Skip to main content
. 2021 Apr 28;23(4):e26075. doi: 10.2196/26075

Table 3.

Predictability of intensive care unit admissions per predictive model.

Model F1 optimization, mean (SD) Fβ=2 (recall-oriented) optimization, mean (SD)


F1-score Recall F1-score Recall
At the time of hospitalization

KNNa 0.428 (0.039) 0.574 (0.156) 0.369 (0.037) 0.741 (0.088)

DTb 0.461 (0.016) 0.651 (0.056) 0.309 (0.083) 0.904 (0.033)c

RFd 0.454 (0.027) 0.713 (0.088)c 0.382 (0.103) 0.794 (0.128)

XGBe 0.505 (0.040)c 0.541 (0.074) 0.431 (0.040) 0.766 (0.084)

LRf 0.250 (0.015) 0.622 (0.041) 0.248 (0.013) 0.651 (0.074)

MLPg 0.449 (0.060) 0.703 (0.145) 0.410 (0.039) 0.818 (0.050)

LGBMh 0.480 (0.023) 0.536 (0.048) 0.435 (0.025)c 0.770 (0.051)
At the time of SARS-CoV-2 testing

KNN 0.195 (0.016) 0.818 (0.090) 0.198 (0.007) 0.852 (0.039)

DT 0.209 (0.012) 0.752 (0.135) 0.201 (0.007) 0.890 (0.036)

RF 0.200 (0.008) 0.880 (0.038) 0.200 (0.008) 0.880 (0.044)

XGB 0.205 (0.009) 0.857 (0.058) 0.203 (0.004) 0.914 (0.032)

LR 0.200 (0.008) 0.847 (0.054) 0.201 (0.007) 0.880 (0.034)

MLP 0.202 (0.006) 0.871 (0.049) 0.200 (0.008) 0.880 (0.037)

LGBM 0.204 (0.012) 0.871 (0.074) 0.197 (0.012) 0.861 (0.066)

aKNN: k-nearest neighbors.

bDT: decision tree.

cBest-performing models.

dRF: random forest.

eXGB: XGBoost.

fLR: logistic regression.

gMLP: multilayer perceptron.

hLGBM: LightGBM.