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Perturbations in airway mucus properties contribute to lung function decline in patients with 

chronic obstructive pulmonary disease (COPD). While alterations in bulk mucus rheology have 

been widely explored, microscopic mucus properties that directly impact on the dynamics of 

microorganisms and immune cells in the COPD lungs are yet to be investigated.

We hypothesised that a tightened mesh structure of spontaneously expectorated mucus (i.e. 
sputum) would contribute to increased COPD disease severity. Here, we investigated whether the 

mesh size of COPD sputum, quantified by muco-inert nanoparticle (MIP) diffusion, correlated 

with sputum composition and lung function measurements.

The microstructure of COPD sputum was assessed based on the mean squared displacement 

(MSD) of variously sized MIPs measured by multiple particle tracking. MSD values were 

correlated with sputum composition and spirometry. In total, 33 samples collected from COPD or 

non-COPD individuals were analysed.

We found that 100 nm MIPs differentiated microstructural features of COPD sputum. The 

mobility of MIPs was more hindered in sputum samples from patients with severe COPD, 

suggesting a tighter mucus mesh size. Specifically, MSD values inversely correlated with lung 

function.

These findings suggest that sputum microstructure may serve as a novel risk factor for COPD 

progression and severity.

Introduction

Mucus abnormalities contribute to chronic morbidity in a variety of lung diseases, including 

chronic obstructive pulmonary disease (COPD) [1, 2], cystic fibrosis (CF) [3] and asthma 

[4]. COPD is the third leading cause of death in the USA [5] and at least 30% of people with 

COPD have chronic bronchitis (CB), characterised by chronic cough and sputum production 

[6, 7]. In healthy lungs, mucus that lines the luminal surface of lung airways serves a critical 

protective purpose by trapping inhaled particulates and pathogens that are subsequently 

cleared from the airways via mucociliary clearance (MCC) [8–10]. However, in obstructive 

lung diseases, mucus hypersecretion can overwhelm MCC and results in bacterial 

overgrowth, chronic airway inflammation and airway obstruction [11]. Specifically in 

COPD, mucus hypersecretion is associated with accelerated lung function decline [12], 

increased hospitalisation rate and increased mortality [13]. Mucus obstruction of the small 

airways is also a significant predictive factor of COPD progression and mortality [14, 15], as 

well as exacerbation risk [16–18].

Airway mucus is a viscoelastic gel comprising a complex mixture of high molecular weight 

mucin glycoproteins, cells, cellular debris, bacterial proteins, antibacterial products and 

other molecules [19]. Alterations in the composition of mucus directly affect its biophysical 

properties, resulting in suboptimal MCC and subsequent disease manifestations [20]. In 

COPD patients with CB, there is enhanced expression of gel-forming mucins and elevated 

overall sputum solids content in the lumen of the small airways [21, 22]. Recently, 

ANDERSON et al. [23] found that increased solids content in sputum samples from CB 

patients correlated with elevated partial osmotic pressure of the mucus gel layer and 
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impaired mucus clearance. Functional MCC is dependent on appropriate rheological 

properties of airway mucus [24]. Macro- (or bulk) rheological measurements have revealed 

an increased viscoelasticity of COPD sputum compared to samples from healthy subjects 

[25]. However, conventional bulk rheology measurements do not reveal microscopic 

properties of mucus or sputum, which significantly contribute to mucus physiology and may 

correlate with disease pathology [26].

The diffusion rate of variously sized nanoparticles has been employed as a biophysical tool 

to probe the microstructure of airway secretions [27–29], as well as other biological 

specimens, including the vitreous gel [30], brain extracellular matrix [31] and tumour tissues 

[32]. Compared to other methods, such as fluorescence recovery after photobleaching, 

multiple particle tracking (MPT) allows simultaneous tracking of hundreds of individual 

particles in highly complex and heterogeneous biological specimens at high spatiotemporal 

resolution, and quantification of individual particle transport rates [33]. We have previously 

shown that densely coating nanoparticle surfaces with polyethylene glycol (PEG) produces 

muco-inert nanoparticles (MIPs), also known as mucus-penetrating particles, that are 

capable of moving in human mucus secretions without being trapped by adhesive 

interactions [27–29, 34]. The diffusion of MIPs in mucus is thus primarily slowed by steric 

interaction imposed by the microstructure of the gel. In other words, MIPs of a given size 

will move more slowly in a mucus sample with a tighter mesh, especially if the MIP 

diameter approaches the average pore size of the mucus [27–29]. Conversely, conventional 

polymeric nanoparticles are trapped in mucus regardless of particle size due to adhesive 

interactions with mucus constituents; such particles are referred to as conventional particles 

or muco-adhesive particles (MAPs). In this study, we characterised MIP diffusion in 

spontaneously expectorated sputum from a cohort of cigarette smokers with and without 

airway obstruction to assess whether the sputum microstructure that governs MIP transport 

is associated with COPD disease severity and airway obstruction.

Methods

MIPs were prepared and characterised as previously described [28]. MPT was used to 

measure mean squared displacement (MSD) of fluorescently labelled MIPs and MAPs in 

freshly expectorated sputum samples from non-COPD smokers and COPD patients [33]. 

The per cent solids content of sputum was determined by weighing a given sample followed 

by freeze-drying and re-weighing the same sample. The concentrations of mucin and DNA 

in individual sputum samples were measured by fluorometric assays as previously described 

[28]. Statistical analyses were conducted using Wilcoxon signed rank test for paired 

comparisons, Wilcoxon rank sum test for two-sample comparisons and ANOVA or Kruskal–

Wallis test for comparing more than two groups. Detailed experimental procedures are 

provided in the supplementary material.

Results

Participant characteristics

Demographic data were available for 33 participants: seven smokers without COPD, 18 

patients with mild-moderate COPD (mCOPD) and eight patients with moderate-severe 
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COPD (sCOPD) (table 1). All patients with COPD were current or former smokers. The 

transport analysis was conducted with sputum samples from 32 participants. Correlations 

between microstructure, biochemical composition and lung function parameters were also 

applied to all 33 participants (including one participant’s sample without MPT analysis).

Transport of nanoparticles in spontaneously expectorated sputum from smokers without 
airway obstruction

Nanoparticle movement in mucus approximates both the mesh “tightness” and the pore size 

within the mucus gel [28]. To establish whether differences in particle diameter and mucus 

adhesivity affected particle movement in sputum from non-COPD smokers, we first 

compared the transport behaviours of MIPs to those of similarly sized MAPs in 

spontaneously expectorated sputum samples from non-COPD smokers (n=7). The dense 

PEG coating on the MIPs resulted in a slightly increased particle diameter and near neutral 

surface charge as measured by the ζ-potential (table 2). For simplicity, we refer to 

nanoparticles based on their nominal sizes as reported in table 2. We also confirmed that, 

unlike MAPs, the muco-inert PEG coating effectively precluded adsorption of mucins on the 

surface of MIPs, confirming their muco-resistance (supplementary figure S1). We found that 

diffusion of MAPs, regardless of particle diameter, was largely hindered in sputum samples, 

as evidenced by the highly confined trajectories (figure 1a). In contrast, 100 nm MIPs 

rapidly moved through the sputum sample (supplementary movie S1), as evidenced by their 

diffusive trajectories (figure 1a). We further quantified diffusion rates of each particle type, 

as determined by MSD. The MSD represents the square of distance travelled by individual 

particles at a given time interval (i.e. time scale or τ); thus, MSD is directly proportional to 

particle diffusion rate. Of note, we compared MSD values among different test groups at τ=1 

s throughout the study, given the limited effects of both static and dynamic errors in particle 

tracking analysis at τ=1 s [33]. We found that 100 nm particles displayed a statistically 

significant difference in MSD between the MIPs and MAPs at τ=1 s (figure 1b, p<0.05); in 

contrast, the differences were not significant for 300 and 500 nm particles (figure 1c, d). The 

tracking resolution was determined to be log10(MSDτ=1 s) of −3 based on the MSD values of 

particles immobilised in glue.

Transport of nanoparticles in spontaneously expectorated sputum from patients with 
COPD

We next compared the diffusion of MAPs and MIPs in sputum samples collected from 

patients with COPD (n⩾13). Unlike 100 nm MAPs that showed highly confined trajectories, 

we found that the 100 nm MIPs were capable of diffusing in sputum samples relatively 

unhindered (figure 2a). The MSD values were significantly greater for MIPs in comparison 

to MAPs (figure 2b). Similar to the observation with sputum samples from non-COPD 

smokers, both MAPs and MIPs possessing particle diameters ⩾300 nm exhibited confined or 

highly hindered trajectories in COPD sputum samples (supplementary movie S2 for 300 nm 

MIPs and supplementary movie S3 for 500 nm MIPs). However, MSD values were 

significantly greater for 300 and 500 nm MIPs in comparison to the respective MAPs (figure 

2b, p<0.05), presumably due to the larger sample size compared to the studies with non-

COPD smoker samples.
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Transport of individual MIPs in sputum samples from smokers without airway obstruction, 
with mCOPD and with sCOPD

We next analysed MSD values of individual MIPs with different particle sizes in sputum 

samples from non-COPD smokers and COPD patients. The diffusion rates of 100 nm MIPs, 

as measured by MSD, appeared to decrease with the increase in disease severity (non-COPD 

smoker>mCOPD>sCOPD; figure 3a). The difference was more pronounced when 

comparing the two extreme conditions of non-COPD smoker and sCOPD, as evidenced by 

the clear leftwards shift of the MSD distribution (i.e. greater fractions of MIPs with lower 

MSD values). In general, similar trends were observed with 300 and 500 nm MIPs where the 

fractions of rapidly moving particles (i.e. particles with high MSD values) tended to 

decrease with respect to disease severity (figure 3b, c). However, 300 nm MIPs exhibited 

similar overall MSD distributions, as well as median MSD values, in sputum samples from 

non-COPD smokers and mCOPD patients, while the distribution in sCOPD samples was 

clearly leftwards-shifted (figure 3b). As expected from the larger particle diameters, the 

median MSD values of 500 nm MIPs were smaller than those of 100 and 300 nm MIPs by 

about an order of magnitude or more regardless of disease severity (figure 3c). In particular, 

the MSD values of a large fraction of 500 nm MIPs were below the tracking resolution 

(log10(MSDτ=1 s)<−3) or approaching it in sCOPD samples, which suggests that 500 nm 

MIPs are significantly larger than the sputum average pore size. We found that median MSD 

values, specifically log10(median MSDτ=1 s), of 100 nm MIPs were able to distinguish 

disease severity, yielding a statistically significant difference between non-COPD smoker 

and sCOPD groups (supplementary figure S2a). However, log10(median MSDτ=1 s) of larger 

MIPs were unable to do so (supplementary figure S2b, c). Of note, median MSD values of 

100 nm MIPs were at least an order of magnitude greater than the tracking resolution 

regardless of disease severity, providing confidence in our measurement. We then confirmed 

that size-corrected median MSD values within each disease severity group did not exhibit 

statistically significant differences, suggesting that all probe particles experienced a similar 

microstructure regardless of particle size (supplementary figure S3).

In parallel, we conducted an identical analysis with differently sized MAPs. Whereas MSD 

distributions of 100 nm MAPs exhibited weaker but similar general trends to those of 100 

nm MIPs (supplementary figure S4), disease severity could not be differentiated by the 

log10(median MSDτ=1 s) of 100 nm MAPs (supplementary figure S5a) nor 300 nm MAPs 

(supplementary figure S5b). An analysis of log10(MSDτ=1 s) of 500 nm MAPs unexpectedly 

revealed statistically significant differences between sCOPD versus non-COPD smoker or 

mCOPD groups (supplementary figure S5c). However, median MSD values of 500 nm 

MAPs measured in sputum samples from sCOPD patients were near the tracking resolution 

and thus these values cannot be reliably used to probe disease severity.

Based on all of these findings, subsequent microstructural analyses were conducted with 100 

nm MIPs. We first utilised the measured MSD values of 100 nm MIPs, in conjunction with 

an obstruction-scaling model [28], to estimate pore sizes of sputum samples. As expected 

from the particle diffusion behaviours (figure 3), we found that the fractions of larger pores 

were clearly reduced with the increase in disease severity (supplementary figure S6).
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Sputum biochemical composition analysis

We hypothesised that biochemical composition might affect the microstructural properties of 

sputum and, thus, we measured the macromolecular contents of the sputum samples. The per 

cent solids in the sputum collected ranged from 1.1% to 6.5% by weight, with the higher 

values primarily associated with more severe disease. The solids content for samples from 

non-COPD smokers (n=7) and COPD patients (n=26) was 2.5±0.5% and 3.1±0.2% on 

average, respectively, which is in agreement with previously published values [22]. Sputum 

from sCOPD patients exhibited the highest per cent solids content (3.4±0.3%), while the per 

cent solids for non-COPD smoker and mCOPD samples were 2.5±0.5% and 3.0±0.3%, 

respectively (figure 4a). The per cent solids content values inversely correlated with the 

log10(median MSDτ=1 s) of 100 nm MIPs (figure 5a; Spearman r= −0.73, p<0.0001).

We next measured concentrations of the primary macromolecules found in sputum, 

specifically mucin and DNA, and investigated whether they correlated with the diffusion 

rates of 100 nm MIPs. The mucin concentration was about 2-fold greater in the amassed 

COPD sputum samples than that from non-COPD smokers (5.5±0.76 mg·mL−1 and 2.9±0.6 

mg·mL−1, respectively). Specifically, the sCOPD cohort possessed the highest sputum mucin 

concentration at 8.4±1.9 mg·mL−1, which was statistically significantly greater than that of 

both the non-COPD smoker (3.0±0.6 mg·mL−1) and the mCOPD (4.4±0.6 mg·mL−1) groups 

(figure 4b, p<0.05). However, the difference was not statistically significant between the 

non-COPD smoker and mCOPD groups. The DNA concentration was higher in amassed 

COPD sputum samples (0.21±0.076 mg·mL−1) compared to the sample from non-COPD 

smokers (0.07±0.01 mg·mL−1), but the differences were not statistically significant among 

different groups (figure 4c). When related to MIP diffusion, mucin concentration inversely 

correlated with the log10(median MSDτ=1 s) of 100 nm MIPs (figure 5b; r= −0.41, p=0.03); 

however, the relationship was not statistically significant for DNA content and log10(median 

MSDτ=1 s) of 100 nm MIPs (figure 5c; r= −0.18, p=0.36).

Relationship between lung function and microstructure

We hypothesised that the altered sputum microstructure in COPD would correlate with 

impaired lung function. The log10(median MSDτ=1 s) of 100 nm MIPs was positively 

correlated with the spirometric measurements of forced expiratory volume in 1 s (FEV1)/

forced vital capacity (FVC) (figure 6a; r=0.41, p=0.02) and FEV1 % predicted (figure 6b; 

r=0.41, p=0.02). We also compared the spirometric measurements to the solids content that 

has previously been assessed as a potential biomarker for lung function of CB patients [22]. 

Neither the FEV1 % pred nor the FEV1/FVC % pred significantly correlated with the 

sputum per cent solids (figure 6c, d).

Discussion

In this study, we examined whether sputum architecture, reflecting the pore size of 

spontaneously expectorated mucus gel, associates with COPD severity, lung function and 

sputum composition. To our knowledge, this is the first analysis of sputum microstructure in 

COPD patients. We specifically investigated the microstructural properties of spontaneously 

expectorated sputum from smokers with and without airway obstruction using MPT with 
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MIP probes. We showed that dense surface coatings with low molecular weight PEG 

effectively prevented nanoparticle adhesion to sputum constituents, particularly mucins, 

similar to our observations with other mucus secretions, including cervicovaginal mucus 

[35], respiratory mucus [36], chronic rhinosinusitis mucus [37] and CF sputum [38]. We also 

demonstrated that the diffusion rates of MIPs with a particle diameter less than the average 

sputum mesh size (100 nm MIPs in this case) can be used to distinguish key biophysical 

properties of sputum collected from patients with varying disease severity. We found that a 

tightened microstructure correlated with lung disease severity as indicated by a decrease in 

FEV1/FVC and FEV1. Finally, the mesh spacing (i.e. pore size) of the sputum network may 

impact the migration and/or colonisation of microorganisms [39, 40], including bacteria and 

viruses, and immune cells. If so, the mesh spacing measurement can potentially serve as a 

predictor of COPD-associated exacerbation, a critical risk factor for COPD progression [41].

Sputum is a gel that is composed of a complex porous network of solid strands of mucins, 

DNA and other molecules in an aqueous medium. In order to accurately perform 

microstructural analysis of the sputum mesh via MPT, the nanoparticle probes must be both 

non-adhesive and smaller than the average pore size in the sputum mesh [26]. Transport 

rates of MAPs are strongly affected by adhesive interactions with the sputum, whereas MIPs 

resist adhesive interactions with sputum constituents. Due to their muco-inert nature, MIP 

movement is primarily affected by steric hindrance imposed by the sputum mesh, which 

makes MIPs uniquely appropriate for use in examination of unperturbed sputum 

architecture, such as mesh spacing. We found that 100 nm MIPs travelled relatively 

unhindered through the porous sputum samples freshly obtained from both non-COPD 

smokers and COPD patients. In contrast, 500 nm MIPs, despite their muco-inert surfaces, 

did not diffuse rapidly in sputum because they were too large to fit through the sputum 

pores. These findings indicate that 100 nm MIPs are optimal to probe the sputum 

microstructure, whereas conventional MAPs of any size and MIPs larger than the average 

opening size in the sputum mesh are not suitable for this application.

Biophysical properties of COPD sputum have been relatively underexplored compared to 

biochemical content analysis, including quantification of pro-inflammatory and bacterial cell 

markers [42, 43]. Previous biophysical analysis of sputum samples collected from patients 

with obstructive lung diseases primarily focused on measurement and comparison of macro-

rheological properties; as an example, the degree of purulence, an indication of infection, 

correlates with bulk viscoelasticity of CF sputum [25]. However, these conventional 

rheological measurements do not provide direct information on sputum microarchitecture 

[33, 44]. By combining MIPs and the MPT technique to probe sputum microstructure, we 

discovered a significant correlation between diffusion of 100 nm MIPs and disease stage, 

specifically between sputum samples from non-COPD smokers and sCOPD patients. The 

reduction in MIP diffusion rates, as quantified by log10(median MSDτ=1 s), indicates that the 

sputum mesh (i.e. pore size) is tighter in sputum samples from patients with more advanced 

COPD.

Consistent with previous reports [22, 23], we found a modest increase in the per cent solids 

content of sputum samples from COPD patients, especially sCOPD, compared with that of 

non-COPD smokers. We found an inverse correlation between per cent solids and the MIP 
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log10(median MSDτ=1 s), suggesting that a greater solids concentration, as can occur with 

sputum dehydration [23] or mucin hypersecretion, contributes to a tighter sputum mesh in 

severe COPD. This agrees with a previous report where in vitro particle diffusion rates in 

mucus inversely correlated with solids content [22]. However, this study was conducted with 

large (1 µm), non-PEGylated (muco-adhesive) particles and, thus, the diffusion readout is 

more relevant to bulk rheological mucus properties than to microstructural properties such as 

pore size [45]. Many believe that airway inflammation in obstructive lung disease is linked 

to perturbation of mucin [46] and/or DNA content [47], which results in elevation of mucus 

elasticity [8, 48]. We found that the mucin concentration was significantly increased in 

sputum samples collected from COPD patients compared to those from non-COPD smokers. 

This is in agreement with a recently published paper that demonstrated that the total mucin 

concentration was significantly higher in induced sputum from patients diagnosed with CB 

than from those without CB [49]. Indeed, we found that the increased mucin concentration 

corresponded with a tighter sputum microstructure in this study. The pore size of the mucus 

mesh can potentially be affected by the cross-linking density of mucin fibres [48, 50]. YUAN 

et al. [48] recently reported that oxidation arising from airway inflammation increases the 

number of disulfide crosslinks of mucin polymers and, thus, increases the stiffness/elasticity 

of CF sputum. Increased oxidative stress is also a hallmark of COPD-associated lung disease 

[51, 52]. We also note that other biochemical properties, including pH and salt composition, 

may affect molecular arrangements of macromolecules, thereby impacting on mucus 

biophysical properties [53, 54].

We found for the first time that sputum microstructural properties correlated with lung 

function measures (i.e. FEV1/FVC and FEV1 % pred) in COPD. In CF sputum, altered 

sputum rheological properties correlate with bacterial colonisation and reduced lung 

function [55]. The tighter mesh in COPD sputum may also provide a permissive 

environment for chronic infection and inflammation, perhaps due to reduced bacteria and 

neutrophil migration coupled with reduced MCC [39]. Thus, microstructure readouts based 

on MIP diffusion in sputum may inform the study of disease progression and/or clinical 

exacerbations. Importantly, there is not a significant relationship between lung function and 

per cent solids, potentially limiting the solids content as a biomarker for COPD severity. 

Further, the microstructure analysis may also be implemented as a readout in therapeutic 

trials to evaluate airway-directed therapies, including mucolytic and mucus-hydrating agents 

[56]. Finally, our findings invite further analysis of the molecular interactions that contribute 

to pore size, such as disulfide cross-linking, oxidative modifications and mucin–

macromolecule interactions. Microstructure measurements can only be performed on fresh, 

spontaneously expectorated sputum so as to preserve the physiological structure and to 

prevent deterioration observed with prolonged storage or freezing [28]. Induced sputum 

samples were not used because dilution by inhaled saline during the collection process may 

alter the physiological microstructure. Thus, the COPD patient population sampled with this 

method is constrained by the ability to generate a spontaneous specimen.

Overall, our findings suggest that the characterisation of sputum microstructure, available 

with spontaneous but not induced sputum samples, may provide novel insights into the 

specific properties of mucus that contribute to COPD pathogenesis. Future studies will focus 

on the examination of sputum architecture in larger longitudinal cohorts with detailed 
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clinical, physiological and functional readouts. Such studies could further support the use of 

sputum mesh size as a predictive and personalised index of disease state and progression.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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FIGURE 1. 
Transport of muco-adhesive particles (MAPs) and muco-inert nanoparticles (MIPs) in 

spontaneously expectorated sputum from cigarette smokers without chronic obstructive 

pulmonary disease. a) Representative median trajectories of MAPs and MIPs possessing 

particle diameters of 100, 300 and 500 nm. Trajectories show 15 s of motion. Scale bar=2 

µm. b–d) Median mean squared displacement (MSD) at a time scale of 1 s for MAPs and 

MIPs with diameters of 100 nm (b), 300 nm (c) and 500 nm (d). All data represent n=7 

sputum samples with at least 500 particles tracked per sample. Error bars represent SEM. *: 

p<0.05 (Wilcoxon signed rank test).
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FIGURE 2. 
Transport of muco- adhesive particles (MAPs) and muco-inert nanoparticles (MIPs) in 

spontaneously expectorated sputum from chronic obstructive pulmonary disease patients. a) 

Representative trajectories of MAPs and MIPs possessing particle diameters of 100, 300 and 

500 nm. Trajectories show 15 s of motion. Scale bar=2 µm. b–d) Median mean squared 

displacement (MSD) at a time scale of 1 s for MAPs and MIPs with diameters of 100 nm 

(b), 300 nm (c) and 500 nm (d). All data represent n⩾13 sputum samples with at least 500 

particles tracked per sample. Error bars represent SEM. **: p<0.01, ***: p<0.001 (Wilcoxon 

signed rank test).
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FIGURE 3. 
Transport of differently sized muco-inert nanoparticles (MIPs) in spontaneously 

expectorated sputum from smokers without chronic obstructive pulmonary disease (COPD) 

and COPD patients stratified for disease severity based on spirometric pulmonary function 

measurements. Subjects are categorised into one of the three groups, including non-COPD 

cigarette smokers (Smoker), mild COPD (mCOPD) and severe COPD (sCOPD). 

Distribution of the log10(MSDτ=1 s) of individual MIPs possessing particle diameters of a) 

100 nm, b) 300 nm and c) 500 nm. All data represent n⩾5 sputum samples with at least 500 

particles tracked per sample. The median values of log10(MSDτ=1 s) for each dataset are 

indicated by the dashed line. Black bars represent values below tracking resolution. MSD: 

mean squared displacement.
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FIGURE 4. 
Sputum biochemical contents. Quantification of a) percentage of solids, b) mucin 

concentration and c) DNA concentration in sputum samples from smokers without chronic 

obstructive pulmonary disease (COPD) (Smoker) and patients with mild COPD (mCOPD) 

and severe COPD (sCOPD). Data represent n⩾29 sputum samples. Error bars represent SEM. 

*: p<0.05 (ANOVA).
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FIGURE 5. 
Relationships between sputum microstructure and biochemical components. Log10(median 

MSDτ=1 s) values of 100 nm muco-inert nanoparticles inversely correlate with a) per cent 

solids content and b) mucin concentration but not c) DNA concentration. Measurements 

were made for n⩾28 individual, non-overlapping smokers without chronic obstructive 

pulmonary disease (COPD) and COPD patients. MSD: mean squared displacement.
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FIGURE 6. 
Relationships between sputum microstructure and spirometric measurements. Log10(median 

MSDτ=1 s) values of 100 nm muco-inert nanoparticles positively correlate with a) the ratio 

of post-bronchodilator forced expiratory volume in 1 s (FEV1) to forced vital capacity 

(FVC) and b) post-bronchodilator FEV1 % pred, but the percentage of solids and c) FEV1 % 

pred or d) FEV1 to FVC ratio were not correlated. Spirometry was performed on patients 

prior to sputum collection. Measurements were made for n⩾30 individual, non-overlapping 

smokers without chronic obstructive pulmonary disease (COPD) and COPD patients. MSD: 

mean squared displacement.
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TABLE 1

Participant demographics

Non-COPD smoker
#

Mild-moderate COPD
¶

Moderate-severe COPD
+

Subjects n 7 18 8

Age years 56±2 62±2 70±3

Post-BD FEV1 % pred 95±7 69±4 39±2

FEV1/FVC 0.97±0.02 0.78±0.02 0.5±0.04

Female 3 (43) 9 (49) 1 (17)

Current smoker 5 (71) 12 (67) 4 (67)

Data are presented as mean±SEM or n (%), unless otherwise indicated. COPD: chronic obstructive pulmonary disease; BD: bronchodilator; FEV1: 

forced expiratory volume in 1 s; FVC: forced vital capacity.

#
: FEV1/FVC>0.7, FVC>lower limit of normal;

¶
: FEV1/FVC<0.7, FEV1>50% pred;

+
: FEV1/FVC<0.7, FEV1<50% pred.
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TABLE 2

Nanoparticle physicochemical characterisation

Nominal size nm Particle type Hydrodynamic diameter
#
 nm PDI

# ζ–potential
¶
 mV

100 MAP 88±1 0.02 −52±1

100 MIP 109±2 0.02 −7±1

300 MAP 292±4 0.01 −75±6

300 MIP 318±7 0.04 −4±1

500 MAP 538±11 0.05 −52±1

500 MIP 553±5 0.05 −4±1

Data are presented as mean±SEM. PDI: polydispersity index; MAP: muco-adhesive particle; MIP: muco-inert nanoparticle.

#
: measured in 10 mM NaCl at pH 7.4 by dynamic light scattering;

¶
: measured in 10 mM NaCl at pH 7.4.
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