Table 3.
Predictability of intensive care unit admissions per predictive model.
| Model | F1 optimization, mean (SD) | Fβ=2 (recall-oriented) optimization, mean (SD) | |||||
|
|
|
F1-score | Recall | F1-score | Recall | ||
| At the time of hospitalization | |||||||
|
|
KNNa | 0.428 (0.039) | 0.574 (0.156) | 0.369 (0.037) | 0.741 (0.088) | ||
|
|
DTb | 0.461 (0.016) | 0.651 (0.056) | 0.309 (0.083) | 0.904 (0.033)c | ||
|
|
RFd | 0.454 (0.027) | 0.713 (0.088)c | 0.382 (0.103) | 0.794 (0.128) | ||
|
|
XGBe | 0.505 (0.040)c | 0.541 (0.074) | 0.431 (0.040) | 0.766 (0.084) | ||
|
|
LRf | 0.250 (0.015) | 0.622 (0.041) | 0.248 (0.013) | 0.651 (0.074) | ||
|
|
MLPg | 0.449 (0.060) | 0.703 (0.145) | 0.410 (0.039) | 0.818 (0.050) | ||
|
|
LGBMh | 0.480 (0.023) | 0.536 (0.048) | 0.435 (0.025)c | 0.770 (0.051) | ||
| At the time of SARS-CoV-2 testing | |||||||
|
|
KNN | 0.195 (0.016) | 0.818 (0.090) | 0.198 (0.007) | 0.852 (0.039) | ||
|
|
DT | 0.209 (0.012) | 0.752 (0.135) | 0.201 (0.007) | 0.890 (0.036) | ||
|
|
RF | 0.200 (0.008) | 0.880 (0.038) | 0.200 (0.008) | 0.880 (0.044) | ||
|
|
XGB | 0.205 (0.009) | 0.857 (0.058) | 0.203 (0.004) | 0.914 (0.032) | ||
|
|
LR | 0.200 (0.008) | 0.847 (0.054) | 0.201 (0.007) | 0.880 (0.034) | ||
|
|
MLP | 0.202 (0.006) | 0.871 (0.049) | 0.200 (0.008) | 0.880 (0.037) | ||
|
|
LGBM | 0.204 (0.012) | 0.871 (0.074) | 0.197 (0.012) | 0.861 (0.066) | ||
aKNN: k-nearest neighbors.
bDT: decision tree.
cBest-performing models.
dRF: random forest.
eXGB: XGBoost.
fLR: logistic regression.
gMLP: multilayer perceptron.
hLGBM: LightGBM.