we analyze gene 

expression profiles of disease samples and drug-induced gene expression profiles from 

cancer cell lines to predict new therapeutic candidates. We have used this approach in our 

studies on HCC8, Ewing sarcoma9 and basal cell carcinoma10.
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A disease signature is defined as a list of differentially expressed (DE) genes between 

disease samples and control samples (i.e., normal tissues). The essential idea is to identify 

drugs that reverse the gene expression signature of a disease by tamping down overexpressed 

genes and stimulating weakly expressed ones.

In the Ewing sarcoma study, this systems approach achieved a hit rate of >50% in predicting 

effective candidates9. This means that, for every ten compounds suggested in the output, 

more than five turned out to be effective against Ewing sarcoma in vitro.

In the HCC study, we identified deworming pills as therapeutic candidates for HCC and 

demonstrated that the expression of disease genes was reversed in a clinically relevant 

mouse model after drug treatment8. The recent pan-cancer analysis demonstrated that the 

reversal of cancer gene expression correlates to drug efficacy11. Compared to the commonly 

used target-based drug discovery approach that focuses on interfering with individual 

targets, this systems approach aims to target a list of critical features of the disease 

(Supplementary Fig. 1). The previous studies suggested that this efficient and cost-effective 

approach could be explored to virtually screen novel compounds or existing drugs using 

existing drug libraries, such as LINCS L100012-14. Looking at a wide selection of existing 

drugs allows the possibility of repurposing drugs where the safety, toxicology and side 

effects are already well understood.

We have shown that the success of this approach is made possible by multiscale procedures, 

such as quality control of tumor samples, selection of appropriate reference normal tissues, 

evaluation of disease signatures and integration of drug expression profiles from multiple 

cell lines. For example, the scarcity of adjacent normal tissues for many cancers (e.g., 

pediatric brain cancers) prevents the creation of disease gene expression signatures using 

traditional methodologies15. In this study, we estimated that a minimum of ten samples of 

adjacent normal tissue would be preferred to account for normal tissue heterogeneity. To 

address this challenge, we developed a deep learning (DL)-based method to select potential 

reference tissue samples for the selected case samples based on their expression profiles15 

and implemented in (Open Cancer TherApeutic Discovery) OCTAD.

Doing this makes a substantial difference; for example, in The Cancer Genome Atlas 

(TCGA), an adult cancer genomic database, fewer than half of cancers have at least ten 

adjacent normal tissues. In the pediatric cancer genomic database TARGET, none of cancers 

has at least ten adjacent normal tissues. Of these tumor tissues, a substantial number of 

tissues are impure owing to the infiltration of stromal cells and immune cells, leading to a 

significant bias in the subsequent genomic analysis, including disease signature 

creation16,17. Some of these impure samples could be detected by correlating their 

expression profiles with those from cancer cell lines, which are more pure18.

There is a plethora of relevant datasets and analysis modules that are publicly available, but 

these are isolated in distinct silos (different databases requiring different methods for 

harmonization). For many labs, it would be tedious or even impossible to collate all these 

data to implement this approach. In this work, we describe in detail how these resources and 

data types can be used, as well as challenges with the process. Further, we introduce our 
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publicly available framework and workflow, OCTAD, to streamline the various 

computational tasks required for the drug discovery.

We have made OCTAD available both as a standalone software package in R for 

bioinformaticians as well as a web server resource for investigators without a coding 

background. This protocol provides more detail describing the power of our approach and 

the novel aspects that enable more refined prediction methods. Since the publication of 

original key papers, we have substantially improved the protocols in many aspects, including 

the coverage of samples, the computing performance and the usability. In the ‘Anticipated 

results’ section, we demonstrate the importance of key parameters, the consistency of the 

results between the new version and our previously published HCC work15 and the 

feasibility of using the new version to predict candidates for MYC amplification lung 

adenocarcinoma and PIK3CA mutation breast cancer.

OCTAD pipeline

Overview of OCTAD

The system includes four main components: OCTAD Dataset, OCTAD Core, OCTAD 

Desktop and OCTAD Portal (Fig. 1a). OCTAD Dataset stores all sample expressions, 

processed using the Toil RNA-Seq pipeline, an open-source workflow software that can be 

used to run scientific workflows on a large scale in cloud or high-performance computing 

environments19. OCTAD Core includes all R functions needed for all analyses. OCTAD 

Desktop is an R package that can run on a regular laptop. Its customized functions allow 

computational biologists to perform more advanced analyses (Fig. 1b). The OCTAD Portal 

is the web version of the system; it has a front end based on Python Flask and HTML5, 

supported by the back-end OCTAD Core. We developed a simple four-step strategy to allow 

scientists without any programming skills to easily perform drug candidate predictions (Fig. 

1c). We opted to use Python Flask and HTML5, as the portal uses advanced features, such as 

sample visualization, job management and parallel computing.

OCTAD Dataset

To minimize the batch effect from multiple studies, we use the same pipeline Toil developed 

by UCSC to process all raw RNA-Seq profiles. We estimated transcript abundance estimated 

from STAR (an RNA-Seq sequence aligner)20 and RSEM (for transcript quantitation)21. 

Because the UCSC Treehouse initiative has already used this pipeline to process samples 

publicly available, we use their processed samples and extend this pipeline to process new 

samples. The datasets processed through this pipeline were employed in our recent 

studies15,22.

Any new samples from the major RNA-Seq repositories, including the Gene Expression 

Omnibus (GEO), dbGAP and the European Bioinformatics Institute European Genome-

phenome Archive (EBI EGA), can be easily processed by our pipeline. We have included 

samples from TCGA, TARGET, GTEx and Met50, totaling 19,127 samples covering 50 

cancer types (Fig. 2 and Table 1) and will continue adding more samples from open RNA-

Seq repositories. When possible, we also collected their clinical features (e.g., age, gender 

Zeng et al. Page 4

Nat Protoc. Author manuscript; available in PMC 2021 April 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



and tumor stage) and molecular features (e.g., mutation status, amplification and tumor 

molecular subtype) that allow the selection of a specific set of disease samples 

(Supplementary Text). In addition to tissue samples, we compiled 66,612 compound gene 

expression profiles consisting of 12,442 distinct compounds profiled in 71 cell lines (with 

83% of the measurements made primarily in 15 cell lines), using data downloaded from the 

LINCS consortium. Each profile includes the expression measurement of 978 ‘landmark 

genes’. The changes in the expression of these landmark genes were computed after 

compounds were tested in different concentrations (62% of the measurements were made in 

conditions under 10 μM) for 24 h (49%) or 6 h (ref. 11).

Reference tissue selection

Case samples could be manually defined based on disease clinical and molecular features. 

Selecting appropriate corresponding normal samples is essential for creating a disease 

signature. In OCTAD, users can choose adjacent normal tissue samples as control, whereas 

plenty of cancers, such as brain cancer, have no or insufficient adjacent tissue samples. From 

Table 1, it is clear that there are not enough data for adjacent normal tissues, but there are a 

lot of data for normal tissue samples from GTEx, a repository of tissue samples from healthy 

individuals. Owing to variation of normal tissue samples, only some of them are appropriate 

to serve as case samples15. We could compute per-gene interquartile range and choose top 

varying genes to calculate the Spearman correlation between each case sample and all 

normal samples, although selecting top varying genes might ignore many critical genes. Top 

features derived from principal component analysis (PCA) could also be used, although 

PCA might not capture the non-linear relationship between genes. Autoencoder, a type of 

artificial neural network used to represent input data in an unsupervised manner, can capture 

non-linear relationships between input features and normalize input data, presenting unique 

advantages in handling such high-dimensional expression data. Our previous work 

demonstrated the utility and advantage of autoencoder in control sample selection and the 

feasibility of adopting highly correlated normal samples taken from the different tissue of 

origin15. Accordingly, in OCTAD, we use new features encoded by DL autoencoder to select 

highly correlated normal samples given a set of disease samples.

By default, the top 50 control samples that are mostly correlated to the case samples are 

selected for further analysis. Control sample selection can be customized in the desktop 

version. For example, advanced users can compare metastatic cancer samples and primary 

cancer samples, or TP53 mutation and wild-type samples, although the feasibility of 

predicting drugs for these types of comparisons needs to be evaluated individually. It is rare, 

yet possible, that none of normal samples is highly correlated with the case samples; users 

are encouraged to examine the absolute correlations from the result file.

Disease signature creation

A disease gene expression signature is defined as a list of DE genes between a specific set of 

case samples and matched reference normal samples. Because case and control samples are 

often from different studies, raw counts are first normalized through RUVSeq23, where a set 

of empirical negative control genes (least significantly DE genes based on a first-pass DE 
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analysis) that are assumed to have constant expression across samples are used to adjust for 

technical effects.

With two groups of samples, standard DE analysis methods (e.g., edgeR24, limma voom25 

and DESeq2 (ref. 26)) could be performed, followed by pathway enrichment analysis 

through the Enrichr API27. Pathway enrichment analysis allows users to examine critical 

pathways or biological processes associated with dysregulated genes from the disease 

signature (Box 2). The comparison of the DE methods was performed elsewhere28. EdgeR, 

one of the most popular and fastest methods for DE analysis, is the default, whereas limma, 

which uses quantile normalization and is extremely useful for microarray analysis, is another 

option. Because of the low efficiency, DESeq2 is supported only in the R package. Popular 

databases, including KEGG and GO, are used as default in the enrichment analysis.

Reversal of cancer expression

In our earlier studies, we quantified the reversal of disease gene expression as the Reversal 

Gene Expression Score (RGES)11, a measure modified from the connectivity score 

developed in other studies4,12. To compute the RGES, we first rank genes based on their 

expression values in each drug signature. A score for each set of upregulated and 

downregulated disease genes is computed separately using a Kolmogorov–Smirnov-like 

statistic, followed by the merge of scores into an RGES from both sides (up/down). The 

RGES is based on the number of the upregulated (or downregulated) genes enriched at either 

the top (or bottom) of a drug–gene list ranked by expression change after drug treatment. A 

negative RGES means upregulated disease genes are downregulated in the drug profile, 

and/or downregulated disease genes are upregulated in the drug profile. One compound 

might have multiple available expression profiles owing to having been tested in various cell 

lines, drug concentrations, treatment durations or even different replicates, resulting in 

multiple RGESs for one drug–disease prediction. Therefore, we developed a summarization 

method to mitigate bias and to compute a score representative of the overall reversal potency 

of a compound to a particular cancer. We refer to this score as sRGES.

sRGES

sRGES is calculated using the following equation:

sRGES = ∑
i

N
(RGES(i) + f(dose(i), time(i))) × w(i) ∕ N

where N is the number of drug profiles. f(dose(i), time(i)) was estimated by a computational 

model. Correlation between cell(i) and tumor samples was estimated as the average of 

correlations between the cell line and individual tumors. The maximum correlation between 

cell lines and tumor samples can be used to normalize correlation. We set a reference 

condition (i.e., concentration of 10 μM and treatment duration of 24 h) and used a model to 

estimate a new RGES if the drug profile under the reference condition was not available. We 

then weighted the RGES by the degree of correlation between the gene expression profiles 

of the disease and the cell line in which the compound was tested.
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We demonstrated that sRGES is correlated to drug efficacy (measured by log(IC50 nm) or 

area under the curve (AUC) derived from the dose response curves), and such correlation is 

retained even when the disease is not represented by cell lines of its own lineage in the drug 

expression databases. The analyses suggested the feasibility of applying this approach for 

large-scale screening of compounds for a given disease signature.

! CAUTION At the moment, it is better to calculate sRGES using ranked genes rather than 

the absolute magnitude of expression changes. Previous attempts to use any form of absolute 

expression magnitude have resulted in less robust results11. While computing sRGES, 

restricting the cell lines to the cancer of the same lineage used by LINCS L1000 causes 

significant loss in the number of drugs evaluated and has not been shown to improve the 

specificity of results11.

Hit prediction and selection

Previous drug repositioning efforts considered only a couple of thousand Food and Drug 

Administration (FDA)-approved drugs with more potential to translate into the clinic, 

leaving over 10,000 compounds in LINCS unused for a broad chemical space for discovery 

(Fig. 3a; a two-dimensional t-distributed stochastic neighbor embedding (t-SNE) projection 

of the compounds based on their chemical structural similarity). Three compound structures 

are displayed to show the structural diversity and complexity of the compound collection. 

Including those unused compounds might increase the chance of discovering novel 

compounds. Of these compounds, 14% are commercially available in ZINC29, which is one 

of the largest collections of commercially available compounds (Fig. 3b). An additional 5% 

of compounds are structurally similar to ZINC compounds (similarity >0.9), leaving >80% 

of compounds that are not directly purchasable (Fig. 3b). According to synthetic 

accessibility scores30, 70% of these inaccessible compounds can be easily synthesized (Fig. 

3c). This protocol added several enrichment analyses of drug hits, including enriched 

Medical Subject Headings (MeSH) terms, protein targets and chemical scaffolds (Box 2). 

MeSH pharmacological classification and protein targets of LINCS compounds were 

retrieved from PubChem31 and ChEMBL32, respectively (Fig. 3d,e). Chemical scaffolds of 

LINCS compounds were created using RDkit (Supplementary Materials and https://

www.rdkit.org). We expect such information will facilitate the selection of representative 

compounds that could be quickly obtained for testing.

Selection of cell lines and in silico validation

The efficacy of compounds is often first evaluated in cancer cell lines. The transcriptomic 

comparison of cell lines with disease samples could be employed to select appropriate cell 

lines to use for the following efficacy validation18,22,33. The emerging large-scale drug 

sensitivity (or efficacy) data across a variety of cancer cell lines34,35 even enable the 

validation of predictions using published experimental data without biological experiments. 

Here we use the transcriptome profiles to select a cell line related to case samples and then 

leverage published drug sensitivity data of the selected cell line to validate the prediction. 

We rank transformed gene reads per kilobase of transcript, per million mapped reads 

(RPKM) values for each CCLE36 cell line and then ranked all the genes according to their 
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rank variation across all CCLE cell lines. The 1,000 most-varied genes were kept as ‘marker 

genes’. (In addition to 1,000 genes, we explored multiple gene sizes in the early preliminary 

analysis and did not find the large variation of correlated cell lines, so, in this study, we 

chose 1,000 most-varied genes.) Given RNA-Seq profiles of a cell line and case samples, we 

compute the Spearman rank correlation (across the 1,000 marker genes) between the cell 

line and each case sample. The median value of computed Spearman rank correlation values 

is defined as the transcriptome similarity between the cell line and the case samples. If the 

drug sensitivity database Cancer Therapeutics Response Portal (CTRP)35 provides the 

sensitivity data of the LINCS compounds in the selected cell line, OCTAD allows you to 

pull out this drug sensitivity data and correlate them with sRGES to evaluate drug 

predictions. A significant correlation with experimental data would increase the confidence 

of investigating other drug hits that have not been tested.

Overview of OCTAD Desktop and Portal

To enable users to make use of our pipeline, we release both a freely available and open-

source web portal and a workflow in a computational pipeline. The web portal runs many of 

the OCTAD core functions in the back end but requires no programming expertise. It allows 

users to perform all key parts of the pipeline, including selecting case and control samples, 

performing DE analysis to generate a disease signature and generating drug candidates. To 

make the process as efficient as possible, users can register for the web server, and the 

various parts of the pipeline can be saved as jobs that will be saved for future visits. The 

portal assigns each job with a permanent URL and also allows the submission of an 

anonymous job and the uploading of disease signatures computed from elsewhere. The web 

server is interactive and produces informative plots and tables that users can interact with 

and download. The web server also incorporates some, but not all, advanced features of the 

pipeline, including autoencoder-recommended control sample selection. The full set of 

features of the web server can be found in both the ‘Procedure’ section and the 

Supplementary Materials.

The desktop version (R package) can not only perform all of the above components but also 

provides more flexibility and features. The computational pipeline is built in the R 

framework and incorporates publicly available Bioconductor and R packages for processing 

and analyses. Advanced users can perform large-scale drug predictions and explore multiple 

control selection methods, and it includes in silico validation. We provide a breakdown of 

the R pipeline in the ‘Procedure’ section and the Supplementary Materials.

Availability

The web portal can be used by anyone without programming expertise or extensive domain 

knowledge. Users with genetics and molecular biology knowledge will find the results 

highly interpretable. To use the desktop version, a user will need to have basic skills in R 

and Bioconductor packages and have knowledge of genomics data. The web portal is 

available at http://octad.org. The R package.tar.gz, datasets and a tutorial can be accessed at 

the download page (http://octad.org/download). Alternatively, the files can be accessed here: 

https://www.synapse.org/#!Synapse:syn22101254/files/.

Zeng et al. Page 8

Nat Protoc. Author manuscript; available in PMC 2021 April 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://octad.org
http://octad.org/download
https://www.synapse.org/#!Synapse:syn22101254/files/


To reduce the R package to a manageable size, the desktop version, by default, includes 

expression for 978 genes from the LINCS database to compute sRGES and/or differential 

gene expression. However, DE analysis using the reduced set might result in bias because 

count normalization is performed in a smaller gene set. Users are advised to download the 

entire dataset from the download page (with an h5 format, >2G).

Alternative methods

The related datasets and analysis modules are publicly available but isolated in distinct silos. 

Genomic data of patients with cancer could be searched and visualized in platforms such as 

cBioPortal37, Oncoscape38 and TumorMap39. Massive RNA-Seq samples are processed in 

platforms such as Treehouse19, Rcount40 and ARCHS441. Disease signatures could be 

created by R packages such as edgeR24 and DESeq2 (ref. 26). A comprehensive enrichment 

analysis of disease signatures could be performed in Enrichr27 and DAVID42. Given a 

disease signature, clue.io could predict drug hits using LINCS data13. To be able to predict 

drugs using public RNA-Seq profiles, researchers have to use different platforms and various 

tools to accomplish the task. To address this issue, we developed a portal to streamline this 

process. We provide an agile desktop version that allows computational scientists to 

customize the code and a web portal version that allows bench scientists and clinicians to 

easily navigate and predict drug hits.

There are also several existing web resources, tools and applications that can perform 

somewhat similar procedures and analyses. Rnama (https://rnama.com) is a freely available 

web application that allows for meta-analysis of publicly available RNA data, seamlessly 

extracted from the GEO. Comparing case and control groups can be interactively performed, 

which results in an interactive plot of DE genes. DEBrowser is an R shiny-based package 

that creates an interactive dashboard to facilitate DE analysis and visualization of RNA 

count data43. Users can upload their own data, and the application allows for multiple 

quality control steps and visualization. DrugSig is a web resource that allows for prioritizing 

potential drug repurposing opportunities and submitting upregulated and downregulated 

genes from pre-computed disease DE profiles44. RE:fine drugs is an interactive dashboard 

that pre-calculates potential drug repurposing opportunities, combining information from 

previously published genome-wide association studies and PheWAS results45. Users can 

search for a drug name, disease name or gene symbol to see suggestions based on these 

levels of evidence. DeSigN is an interactive web tool that allows for prediction of drug 

efficacy against cancer cell lines46. In this application, users can enter a list of upregulated 

and downregulated genes to be compared against IC50 values to prioritize potential drugs. 

Drug Gene Budger is a web tool and mobile app to interactively rank drugs to modulate 

user-specified genes based on transcriptomic profiles47. With this, users can search for a 

specific gene, and the tool prioritizes drugs to either upregulate or downregulate them using 

CMAP, LINCS L1000 or CREEDS data. Although the aforementioned tools and 

applications are indeed useful, none can perform the full gamut of steps necessary for this 

process. Furthermore, the flexibility of our application, the incorporation and integration of 

multiple datasets, along with enhancements and incorporation of novel methodologies (e.g., 

autoencoder reference normal sample identification) makes OCTAD truly a unique and 

powerful resource.
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Many other computational resources and repositories demonstrate the power of drug 

repurposing. The Drug Repurposing Hub contains an app that allows for dynamic search and 

exploration of annotated information pertaining to over 8,000 compounds, including targets, 

mechanism of action and even vendor information14. RepurposeDB48 and repoDB49 collect 

and curate information about known drug repurposing experiments. These, together with 

studies from other researchers, demonstrate the feasibility of applying a systems approach to 

screen drug hits in cancers.

Advantages, limitations and future directions

Our pipeline has several advantages. First, OCTAD covers nearly 20,000 open RNA-Seq 

samples from multiple sources processed in the same computational pipeline, so that any 

pipeline effect is minimized. Coupling with the robust control sample selection module 

makes it possible to predict drugs for cancers or cancer subtypes with no empiric controls. 

Second, the one-stop drug prediction web portal allows clinicians and bench scientists who 

might not have sufficient programming expertise to run the various computational tasks 

necessary to prioritize drug hits for further experimental validation. Third, the flexible 

desktop-based R package allows advanced users to perform customized drug discovery 

computations. Fourth, collected molecular and clinical samples enable precise stratification 

of patient samples and prediction of drug candidates for subsets of patients. Fifth, our unique 

DL-based models enable appropriate selection of normal samples. Finally, an optimal 

outcome is generated thanks to the rigorous quality control in each step (e.g., in silico 

validation of drug hits).

Despite these advantages of OCTAD, a few issues remain to be addressed in future versions. 

First, the application is limited by the quality and structure of the input data, and some data 

sources provide more information than others, which restricts search functionality. For 

instance, TCGA provides a much more comprehensive coverage of clinical and molecular 

features than many individual studies. Similarly, these various datasets have different 

nomenclatures in which phenotypes and diseases are characterized. In future iterations, we 

will perform more intensive harmonization of these labels using common data model 

ontologies. For now, users will have to curate their selections based on necessity, but the 

application provides the framework to do so. Additionally, this pipeline is focused only on 

cancer. We envision that this application could extend easily to other phenotypes. In future 

iterations of the web application, we will allow for more seamless integration of data from 

other sources and repositories, such as the GEO, the Sequence Read Archive, the EBI EGA 

and Treehouse. Furthermore, OCTAD uses only one repurposing methodology (reversal of 

gene expression) and one molecular datum (gene expression). Finally, the pipeline has been 

validated only for several cancers; as with all drug repurposing in silico exploration, 

predictions will have to go through extensive biological and clinical validation experiments 

to verify utility and efficacy.

Gene expression captures only one aspect of biological systems. With the rapid advances of 

‘omics’ technologies, we envision that the system that we developed will greatly facilitate 

the use of other omics data (proteins, metabolites and single cells) in future therapeutic 

discovery50. As indicated, identifying therapeutic treatments involves multiple biological 
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systems, and, as such, it is only natural that the drug discovery or repurposing process 

should involve multiple data types across domains. The types of data that exist to broadly 

assess therapeutics with phenotype are vast and cross several biological domains. These 

include, but are not limited to, genome, transcriptome, proteome, metabolome, epigenome 

and microbiome. In the space of drug discovery and repurposing, it is important to look at 

these domains not only across different cell types and tissues but also under different time 

points and conditions, particularly when exposed to drugs. There are also many models in 

which to perform such experiments, including animals (e.g., rodent and zebrafish), cell lines, 

organoids, xenografts and tissues.

Materials

For the web server (http://octad.org): developed and tested in Google Chrome

For the desktop version:

• R v.4.0.0 or newer (https://www.r-project.org)

• RStudio (https://www.rstudio.com/)

• Download and install ‘octad’ package with all requisitions from the GitHub 

directory https://github.com/Bin-Chen-Lab/octad

• Whole OCTAD expression can be downloaded from the web portal or directly 

via https://chenlab-data-public.s3-us-west-2.amazonaws.com/octad/

octad.counts.and.tpm.h5

• Whole combined tutorial link: https://chenlab-data-public.s3-us-

west-2.amazonaws.com/octad/octad_tutorial.pdf

• Code with five examples: https://chenlab-data-public.s3-us-

west-2.amazonaws.com/octad/octad_example.R

Required hardware for the desktop version:

• Computer with ≥8 GB RAM

• Hard drive with ≥10 GB free

• A stable broadband internet connection

Procedure 1

Desktop version

▲ CRITICAL We illustrate the utility of the desktop pipeline by highlighting a use case for 

HCC. We provide code and data for investigating DE, pathway enrichment, drug prediction 

and hit selection and in silico validation using an external dataset. In this workflow, we will 

select case tissue samples from our compiled TCGA data and compute control tissues from 

the GTEx data.
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Note that our compiled data also contain adjacent normal TCGA HCC samples that can also 

serve as control tissues. More detailed description of functions and result files is illustrated 

in Fig. 4.

The links used for setting up are listed in the ‘Materials’ section.

Setup

1. Install required libraries. Refer to the script to install required R packages that 

can be found in the ReadMe file from the GitHub directory https://github.com/

Bin-Chen-Lab/octad.

2. Customize the Setup folders. By default, the octad package uses the Small 

OCTAD dataset containing expression values only for LINCS landmark genes 

required for sRGES score computation. To download the full expression values, 

refer to the links to the whole expression dataset. By default, computation results 

of the pipeline are stored in the working directory.

First-time setup and loading the package

3 Before running the pipeline for the first time, install the required packages by 

typing the following in the R command:

packages=c(‘magrittr’, ‘dplyr’, ‘ggplot2’, ‘doParallel’, ‘foreach’,

‘lme4’, ‘Rfast’)

if (length(setdiff(packages, rownames(installed.packages()))) > 0) 

{

install.packages(setdiff(packages, rownames(installed.packages())))

}

4 Install the required Bioconductor packages:

bioconductor_packages=c(‘edgeR’, ‘RUVSeq’, ‘DESeq2’, ‘limma’, ‘rhd-

f5’,‘artMS’)

if    (length(setdiff(bioconductor_packages,      

rownames(installed.

packages()))) > 0) {

if (!requireNamespace(“BiocManager”, quietly = TRUE))

install.packages(“BiocManager”)

BiocManager::install(setdiff(bioconductor_packages,          

rownames

(installed.packages())))

5 Install the OCTAD version and octad.db that was downloaded. Note that, 

because the package contains lots of pre-compiled data, it might take ~10 min to 

install.
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install.packages(“https://chenlab-data-public.s3.amazonaws.com/

  octad/octad.db_0.99.0.tar.gz%3Fdl%3D0”,

method=“libcurl”,repos=NULL,type=“source”)

devtools::install_github(‘Bin-Chen-Lab/octad’,build_vignettes = 

TRUE)

6 When the package is installed, load it into R:

library(“octad”)

The package will first check dependable packages and then load necessary 

packages and datasets. After this step, the pipeline is ready to run.

Case and control samples

▲ CRITICAL Choosing which cases (tumor samples from the phenoDF data.frame) and 

controls (corresponding samples treated as background samples—e.g., normal tissue, 

adjacent normal tissue or tumor samples without mutation) to use are the two most 

important factors in achieving the best results when using this pipeline. Several methods 

included in the provided code evaluate controls relative to cases, but there are no built-in 

validation steps that evaluate cases. Each group of cases needs to be evaluated individually 

for validity by the investigator. Visualization of cases in a t-SNE plot could help understand 

their relations with other OCTAD samples. Samples sharing similar transcriptomic profiles 

tend to cluster together in the t-SNE plot. The cases scattering in multiple clusters are not 

recommended to choose as a group.

▲ CRITICAL The case_id and control_id variables must be simple character vectors 

containing sample IDs. They are most easily generated by subsetting the metadata matrix 

phenoDF, but advanced users may assemble them using other means (including querying 

cBioportal or the NCI GDC portal).

Select case samples

7 Phenotype data contains tissue types, such as normal tissue, adjacent normal 

tissue, primary cancer, recurrent cancer and metastatic cancer. We will select for 

primary HCC. To list all available samples from the OCTAD database, use the 

phenoDF data.frame.

To select HCC samples, use the code below:

head(phenoDF)

HCC_primary=subset(phenoDF,cancer==‘liver hepatocellular carcino-

ma’&sample.type == ‘primary’) #select data

case_id=HCC_primary$sample.id #select cases
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The sample IDs will be stored in the character vector case_id.

This code can be easily modified to select other cancers or a set of samples 

based on mutations and copy numbers (e.g., TP53 mutation or MYC 
amplification). It is also recommended to use the R package cgdsr to select 

TCGA samples based on more clinical and molecular features.

#choose breast invasive carcinoma samples with PIK3CA mutation

BIC_with_PIK3_primary=subset(phenoDF,cancer==‘breast invasive car-

cinoma’&sample.type == ‘primary’ &grepl(‘PIK3CA’,mutation_list))

Compute or select control samples

8 Use the function computeRefTissue to compute appropriate normal tissues via 

comparing gene expression features between case samples and normal tissue 

samples. Users can select adjacent normal tissue samples if available. By 

default, features from the precomputed autoencoder file are used, but other 

features, such as top varying genes across samples, can be employed as well. 

Pairwise Spearman correlation is computed between every case sample and 

every normal sample using these features. For each normal sample, its median 

correlation with all case samples is then computed. Top correlated normal 

samples (defined by control_size) are then selected as control.

#computing top 50 reference tissues

control_id=computeRefTissue(case_id,outputFolder=“,output=T,adja-

cent=T,source = “octad”,control_size = 50)

9 The list of normal IDs is stored into the variable control_id. Use the following 

code to select adjacent control samples from phenoDF. This code can also be 

used to select any set of OCTAD samples (including cancer samples) as control.

HCC_adjacent=subset(phenoDF,cancer==‘liver hepatocellular carcino-

ma’&sample.type == ‘adjacent’&data.source == ‘TCGA’)

control_id=HCC_adjacent$sample.id

10 Figure 5a shows the top 50 normal tissues, highlighted in red, that have the 

highest median correlation with HCC tumors. Check the absolute correlations 

from this plot or the case_normal_median_cor.csv file to assess the relevance of 

the control samples. By default, we consider a correlation coefficient >0.285 to 

be significant according to the background distribution (Supplementary Fig. 2). 

It is rare, but possible, that none or few control samples in GTEx are highly 

correlated to case samples. If this happens, users should not proceed.

11 The relationships among case, control and other samples are visualized in Fig. 

5b. To generate this type of image, use the following code and pre-computed t-
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SNE matrix. We applied the t-SNE algorithm to the whole OCTAD database for 

computation of the distance between all samples in the phenoDF for increased 

visualization timings. t-SNE is a non-linear dimensionality reduction technique 

that is particularly well suited for the visualization of high-dimensional datasets.

tsne$type <- “others”

tsne$type[tsne$sample.id %in% case_id] <- “case”

tsne$type[tsne$sample.id %in% control_id] <- “control”

#plot

(p2 <- ggplot(tsne, aes(X, Y, color = type)) + geom_point(alpha = 

0.4) +

labs(title = paste (‘TNSE PLOT’), x= ‘TSNE Dim1’, y=‘TSNE Dim2’,

caption=“OCTAD”)+

theme_bw())

Compute DE genes between case and control samples

12 DE can be computed via edgeR, limma + voom or DESeq2. By default, we use 

edgeR in the analysis. Because the function diffExp computes DE genes 

between case_id and control_id within the same data matrix, it can be used to 

find DE genes between any two groups of samples. By default, a small dataset 

containing only 978 genes shared with the LINCS database is used.

res=diffExp(case_id,control_id,source= ‘octad.small’,output=T)

If you need to use the whole OCTAD dataset as input (see ‘Materials’), make 

sure that the required h5 file is stored in the R working directory or that the 

whole path to the file is specified:

res=diffExp(case_id,control_id,source=‘octad.whole’,output=T,

n_topGenes=10000,file=‘octad.counts.and.tpm.h5’)

We can also perform DE analysis using an external dataset. Below is an example 

of how to perform DE analysis between tumor and non-tumor samples using the 

count data downloaded from the GEO (GSE144269).

data=read.table(‘GSE144269_RSEM_GeneCounts.txt’,header=T,row.

names=1)

data=as.matrix(data)

data=log2(data) #log-convert gene expression for edgeR computation

data[is.infinite(data)]=0 #remove infinite numbers

samples=colnames(data) #define the case and control cohorts, A 
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samples

were obtained from tumors, B samples were obtained from adjacent 

tissue

case_id=samples[grepl(‘A_S’,samples)]

control_id=samples[grepl(‘B_S’,samples)]

res=diffExp(case_id,control_id,source=‘side’,output=T,n_top-

Genes=10000,expSet=data,annotate=F) #compute DE

▲ CRITICAL STEP If you are using a customized dataset, make sure that it is 

a matrix with rows containing Ensembl gene names. After DE analysis, 

diffExp() will annotate every expressed gene using Entrez Gene symbols.

Batch normalization

13 Perform batch normalization. By default, the normalization and batch correction 

step is performed (with option normalize_samples = TRUE) that uses RUVSeq 
to normalize samples so that batch effects between studies can be minimized37. 

The parameters k and ntop_genes are required in RUVSeq23 if 

normalize_samples is set to TRUE. These options are used to compute an 

empirical set of control genes via edgeR (stored in computedEmpGenes.csv). 

We recommend this step when using samples from different resources (e.g., 

TCGA cancer and GTEx normal). The disease signature is visualized in a heat 

map (Fig. 4c).

Compute reverse gene expression scores

14 The runsRGES function is used to identify the drugs that potentially reverse the 

disease signature. Use the code below to choose significant genes; this works by 

keeping genes that have low adjusted P values and high log-fold changes.

res=subset(res,abs(log2FoldChange)>1&padj<0.001)

15 Launch the sRGES computation. It takes a few minutes to compute RGESs. 

After the job is finished, it will output files all_lincs_score.csv (RGES of 

individual profiles), sRGES.csv (summarized RGES of individual drugs) and 

dz_sig_used.csv (signature genes used for drug prediction). Figure 5d is a 

sample output of drugs that are in clinical trials or are FDA approved. LINCS 

also provides the imputed expression of the whole transcriptome based on the 

978 genes. We will add it in the future when its usage is fully evaluated.

sRGES=runsRGES(res,max_gene_size=100,permutations=10000)

16 Identify the hits by choosing those that have sRGESs lower than −0.2.

▲ CRITICAL STEP Using sRGES lower than −0.2 is a method found to 

produce the best results in a handful of validation cases. There is currently no 

known superior way to compare hits to aid in lead optimization. Similarly, 
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comparing the magnitude of sRGES results across runs is inappropriate because 

sRGES is highly dependent on the size of disease genes.

Validate results using published pharmacogenomics data (optional)

17 As the pharmacogenomic database CTRPv2 consists of efficacy data of 481 

drugs in 860 cancer cell lines35,51, we might leverage this database for further in 

silico validation of our predictions, even without running any biological 

experiments. We use the HepG2 cell line to validate the prediction of HCC 

drugs. In our previous work, we showed that RGESs correlate with drug 

efficacy, such as AUC or IC50 (ref. 11).

To perform this analysis, run the following chunk:

cell_line_computed=computeCellLine(case_id=case_id,returnDF=T,

source=‘octad.whole’,file=‘octad.counts.and.tpm.h5’)

topLineEval(topline = c(‘HEPG2’),mysRGES = sRGES)

computeCellLine will produce an object with correlation scores for every cell 

line and case samples (stored as CellLineCorrelations.csv).

topLineEval will produce CellLineEval*_drug_sensitivity_insilico_results.txt 

and two .html documents:

*_auc_insilico_validation.html (correlation between drug AUC in the specified 

cell line and sRGES).

*_ic50_insilico_validation.html (correlation between drug IC50 in the specified 

cell line and sGRES).

18 Validate the predictions using a linear regression model (Fig. 5e). Note that we 

could use this analysis to optimize the pipeline for the disease of interest by 

changing various hyperparameters. We expect that a good prediction should be 

highly correlated with drug sensitivity in a related cell line.

Compute drug enrichment (optional)

19 After calculation of sRGES on the L1000 compound dataset, perform drug 

enrichment analysis to identify interesting drug classes whose member drugs are 

significantly enriched at the top of the prediction. Example drug classes include 

anti-inflammatories, EGFR inhibitors and dipines (calcium channel blockers). 

We combine LINCS drugs into three lists: MeSH, CHEMBL and 

CHEM_CLUSTER for MeSH term enrichment, target enrichment and chemical 

structure enrichment, respectively. The enrichment score is calculated using 

ssGSEA52, and its significance is computed by a permutation test. Figure 5f 

shows the enrichment of anti-metabolites (drugs that interfere with one or more 

enzymes or their reactions that are necessary for DNA synthesis) and anti-

neoplastics (drugs used to treat cancer) in the top-ranked drugs, suggesting that 

members of this drug class are more likely drug hits.
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octadDrugEnrichment(sRGES = sRGES, target_type = c(‘chembl_tar-

gets’,‘mesh’,‘ChemCluster’))

This analysis provides much information for the following candidate selection 

and experiment design. First, the candidates selected from the same enriched 

class (i.e., MeSH term and target) are more likely to be true positive than those 

randomly selected from the top list. Second, when the ideal candidate is not 

available, it is reasonable to choose an alternative from the same class. 

Sometimes, it is necessary to choose a new drug for testing (e.g., a second 

generation of one inhibitor for the same target). Lastly, because many 

compounds have multiple mechanisms of action (MOAs), this analysis would 

help interpret the MOA of promising compounds.

Procedure 2

Web server version

Portal landing page/login

1. At the landing page, create a new account, log into an existing account or go 

straight to submitting a job (Extended Data Fig. 1). Although having an account 

is not required to submit the job, we recommend setting one up as it will save all 

active and past jobs. User account settings can be accessed on the top right of the 

header. In the main portal, a user’s Job History can be found in the tab on the 

side menu, where all jobs are listed with information pertaining to disease of 

interest, status (e.g., Completed and In-Progress), creation time, as well as the 

access to view and download all output. Users can also delete previous jobs. At 

the bottom of the screen, the details of the current job can be found by clicking 

the Summary button; the current job can be saved by clicking the Save button; 

and navigating forward or backward in the process can be done by clicking the 

Previous and Next buttons, respectively.

Creating a new job: HCC—▲ CRITICAL Creating a job is separated into four sections: 

Case, Control, Disease Signature and Drugs.In this procedure, we will go through all steps 

along with expected output. We will highlight HCC as our featured example.

Case selection

2 Upon entering the Case section, all samples available from all included database 

resources (see ‘Materials’ section; n =19,127) are displayed in a table at the 

bottom of the page, including cancer type (Cancer), site of derivation (Site), 

gender, age, cancer subtype, tumor stage, mutation, gain of function (copy 

number) and loss of function (copy number). Spend some time familiarizing 

yourself with and exploring this page. The user is able to interact with this table, 

such as searching in the top right and viewing more information about the 

samples by clicking the green ‘+’ button under More Info, which shows 

information such as patient demographics and status for certain mutations. Users 
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can manually select samples to include as well by selecting the check box at the 

left of the sample row.

▲ CRITICAL STEP For the first time loading, we recommend waiting ~20 s 

before starting to select case samples, as it takes some time for the browser to 

download the data from the server. One sign of complete loading is that all 

samples should be automatically selected in the table during sample selection.

3 To begin a job, search for cancers of interest in the search box at the top of the 

page beside Disease Name; multiple diseases can be selected.

4 Refine your search by adding filters (e.g., gender, tissue type and a known 

mutation status); doing this will automatically update the selected samples 

below.

5 Manually add and remove samples by checking or unchecking rows in the table, 

respectively.

For the example shown in this protocol, start the search by typing 

‘hepatocellular carcinoma’ into the Disease Name search box and choose the 

corresponding option. After filtering for tissue type, we are left with 369 

primary cancer samples.

6 Proceed to select Control samples in the next section by clicking the Next button 

on the bottom of the screen.

Control selection

7 Click ‘compute control samples’. The portal will ask whether adjacent samples 

should be included if available and how many control samples should be chosen. 

The portal will recommend control samples automatically.

For the example in this protocol, if the DL method is used (which we 

recommend), we are left with 50 samples. These Control samples are 

highlighted along with all other normal samples.

8 By default, adjacent samples are included for computation. To remove them 

from the list of potential control samples, uncheck the box ‘adjacent’ before 

computation. Depending on the user’s goals, this can be a good way to visually 

verify whether the current selections are adequate.

9 Continue to the Disease Signature section by clicking the Next button on the 

bottom.

Disease signature generation—! CAUTION Sometimes users might want to use a 

disease signature computed elsewhere. In this case, the signature can be uploaded in the 

page ‘Upload data’. The expression data must be submitted in a .csv format with the 

following columns: Symbol containing uppercased HGNC gene symbol and 

log2FoldChange containing numbers with DE values. An example file is available at the 

bottom of the page.
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10 With the Case and Control samples selected, we can now create the disease 

signature of interest. This section allows for multiple methods to accomplish 

this, specifically using either edgeR or limma. The portal does not include 

DESeq2, which takes even longer than edgeR or limma. For this example job, 

select edgeR and press ‘View signature’ to begin. As indicated by the warning 

pop-up, this task can take a few minutes, so one benefit of creating an account is 

that the user can log out while this process is occurring. It is recommended to do 

this step to quickly evaluate disease signatures (heat map of disease gene 

expression and pathway enrichment analysis). For example, if case and control 

samples are not well separated in the heat map, users might want to adjust 

samples. Users can skip this step and proceed with the job submission by 

clicking ‘Next’ at the bottom left of the page. In this case, signature creation will 

be automatically performed before drug prediction.

11 Once the signature generation is finalized, this section produces a heat map of 

DE genes as well as a table below with these data. Explore the data by setting 

and changing the criteria metrics; two examples of criteria to change are the P 
value and fold-change cutoffs. Changing these will affect the resulting plots and 

tables. The heat map and table can be found in the output files for reference.

12 This section will provide pathway enrichments (GO terms and KEGG pathways) 

of both upregulated and downregulated genes in the signature as both table and 

bar plots.

13 Once satisfied with the disease signature that has been generated, proceed to the 

final stage of the job to calculate the RGES for all available drugs by clicking 

the Next button on the bottom panel.

Candidate drug selection

14 In this section, we can compare the disease signature to all drug signatures 

obtained from the LINCS resource.

Job submission and tracking

15 After submitting the job, an encrypted URL is generated. The pipeline typically 

takes 10–20 min to run. Use this URL to refresh the page to check the status or 

revisit the job later. Users can also monitor job status through Job History. The 

result files are the same as those generated from the R package.

The octad_output_readme.pdf file describes all the output files.

Troubleshooting

Troubleshooting advice for ‘Procedure 1’ section, using the R package, can be found in 

Table 2.

Troubleshooting advice relating to Procedure 2, using the web portal version of OCTAD, 

can be found in Table 3. The details of troubleshooting various issues are updated in the 

portal (http://octad.org/faq).
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Timing

The test of the web portal was performed on Chrome 80, and the test of the desktop version 

was performed in Rgui 3.6.3 on a laptop with an Intel Core i7-9700 3-GHz processor and 

16G of memory. Code for the desktop example and the timing calculation are available in 

the GitHub repository (https://github.com/Bin-Chen-Lab/octad; Table 4).

Anticipated results

In the procedure for the Desktop version and the related figures (Figs. 4 and 5), we 

demonstrated the ability of the OCTAD pipeline to select a case of primary cancers from 

TCGA, compute correlated reference tissues from GTEx to be used as control samples and 

compute a differential gene expression signature to recommend candidate drugs. This 

current pipeline is a complete framework with increased functionality compared to our 

original iteration8. For instance, instead of using DESeq2 to compute DE, we adopted a less 

time-consuming method: edgeR24. Furthermore, we integrated our methodology to select 

reference tissue from GTEx data, making possible the prediction of cancers without adjacent 

normal tissues15. Lastly, we compiled more samples along with their clinical features, 

enabling prediction of candidates for a subset of patient samples. Here, using HCC as an 

example, we first demonstrate the consistency of results between the original method and the 

optimized one in every major step (i.e., disease signature creation, drug prediction and drug 

enrichment analysis).

To illustrate the potential applications of using OCTAD to screen compounds for identifying 

putative personalized therapeutics, we predict compounds specifically targeting MYC 
amplified lung cancer and PIK3CA mutant breast cancer.

Comparison of results obtained using different key parameters

Because the OCTAD pipeline comprises multiple steps, each of which involves multiple 

parameters, the selection of each parameter might affect the accuracy of the final prediction, 

and the importance of each parameter is not clear. Although we optimized each step in the 

original papers11,15, here using three cancers as examples, we systematically investigated 

eight main parameters (Fig. 6 and Supplementary Fig. 3). For each parameter, we examined 

a few values commonly used. We enumerated all the combinations and ran the pipeline for 

each. The final prediction sRGES was compared with the efficacy data compiled in the 

original paper. In HCC, the correlation in the original paper11 is 0.61, and the average 

correlation of all combinations here is 0.49 (s.d. = 0.08), suggesting that the selection of 

parameters does affect the final prediction. Because the performance of each value might be 

highly confounded by the values from other parameters, we then performed a multiple 

variant linear regression (cor ~ parameters). The analysis of three cancers revealed that the 

performance is highly dependent on the DE log2FoldChange threshold and the DE method 

(Fig. 6 and Supplementary Fig. 3; multivariate regression, P < 0.01). It suggests that using 

log2FoldChange = 1 and edgeR (or DESeq2) in DE analysis could lead to a consistently 

better outcome. The effect of other parameters varies, whereas their overall effect on the 

result is relatively low.
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Comparison between the original method and the current pipeline

We first compared the rank of DE log2 fold change from our original work, which uses 

DESeq2 (noted as Pub) to the rank of DE in our current pipeline, which uses edgeR (noted 

as Adj); both use TCGA adjacent normal HCC as a reference control. Next, we compared 

the original results with our current pipeline using edgeR and computed GTEx normal 

tissues derived using the top correlated autoencoder method (noted as Ae), generated from 

the desktop procedure section. Finally, we compared the results from the desktop version 

with those derived from our online web portal (noted as Online), which also uses edgeR and 

normal liver tissue from the GTEx database, which was generated from the online procedure 

section.

The correlation analysis of the DEs from different procedures shows that the workflow using 

edgeR and adjacent tissues as control had the highest correlation to the original work (Fig. 

7a). In addition, both the online and desktop disease signatures are equal to each other, as 

the parameters for them are the same (Fig. 7a). Both online and desktop results using GTEx 

as controls also retained high correlation to the original gene expression signatures, 

indicating that it is feasible to use GTEx controls (Fig. 7a).

Subsequent drug prediction sRGES is computed using significant differential gene 

expression. We first observed the small discrepancy of differential gene expression 

computed using multiple different procedures. We then assessed whether sRGES results are 

also similar to the original. Unsurprisingly, the workflow using edgeR and adjacent tissues 

as control had the highest correlation to the original work. Both online and desktop results 

(Ae) had lower but still significant correlation to the original work (Fig. 7b).

In our original work, we showed that sRGES correlated with drug efficacy data from the 

CTRP database in which drugs were tested on cancer cell lines. We further compared the 

correlation of sRGES to the AUC of the corresponding drugs found in CTRP of liver cancer 

lineage. AUC is computed as the median AUC across all the liver cancer cell lines. The 

significant correlation between drug efficacy data and sRGES computed from different 

procedures suggested the utility of using the workflow to in silico predict drug efficacy, even 

in the absence of adjacent tissue samples (Fig. 7c).

One of the pitfalls of using individual scores such as sRGES is the possibility for false-

positive predictions. An additional function of our workflow includes enrichment of drug 

targets, such as via MeSH terms. This allows for summary of drugs into classes to allow for 

investigation of groups of drugs rather than individual compounds. A higher score indicates 

a MeSH drug group to be efficacious against the cancer, whereas a lower score indicates a 

non-effective MeSH drug group. We further compare the rank correlation of the MeSH 

scores generated from the different procedures (Fig. 7d). Through drug enrichment analysis, 

we are able to examine clusters of drugs based on their MOA (e.g., MeSH). Finding novel 

classes of drugs (e.g., anti-helminths or unconventional chemical structures) allows for the 

generation of hypotheses that can be prioritized for experimentation. Furthermore, the 

pipeline also allows us to filter out for drug candidates that might have low value—for 

example, poor scores were given for anti-hypertensives compared to more conventional 

classes, such as intercalating agents and HDAC inhibitors.
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Screening compounds targeting MYC-amplified lung adenocarcinoma

Targeting MYC, an oncogene amplified in many cancers, including lung adenocarcinoma, is 

under active research; however, MYC is considered an undruggable target53. One 

therapeutic strategy is to reverse the gene expression signature of these MYC-amplified 

tumors. Here, we ran the two sets of TCGA lung adenocarcinoma through our pipeline. In 

one set, we selected for cancer tissues with MYC amplification, defined as copy numbers of 

1 or more. In the second set, we selected for cancer tissues without the MYC amplification, 

defined as 0 copy numbers. Then we selected drug efficacy data from the CTRP non-small 

cell lung cancer cell lines with the MYC amplification as a validation set. The Spearman 

correlation between AUC and sRGES for the MYC run is significant and better than the 

non-MYC run (rho: −0.415 versus −0.261; Supplementary Fig. 4). This suggests that 

OCTAD can be used to search for candidates specifically targeting MYC-amplified cancers.

Screening compounds targeting PIK3CA mutation in breast cancer

Likewise, we applied OCTAD to screen compounds targeting tumors harboring PIK3CA 
mutation. PIK3CA is highly mutated in cancers but currently considered undruggable54. In 

this case, we ran the two sets of TCGA breast cancers through our pipeline. In one set, we 

selected for cancer tissues with PIK3CA mutation. In the second set, we selected for cancer 

tissues without the mutation. Then, we selected drug efficacy data from the CTRP breast cell 

lines with the PIK3CA mutation as a validation set. Similarly to the previous result, the 

Spearman correlation between AUC and sRGES for the PIK3CA mutant run was significant 

(P < 0.05) and better than the non-mutant run (rho: −0.370 versus −0.273; Supplementary 

Fig. 5). Although more extensive experimental validation of compounds is expected, this 

exercise demonstrates the feasibility of quickly employing OCTAD to identify candidates 

for subtypes defined by molecular features. Moreover, OCTAD enables the creation of 

signatures for various subtypes, from which compounds selectively reversing the signature 

of one subtype could be fished out.

Summary

The combination of clinical and molecular features in describing patients’ disease could lead 

to the identification of numerous disease subtypes; for each of these subtypes, the resources 

available for their study might be very limited. Using open datasets and advanced machine 

learning methods, OCTAD provides an effective means to screen compounds for one 

specific cancer subtype for further experimental testing. In this work, we optimized our 

pipeline and developed OCTAD, which we demonstrate can reproduce results from a 

previous study that are also consistent when selecting normal tissue data from a different 

database. Furthermore, the two new cases illustrate the potential of using OCTAD to screen 

compounds for precisely defined patient groups, although subsequent experimental testing is 

desired to verify drug candidates. In short, OCTAD provides a useful resource to many wet 

labs, especially those with limited screening capacity, to prioritize compounds for a specific 

group of patients, and a powerful platform for computational biologists to run large-scale 

drug predictions.
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Reporting Summary

Further information on research design is available in the Nature Research Reporting 

Summary linked to this article.

Data availability

The data related to this protocol can be found at http://octad.org/download or https://

www.synapse.org/#!Synapse:syn22101254. You can also refer to the preprint version of our 

protocol: https://www.biorxiv.org/content/10.1101/821546v1. This pipeline was verified in 

our previous research papers.

Software availability

The software is available from http://octad.org/download or https://www.synapse.org/#!

Synapse:syn22101254.
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Extended Data

Extended Data Fig. 1 ∣. Screenshots of the web portal.
(a) Disease sample selection, (b) control sample selection, (c) drug prediction job 

submission, (e) job management, (f) predicted drug list and (g) result files.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Appendix

Related links

Key references using this protocol
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Box 1 ∣

Public data sources and repositories

Results from laboratory experiments push scientific knowledge forward, but the raw data 

generated are also of particular importance. By releasing raw data into an open 

repository, scientists break their work out of a silo and facilitate further research and 

reproducibility efforts50,55. For instance, other researchers can re-analyze or combine 

data from many experiments into meta-analyses that are not possible with each study in 

isolation. This is especially important for experiments involving rare diseases or 

uncommonly used cell or tissue types in which data are scarce. Here we detailed a few 

key open repositories for both disease and drug data.

The Gene Expression Omnibus (GEO; https://www.ncbi.nlm.nih.gov/geo/) from the 

National Center for Biotechnology Information is a public functional genomics data 

repository consisting of over 3 million samples from over 110,000 studies as of 

September 2019.

ArrayExpress (https://www.ebi.ac.uk/arrayexpress/) is another functional genomics 

dataset that has over 55 TB of data from over 70,000 experiments as of September 2019.

The Immunology Database and Analysis Portal (ImmPort; https://www.immport.org) is a 

collection of immunology-related studies with genomics and clinical outcome 

measurements.

The Cancer Genome Atlas (TCGA; https://cancergenome.nih.gov) is a compilation of 

cancer-related genomics data and outcomes.

The Genomics Data Commons Portal (GDC: https://portal.gdc.cancer.gov/) organizes and 

harmonizes TCGA and TARGET data and consists of over 350,000 files from ~33,000 

cases of 69 primary site cancers (Data Release 13.0).

The Cancer Cell Line Encyclopedia (CCLE; https://portals.broadinstitute.org/ccle) details 

genetic and pharmacologic properties of human cancer cell line models. As of November 

2018, CCLE has data for 1,457 cell lines comprised of over 136,000 datasets.

Met500 is a resource profiling whole-exome and transcriptome data from 500 adult 

patients with metastatic solid tumors of various lineages and biopsy sites56.

The Treehouse Childhood Cancer Initiative (https://treehousegenomics.soe.ucsc.edu/) is a 

resource that collects and distributes genomic and clinical data related to childhood 

cancers and contains over 11,000 tumor samples.

The Genotype-Tissue Expression (GTEx; https://gtexportal.org/home/) contains genotype 

and expression data for almost 12,000 samples across 53 tissues from over 700 healthy 

donors (version V7).

For drug-related data, Connectivity Map (CMap; https://www.broadinstitute.org/

connectivity-map-cmap and https://clue.io/cmap) from the Broad Institute is a large 

database of chemical/genetic perturbations on cell lines. Specifically, CMap contains data 
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on transcriptional expression changes due to administration of various chemical 

compounds on various cell lines.

To scale this project up, CMap evolved into the Library of Network-Based Cellular 

Signatures (LINCS; http://www.lincsproject.org/) project, where a ‘landmark gene set’ or 

L1000 of a 978-gene panel has been used to characterize over 1 million profiles covering 

various types of perturbagens (e.g., compounds, short hairpin RNA and overexpression).
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Box 2 ∣

Enrichment analysis

Pathway enrichment analysis. The process of finding biological pathways that are 

enriched in a set of genes (i.e., upregulated or downregulated disease genes) more than 

random chance. OCTAD uses the results of enriched GO terms and KEGG pathways 

computed from Enrichr. The significance computation in Enrichr is based on a 

hypergeometric test.

Drug enrichment analysis. The process of finding drug classes that are enriched in the top 

predicted drugs more than random chance. OCTAD has incorporated the following drug 

classes: 1,072 drug targets, 2,695 structure clusters and 226 MeSH pharmacological 

terms. The enrichment score is computed by ssGSEA, and significance is computed by a 

permutation test.
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Fig. 1 ∣. Systems description.
(a) System design, (b) workflow for drug prediction and (c) web portal screenshot.
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Fig. 2 ∣. OCTAD cancer maps.
Each dot represents one sample colored by sample type. x and y are the first two dimensions 

of the t-SNE plot. normal: normal tissue samples from GTEx; primary: primary cancer 

samples mainly from TCGA and TARGET; adjacent: normal tissues adjacent to primary 

cancer; metastatic: tissue samples from the metastasized site; recurrent: recurrent cancer 

tissue samples.
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Fig. 3 ∣. OCTAD compounds.
a, t-SNE plot of LINCS L1000 compounds colored by synthetic accessibility. x and y axes 

show t-SNE dimension 1 and 2 projection of samples based on their structural similarity. 

Each point indicates a compound, and the color shows synthetic accessibility (SA; see the 

color bar at the bottom). The lower SA score means that it is easier to synthesize the 

compound. This dataset covers both the traditional drug-like chemical space (purple dots) 

and novel scaffolds (green dots). Three compounds are highlighted as examples: the one in 

the middle is benzocaine (SA = 1.45, easy to synthesize); the lower left one is BRD-

K00278564 (SA = 3.82, moderate to synthesize); and the upper right one is BRD-

K96551169 (SA = 5.41, difficult to synthesize). b, Reagent accessibility (in stock: available 

in ZINC; similar in stock: structurally similar to the compounds in ZINC; easy to synthesize: 

synthetic accessibility score <4; hard to synthesize: synthetic accessibility score ≥4). c, 

Synthetic accessibility score distribution. y shows the density of the number of compounds. 

It indicates that the compounds in stock have lower synthetic accessibility scores than those 

for compounds thar are not commercially available. d, MeSH pharmacological classification 

distribution. x shows the number of compounds per one MeSH term, and y shows the 

number of MeSH terms. e, Compound target distribution. x shows the number of compounds 

per one target, and y shows the number of targets. d and e indicate that most MeSH terms 

and targets are associated with a small set of compounds.
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Fig. 4 ∣. 
Key steps of the desktop pipeline.
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Fig. 5 ∣. Screen compounds targeting HCC.
a, Correlation between HCC tumor samples and all samples from normal tissues. Highly 

correlated samples (colored by red) were selected as control. b, Distribution of the samples 

selected for the HCC study in a cancer map. c, Disease signature visualization. Log TPM 

value is used. Rows are disease genes; columns are case and control samples. Red and blue 

show highly and weakly expressed genes, respectively. d, Top compounds that reverse the 

disease signature. The first column shows a disease signature gene expression; the remaining 

columns show drug signatures that reverse expression of the corresponding genes. In the first 

column, red and blue indicate high and low gene expression compared to control samples, 

respectively. In the remaining columns, red and blue indicate high and low gene expression 

induced by drug treatment, respectively. e, Correlation between sRGES (predicted score) 

and drug efficacy data in vitro. f, Enriched drug class. Drugs belonging to the antimetabolite 

and anti-neoplastic classes are represented as black bars. Lower sRGES means higher 

potency.

Zeng et al. Page 36

Nat Protoc. Author manuscript; available in PMC 2021 April 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 6 ∣. Correlation between sRGES and efficacy data under different parameter values in HCC.
y shows correlation values; x shows the values commonly used. The following parameters 

were examined: adjacent tissue included, control sample size, DE log2 fold-change 

threshold, DE method, DE padj threshold, expression source, max gene size in LINCS 

prediction and topGene size in DE analysis. For each value, we enumerated all the values of 

other parameters and reported the correlation for each combination. In the box plot, the 

central line represents the median value, and the bounds represent the 25th and 75th 

percentiles. The whiskers are 1.5 times the interquartile range plus 25th/75th quartiles.
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Fig. 7 ∣. Evaluation of the results from major steps in HCC prediction.
(a) Consistency of disease signatures, (b) consistency of sRGES, (c) correlation with 

experimental data (IC50) and (d) consistency of enriched MeSH. adj, using edgeR and 

adjacent tissue as control; ae, using edgeR and normal tissues selected from the autoencoder 

approach; online, online web portal; Pub, the published work.
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Table 1 ∣

Patient sample statistics

Database Tissue type

nNormal Adjacent Primary Recurrent Metastatic

St. Jude HGG 0 0 66 0 0 66

GTEx 7,412 0 0 0 0 7,412

Met500 0 0 0 0 387 387

TARGET 0 11 602 120 1 734

TCGA 0 726 9,365 44 393 10,528

Total 7,412 737 10,033 164 781 19,127
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Table 2 ∣

Troubleshooting when using the R package (Procedure 1)

Function Message Possible cause Solution

computeRefTissue Cannot open file ‘as//…/
case_normal_corMatrix.csv’: no such file or 
directory

Variable outputFolder: 
name of the output folder 
is incorrect

Replace it with a valid name

Error in apply(expSet_normal, 1, stats::IQR): 
dim(X) must have a positive length

Variable source: fail to 
call the expression matrix

Specify the path to the expSet while 
source is octad.whole

Error in expSet[, normal_id]: incorrect number of 
dimensions

Variable expSet: input 
matrix has insufficient 
samples for computation, 
or some samples fail to 
match to the samples 
provided in the 
expression matrix

Filter out non-matched samples 
and/or increase sample size

diffExp Expression data not sourced; modify expSet 
option

Variable expSet: did not 
source the object while 
using custom expression 
matrix

Source the object

Source case IDs and control IDs vector Either case or source 
vector is not sourced

Add case IDs or control IDs

Empty output If row names of the 
expSet do not contain 
Ensembl gene IDs, it will 
return empty output

If annotate =TRUE, make sure row. 
names of the custom input contain 
Ensembl gene IDs

Error in h5checktypeOrOpenLoc (). Cannot open 
file. File ‘octad.counts. and.tpm.h5’ does not 
exist

Source If source = ‘octad.whole’, 
octad.counts. and.tpm.h5 should be 
stored in the working directory, or 
the full path should be sourced 
through file option

runsRGES Disease signature input not found dz_signature Source disease signature should 
include columns: Symbol and 
log2FoldChange

Either Symbol or log2FoldChange column in 
Disease signature is missing

dz_signature Source disease signature should 
include columns: Symbol and 
log2FoldChange

Warning message: in dir.create (outputFolder): 
cannot create dir; reason ‘Invalid argument’

outputFolder Correct output folder

computeCellLine Case IDs vector input not found case_id Case vector is not sourced

octadDrugEnrichment Error in file(file, ifelse(append, “a”, “w”)): 
cannot open the connection

enrichFolder Correct output folder

sRGES input not found sRGES sRGES is not sourced

Error in.local (expr, gset.idx.list,…). No 
identifiers in the gene sets could be matched to 
the identifiers in the expression data

sRGES Make sure column pert_iname is not 
empty

Either sRGES or pert_iname column in Disease 
Signature is missing

sRGES Make sure sRGES input contains 
both pert_iname and sRGES 
columns

topLineEval Error in ‘[.data.frame’(x, r, vars, drop = drop): 
undefined columns selected

topline Make sure the cell line vector is 
valid. You can compare output with 
computeCellLine output
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Table 3 ∣

Troubleshooting when using the Web portal (Procedure 2)

Step Problem Cause Solution

Case When disease name is clicked, 
no sample shows up

The system is still loading the data Wait for ~20 s for samples to be loaded

Not all samples are selected in 
the table

The system is still loading the data; by default, all 
samples should be selected

Wait for ~20 s for samples to be loaded

Control After clicking ‘compute control 
samples’, the page is inactive 
and could not respond

Depending on the number of case samples, it 
usually takes within 2 min to finish. It might get 
slower if many jobs are running

Wait for a few minutes and restart the job

Output Job status is ‘Complete’, but 
some result files are missing

The system will change the status to Complete 
when all the key files are created. However, the 
job is still running to create supplementary files

Wait a few minutes for the system to 
assemble the output files

Upload 
data

No result file is created Input file does not conform to the required format Recreate the input file following the 
example file format. Column names 
include at least log2FoldChange and 
Symbol
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Table 4 ∣

Benchmarking test performed both for the website and standalone package

Step
Desktop timing

Description
Desktop memory usage

Web interface timing

Load library Load data log-normalized transcripts for computation of case 
samples

— 10.35 s 566.87 Mb

Compute reference IDs Compute top 50 healthy samples that match selected case 
samples

10.6 s 5.88 s 581.14 Mb

DE computation with 
default subset

Compute DE for case samples (n = 369) versus selected 
reference samples (n = 50) on LINCS genes (n = 978)

— 11.38 s 733.72 Mb

DE computation with the 
whole OCTAD database

Compute DE for case samples (n = 369) versus selected 
reference samples (n = 50) on the whole OCTAD database with 
60,000 transcripts

4.25 min 2.62 min 736.75 Mb

sRGES computation Rank and compute reversed expression scores 7.25–8.3 
min

1.01 min 1,347.88 Mb

Nat Protoc. Author manuscript; available in PMC 2021 April 28.


	Abstract
	Introduction
	Finding drugs that reverse the disease signature
	OCTAD pipeline
	Overview of OCTAD
	OCTAD Dataset
	Reference tissue selection
	Disease signature creation
	Reversal of cancer expression
	sRGES
	Hit prediction and selection

	Selection of cell lines and in silico validation
	Overview of OCTAD Desktop and Portal

	Availability
	Alternative methods
	Advantages, limitations and future directions
	Materials
	Procedure 1
	Desktop version
	Setup
	First-time setup and loading the package
	Case and control samples
	Select case samples
	Compute or select control samples
	Compute DE genes between case and control samples
	Batch normalization
	Compute reverse gene expression scores
	Validate results using published pharmacogenomics data (optional)
	Compute drug enrichment (optional)

	Procedure 2
	Web server version
	Portal landing page/login
	Creating a new job: HCC
	Case selection
	Control selection
	Disease signature generation
	Candidate drug selection
	Job submission and tracking


	Troubleshooting
	Timing
	Anticipated results
	Comparison of results obtained using different key parameters
	Comparison between the original method and the current pipeline
	Screening compounds targeting MYC-amplified lung adenocarcinoma
	Screening compounds targeting PIK3CA mutation in breast cancer
	Summary
	Reporting Summary
	Data availability
	Software availability

	Extended Data
	Extended Data Fig. 1 ∣
	Appendix
	References
	Fig. 1 ∣
	Fig. 2 ∣
	Fig. 3 ∣
	Fig. 4 ∣
	Fig. 5 ∣
	Fig. 6 ∣
	Fig. 7 ∣
	Table 1 ∣
	Table 2 ∣
	Table 3 ∣
	Table 4 ∣

