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Abstract

Quantitative susceptibility mapping (QSM) is a powerful MRI technique that has shown great 

potential in quantifying tissue susceptibility in numerous neurological disorders. However, the 

intrinsic ill-posed dipole inversion problem greatly affects the accuracy of the susceptibility map. 

We propose QSMGAN: a 3D deep convolutional neural network approach based on a 3D U-Net 

architecture with increased receptive field of the input phase compared to the output and further 

refined the network using the WGAN with gradient penalty training strategy. Our method 

generates accurate QSM maps from single orientation phase maps efficiently and performs 

significantly better than traditional non-learning-based dipole inversion algorithms. The 

generalization capability was verified by applying the algorithm to an unseen pathology--brain 

tumor patients with radiation-induced cerebral microbleeds.
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1. Introduction

Quantitative susceptibility mapping (QSM) is a recent phase-based quantitative magnetic 

resonance imaging (MRI) technique that enables in vivo quantification of magnetic 

susceptibility, a tissue parameter that is altered in a variety of neurological disorders (Liu et 

al., 2015; Wang et al., 2017). QSM has been shown to quantify changes in vascular injury, 

such as the formation of cerebral microbleeds (CMBs) over time, hemorrhage, and stroke 

(Klohs et al., 2011; Liu et al., 2012). Iron deposition in the deep gray matter due to aging or 

disease can also be investigated using QSM (Li et al., 2014). In neurodegenerative diseases 

such as Parkinson’s disease (N. He et al., 2015), Alzheimer’s disease (Acosta-Cabronero et 

al., 2013) and Huntington’s disease (Van Bergen et al., 2016), QSM can quantify the 

paramagnetic iron deposition related to disease progression and potentially generate 

biomarkers for diagnosing and managing neurodegenerative disease patients.

Although QSM has been demonstrated to have great potential in both research studies and 

clinical practice, accurate and reproducible quantification of tissue susceptibility requires 

multiple steps of careful data processing including phase reconstruction, coil combination 

(for multi-channel coils) (Hammond et al., 2007), multi-echo phase combination (for multi-

echo sequences) (Eckstein et al., 2017), background phase removal (Li et al., 2015b; Liu et 

al., 2011a; Sun and Wilman, 2014) and phase-susceptibility dipole inversion (Li et al., 

2015a; Liu et al., 2011b, 2009). Among them, the dipole inversion step is considered the 

most difficult because it is intrinsically an ill-posed inverse problem (Deistung et al., 2016). 

This is due to the representation of the relationship between magnetic field perturbation and 

susceptibility distribution as a convolution, which can be more efficiently calculated as a 

point-wise multiplication in frequency space except along the conical surface where zero 

values result in missing data or noise amplification when solving for the inverse. To 

overcome this issue, missing data can be recovered by acquiring at least three scans with 

different relative orientations of the volume-of-interest in the main magnetic field, as with 

Calculation Of Susceptibility through Multiple Orientation Sampling (COSMOS, Liu et al., 

2009). This requires a subject to change head orientation between repeated scans, which has 

several disadvantages that significantly limit its application in practice: 1) the scan time is 

prolonged since multiple repeated scans are required, increasing both the cost of QSM and 

the risk of motion artifact; 2) co-registration of the different orientation images are required, 

which both increases processing time and introduces errors due to misalignment; and 3) 

modern high-field head coils are usually configured to be very close to the subject’s head for 

higher sensitivity, limiting the ability to rotate one’s head and degrading the quality of the 

QSM calculation. As a result, this approach is usually impractical for patient studies despite 

its superior potential to alleviate the ill-posed dipole inversion.
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Over the past decade, many approaches have been developed to address the ill-posed inverse 

problem. Thresholded K-space Division (TKD) simply thresholds the dipole kernel to a 

predetermined non-zero value to avoid dividing by zero (Shmueli et al., 2009). Morphology 

Enabled Dipole Inversion (MEDI) regularizes the ill-posed inversion problem by imposing 

edge preservation constraints derived from magnitude images (Liu et al., 2011b). 

Compressed Sensing Compensated inversion (CSC) exploits the fact that missing k-space 

data satisfies the compressed sensing requirement and applies a sparse L1 norm to regularize 

the problem (Wu et al., 2012). Quantitative Susceptibility Mapping by Inversion of a 

Perturbation Field Model (QSIP) approaches the problem by inversion of a perturbation 

model and makes use of a tissue/air susceptibility atlas (Poynton et al., 2015). These 

traditional methods suffer from three major limitations: 1) they either suffer from significant 

streaking artifacts or require careful hyperparameter tuning; 2) can be iterative and therefore 

take minutes to hours to compute; 3) they result in vastly different susceptibility 

quantifications, limiting reproducibility and making it difficult to compare studies that use 

different algorithms.

Recently, Deep Convolutional Neural Networks (DCNNs) have shown great potential in 

computer vision tasks such as image classification (K. He et al., 2015), semantic 

segmentation (Long et al., 2014) and object detection (Ren et al., 2015). Among various 

deep neural network architectures, U-Net (Ronneberger et al., 2015) has become the most 

popular backbone for many medical image-related problems (Gong et al., 2018; Kleesiek et 

al., 2016; Zbontar et al., 2018) due to its effectiveness and universality. Bollmann et al. 

(Bollmann et al., 2019) and Yoon et al. (Yoon et al., 2018) adopted the U-Net structure and 

extended it to 3D to solve the dipole inversion problem of QSM by training the network to 

learn the inversion using patches of various sizes as the input. Since its inception in 2014, 

Generative Adversarial Networks (GANs) (Goodfellow et al., 2014) have been incorporated 

into CNNs to further improve performance of segmentation, classification, and especially 

contrast generation tasks (Arjovsky et al., 2017; Hammernik et al., 2018; Nie et al., 2018; 

Radford et al., 2015; Yang et al., 2018; Zhu et al., 2017) by combining a generator that is 

trained to generate more realistic and accurate images with a discriminator that is trained to 

distinguish the real from the generated images. This idea of adversarial learning has recently 

been extended to applications in medical imaging (Mardani et al., 2019; Schlemper et al., 

2018; Seitzer et al., 2018; Zhu et al., 2019a, 2019b). The goals of this study were to for the 

first time: 1) incorporate the physical principles of the dipole inversion model that describes 

the susceptibility-phase relationship into the training of a deep neural network to generate 

QSM images and 2) harness the power of adversarial learning in this new application. We 

achieved these aims by: 1) modifying the structure of the 3D U-Net proposed by Bollmann 

et al. and Yoon et al. (Bollmann et al., 2019 and Yoon et al., 2018) to incorporate an 

increased receptive field of the input phase image patches in conjunction with a cropping of 

resulting output in order to emulate the dipole physics within the structure of the model; and 

2) by utilizing a GAN to regularize the model training process and further improve the 

accuracy of QSM dipole inversion.
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2. Materials and Methods

2.1 Theory of QSM dipole inversion and GANs

Assuming that the susceptibility-induced magnetization is regarded as a magnetic dipole and 

the orientation of the main magnetic field B0 is defined as the z-axis in the imaging 

Cartesian coordinate, the magnetic field perturbation and susceptibility distribution is related 

by a convolution, which can be efficiently calculated by a point-wise multiplication in 

frequency space (Liu et al., 2015).

ΔBz k = B0
1
3 − kz

2

k 2 χ k (1)

Where ΔBz is the local field perturbation, B0 is the main magnetic field, χ represents the 

tissue susceptibility, k is the frequency space vector and kz is the z-component. In practice, 

we measure ΔBz by phase variation and solve the inverse problem for the susceptibility 

distribution χ. However, notice that when kz
2/ k 2 ≈ 1/3, the bracket term on the right-hand 

side becomes close to zero, which causes missing measurements or noise amplification 

when solving the inverse problem, making it ill-posed.

Assume y(d) = ΔBz(d) is the acquired tissue phase of the subject and x(d) is the 

susceptibility map of the subject we want to solve in the ill-posed phase-susceptibility dipole 

inversion problem, and function f represents the relationship between them, then we can 

simplify equation (1) with:

y = f x (2)

To solve the dipole inversion problem, we are finding a function h that gives:

x = ℎ y . (3)

where x is an estimate of the true susceptibility map x. The idea of GANs is to define a game 

between two competing components (networks): the discriminator (D) and the generator 

(G). G takes an input and generates a sample that D receives and tries to distinguish from a 

real sample. The goal of G is to “fool” D by generating more realistic samples. In this case, 

we use G as the function h:

x = G y (4)

The adversarial game between G and D is a minimax objective:

min
G

max
D

Ex~ℙq[log D(x)] + Ey~ℙt[log(1 − D(G(y))] (5)
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where ℙq is the distribution of true susceptibility maps and ℙt is the distribution of tissue 

phases. To stabilize the training process, we adopt the method of Wasserstein GAN 

(WGAN) (Arjovsky et al., 2017), and the value function for WGAN is:

min
G

max
D ∈ D

Ex~ℙq[D(x)] − Ey~ℙt[D(G(y)] (6)

where D is the set of 1-Lipschitz functions, which can be enforced by adding a gradient 

penalty (GP) term to the value function (Gulrajani et al., 2017):

λgpEy ∼ ℙt ∇D G y 2 − 1 2
(7)

where λgp is a parameter that controls the weight of the gradient penalty. Since the goal for 

G in this task is to recover/reconstruct QSM from a certain input tissue phase, we also 

included an L1 loss as content loss in the objective function of G:

min
G

λc ∥ x − G(y) ∥ 1 + λadvLadv (8)

where Ladv is the adversarial loss indicated in equation (6).

2.2 QSMGAN framework

We designed a 3D U-Net architecture similar to Bollmann et al., 2019 and Yoon et al., 2018 

as the generator part of the QSMGAN framework as shown in Figure 1. In each U-Net 

block, there are two 3x3x3 Conv3d-BatchNorm-LeakyReLU (negative slope of 0.2) layers, 

where Conv3d is the commonly used 3D convolution layer, the BatchNorm (batch 

normalization) accelerates and stabilizes the optimization and the LeakyReLU facilitates the 

training of the GAN. 3D average pooling was used to down-sample the image patch as 

proposed in the classic U-Net architecture, while 3D transpose convolution was applied to 

restore the resolution in the up-sampling path while incorporating the low frequency 

information back in the model. At the end of the generator, we applied a cropping layer to 

focus the training on only the center part of the patch. For the discriminator part of the 

QSMGAN, we designed a 3D patch-based convolutional neural network where each block 

of the network is composed of a 3D convolution (4x4x4 kernel size and stride 2) and a 

LeakyReLU (negative slope of 0.2). The four blocks in the network lower the input patch to 

1/16 of the original size and the 3D convolution layer at the end converts the resulting patch 

to a binary output corresponding to the prediction of real and fake QSM patches.

2.3 Subjects and data acquisition

Eight healthy volunteers (average age 28, M/F=3/5) were recruited for this study as the 

training and validation dataset for QSMGAN. All volunteers were scanned with a 3D multi-

echo gradient-recalled sequence (4 echoes, TE= 6/9.5/13/16.5ms, TR=50ms, FA=20°, 

bandwidth=50kHz, 0.8mm isotropic resolution, FOV=24x24x15cm) using a 32-channel 

phase-array coil on a 7T MRI scanner (GE Healthcare Technologies, Milwaukee, WI, USA). 

The sequence was repeated three times on each volunteer with different head orientations 

(normal position, tilted forward and tilted left) to acquire data for COSMOS reconstruction. 
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GRAPPA-based parallel imaging (Beatty et al., 2014) with an acceleration factor of 3 and 16 

auto-calibration lines were also adopted to reduce the scan time of each orientation to about 

17 minutes.

To evaluate the generalization ability of our networks, we used a cohort of 12 patients with 

brain tumors who had developed CMBs years after being treated with radiation therapy. This 

type of vascular injury was an ideal pathology to test the generalizability of our network 

because they can both be extremely small in size and difficult to detect, and have very high 

susceptibility values compared to normal brain tissue due to deposits of hemosiderin. These 

patients were scanned using the same 7T QSM protocol as the healthy volunteers subjects 

except the slice thickness was 1.0mm. Only one orientation scan was performed on each 

patient. After the GRAPPA reconstruction, the image volumes were resampled to 0.8mm 

isotropic resolution to match the input of the deep learning models.

2.4 QSM data processing and dataset preparation

The raw k-space data were retrieved from the scanner and processed on a Linux workstation 

using in-house software developed in Matlab 2015b (Mathworks Inc., Natick, MA, USA). 

The following processing steps (summarized in Figure 2) were performed to obtain the 

tissue phase maps required for input to the QSMGAN and the calculation of the gold 

standard COSMOS-QSM which was used as the learning target of the QSMGAN: 1) 

GRAPPA reconstruction was applied to interpolate the missing k-space lines due to parallel 

imaging acceleration and channel-wise inverse Fourier transform was applied to obtain the 

coil magnitude and phase images; 2) coil images were combined to obtain robust echo 

magnitude and phase images using the MCPC-3D-S method (Eckstein et al., 2017); 3) raw 

phase was unwrapped using a Laplacian-based algorithm (Li et al., 2011); 4) FSL BET 

(Jenkinson et al., 2012) was applied on magnitude images from all echoes to obtain a 

composite brain mask from the intersection of each individual echo mask; 5) V-SHARP (Wu 

et al., 2012) was used to remove the background field phase to get the tissue phase map; 6) 

images from different orientations were co-registered using magnitude images with FSL 

FLIRT (Jenkinson et al., 2012); 7) the dipole field inversion was solved using the COSMOS 

algorithm (Liu et al., 2009). In addition, TKD (Shmueli et al., 2009), MEDI (Liu et al., 

2011b) and iLSQR (Li et al., 2015a) QSM maps were also reconstructed from single 

orientation data for evaluation and comparison. A threshold of 0.15 was selected for the 

TKD algorithm, and λ=2000 was used in MEDI. The reconstructed single orientation tissue 

phase maps from the patient data were 1) used to compute iLSQR QSM and 2) fed into both 

the 3D U-Net and QSMGAN networks to generate COSMOS-like QSM.

2.5 Training and validation

The 8 healthy subjects were divided into 5 for training, 1 for validation, and 2 for testing. All 

three orientations were included in the dataset so the total number of scans in the training/

validation/test set was 15/3/6. To build the training set, tissue phase and susceptibility 

patches were sampled by center coordinates with a gap of 8 voxels in all three spatial 

dimensions. Since background occupies most of the image volume, we sampled 90% 

patches from inside the brain and only 10% from the background to increase the efficiency 

of the training. For validation and testing, the input tissue phase volume was divided into 
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non-overlapping patches according to the output patch size and the susceptibility map was 

reconstructed patch-wise by feeding the input tissue phase patch into the trained network. 

Figure 3 demonstrates the relationship between the receptive field and input/output patch 

size.

To assist the neural network training, we multiplied the input phase by a scale factor of 100 

and then transformed the output x by a scaled hyperbolic tangent operation to get the 

surrogate target ẋ:

ẋ = tanh 10x

This transform not only converts the range of the target susceptibility map to [−1, 1], which 

aids in the network training, but also results in a more Gaussian distributed histogram, 

helping the network learn values in different ranges (Figure 4).

As the baseline network, we first trained the U-Net based generator separately with the pairs 

of input and output patch sizes listed in Table 1. To train the generator, an Adam optimizer 

with a learning rate of 1e-4 was used and betas were set to (0.5, 0.999). The network was 

trained for 40,000 iterations with a batch size of 16 that was lowered to 8 for larger input 

patch sizes. L1 loss was used as the loss function for the baseline network.

To train the QSMGAN, we again started with the baseline network and then: 1) fixed the 

generator G and trained D for 20,000 iterations to ensure that D was well trained, as 

suggested by Gulrajani et al. (Gulrajani et al., 2017); and 2) trained G and D together for 

40,000 iterations. During each iteration, D (the critic) was updated 5 times with the gradient 

penalty λgp = 100. Adam optimizers were used for both G and D and the learning rate was 

lowered to 1e-5. To balance the content loss and adversarial loss, λc was set to 1 and λadv to 

0.01.

2.6 Evaluation metrics

To evaluate the quality of the predicted QSM map reconstructed by the network (x), we 

calculated and compared the following metrics: 1) L1 error = x − x 1; 2) Peak Signal-to-

Noise Ratio (PSNR) = 10log10
R x

MSE x, x , where R() computes the voxel value range of the 

input image and MSE() computes the mean squared error between the reconstructed image 

and the target image; 3) Normalized Mean Squared Error (NMSE)= MSE x, x
x 2

; 4) High-

frequency error norm (HFEN); and 5) Structure similarity index (SSIM) as described in 

Langkammer et al., 2018. A Wilcoxon signed rank test was used to test for statistical 

significant differences in quality metrics between the optimized 3D U-Net and QSMGAN.

Radiation-induced CMBs from each patient were segmented on reconstructed susceptibility 

weighted images (SWI) using in-house software (Chen et al., 2018; Morrison et al., 2018). 

The resulting CMB masks were eroded by 1 voxel in all directions to remove the blooming 

artifact present on SWI and then applied to the iLSQR QSM, 3D U-Net and QSMGAN 

maps in order to quantify the median CMB susceptibility from the 3 different QSM images. 
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The number of CMBs were also counted for each patient using each of the 3 QSM maps by 

an experienced rater after blinded randomization of the images. A Kruskall-Wallis test was 

used to test for significant differences in median CMB susceptibility and CMB count among 

the 3 QSM methods and Bland-Altman Plots were used to visualize any discrepancies.

3. Results

3.1 Baseline 3D U-Net

We experimented with combinations of three different input patch sizes (323, 483, 643) and 5 

output patch sizes (323, 483, 643, 963, 1283, with input > output) for the baseline 3D U-Net. 

Figure 5 demonstrates the qualitative effects of different input-output size pairs (shown on 

axial slices) while Table 1 compares the quantitative metrics (L1, PSNR, NMSE) used to 

evaluate the quality of the resulting QSM maps. When the input patch size was the same as 

the output patch size, the inversion error increased towards the edge of the patch, resulting in 

visible discontinuities in a grid-like pattern in the reconstructed QSM map. The higher L1 

error, lower PSNR and higher NMSE supports this phenomenon quantitatively. When we 

increased the input patch size and applied center cropping at the end of the U-Net as shown 

in Figure 3, the patch edge artifact decreased and the metrics improved. Among the different 

combinations of patch sizes, the input patch size of 643 and the output patch size of 483 

(64→48) provided the best balance between sufficient accuracy of the U-Net dipole 

inversion and low computation burden/efficiency. Therefore, for the QSMGAN evaluation 

we used the 64→48 3D U-Net as a basic building block.

3.2 Effectiveness of QSMGAN

Using the 64→48 3D U-Net as the generator, the metric-wise benefit of using QSMGAN 

over the 3D U-Net is shown by the quantitative metrics listed in Table 2. (p=0.03 for all 

metrics of 3D U-Net v.s. QSMGAN) Column 4 and 5 in Figure 6 and Figure 7 demonstrates 

the visual comparison of reconstructed QSM of 3D U-Net and QSMGAN, where the 

adversarial training further improved the quality of the reconstructed QSM map by reducing 

both residual blurring and the remaining edge discontinuity artifacts from the relatively 

smaller input patch size, providing a more accurate and detailed mapping of susceptibility 

compared to the 3D U-Net baseline.

3.3 Comparison with non-learning-based methods

Compared to 3 common ‘non-learning-based’ QSM dipole inversion algorithms (TKD, 

MEDI and iLSQR), our QSMGAN approach had 42-59% reductions in NMSE and L1 error 

in the test datasets while increasing PSNR by 4-13% as shown in Table 2. Figure 6 and 

Figure 7 show examples of QSM slices from the two test subjects generated from our 

QSMGAN compared to non-learning-based algorithms. Although TKD had the lowest 

computational complexity, it also resulted in the most streaking artifacts. Despite its smooth 

appearance, MEDI was the least uniform with relatively high L1 error and inaccurate 

contrast of some fine structures such as vessels. It also required the longest computation 

time of all of the methods (about 2 hours on a regular desktop workstation). Although 

iLSQR QSM had lower L1 error than TKD and MEDI, it was visually noisier than all other 

methods. QSMGAN not only resulted in the best L1 error, PSNR, NMSE, HFEN, and 

Chen et al. Page 8

Neuroimage. Author manuscript; available in PMC 2021 April 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



SSIM, but achieved the most similar QSM map to COSMOS in only 2 seconds of 

reconstruction time per scan, the same order of time complexity as with the TKD method.

3.4 Application of networks in patients with radiation-induced CMBs

To evaluate the generalization ability of our networks, we tested our network in a cohort of 

12 patients with brain tumors treated with prior radiation therapy. The median susceptibility 

values for each CMB and total number of CMBs per patient based on iLSQR, 3D U-Net and 

QSMGAN were not significantly different among methods (Kruskal-Wallis test p=0.149 and 

p=0.936, respectively; see Figure 8). This comparison demonstrates that the proposed 

QSMGAN could be well generalized to previously unseen pathology with extreme 

suscepbitility values. Figure 9 demonstrates the robustness of QSMGAN to artifacts from 

imperfect preprocessing steps such as skull stripping and background phase removal as well 

as its ability to generate more uniform susceptibility maps. Patient 8 (row 1) suffered from 

poor brain extraction and background field removal that resulted in severe susceptibility 

artifacts from the air-tissue interface in the sinuses in the iLSQR QSM image. Although 3D 

U-Net partially alleviated this problem, QSMGAN provided the most uniform and highest 

quality susceptibility map with the least amount of residual artifacts. Patient 12 (row 2) had 

residual background phase that obscured the detection of a microbleed (denoted by the red 

arrow) that was correctly visualized on both the deep learning-based QSM maps.

4. Discussion

Although in theory the phase-susceptibility relationship in QSM is global, meaning the 

tissue phase is determined by the susceptibility of all locations in the imaging volume, we 

still adopted a patch-based deep learning approach similar to Yoon et al., 2018 for several 

reasons. Since the network is 3D, the patch-based method can significantly reduce the 

computation complexity and memory requirement compared to whole-volume based 

approaches, especially when conducting high-resolution QSM. For example, if we needed to 

generate a full QSM volume with a 256x256x150 matrix size using the entire volume as an 

input to the 3D U-Net architecture, even the most advanced GPU with 32GB of graphics 

memory would not be able to fit a single training sample. The patch-based method also 

converts one single scan into hundreds of input images, even before data augmentation. 

Since COSMOS requires a relatively long scan time and is cumbersome to conduct, training 

a more generalizable deep convolutional network is beneficial when only a limited amount 

of data is available. Because the phase is mostly determined by nearby susceptibilities due to 

the properties of the susceptibility-phase convolutional kernel, the patch-based approach 

yields a good approximation of the dipole inversion.

As Table 1 demonstrates, increasing the input patch size and applying center cropping at the 

end of the 3D U-Net significantly improved the quality of the reconstructed QSM maps. 

This can be intuitively described by Figure 3, where when the input patch size equaled the 

output patch size, an output voxel near the center of the patch (Figure 3a) could receive 

information from the entire patch. However, a voxel near the edge of the output patch 

(Figure 3b) would only receive information from the orange region and a large portion of the 

phase information from the gray region would be missing, reducing the ability of the 
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network to accurately solve for the susceptibility. When we increased the input patch size 

(Figure 3c) and cropped the output patch such that only the center of the patch was 

considered a valid QSM prediction, voxels near the edge of the patch regained phase input 

information thereby increasing the accuracy of the quantified susceptibility values.

Another observation from Table 1 is that the medium output patch size (483) achieved the 

best QSM reconstruction performance. The smaller patch size (323) performed worse 

because the output voxels received less information, introducing more error to the patch 

approximation of global convolution. Unexpectedly, the larger patch size (643) didn’t 

provide any extra benefit to the dipole inversion. This might be due to the fact that it 

introduced more variables into the computation process and increased the difficulty of 

training a good network for QSM reconstruction. In addition, for each output patch size, 

using excessively large input patches (such as 96-->32) did not further reduce the error but 

slightly downgraded the QSM quality. This might be due to increased information far from 

the output patch interfering with the dipole inversion.

A disadvantage of using an excessively large input patch size is the dramatically increased 

computational complexity and GPU memory requirement. Note that the network is three-

dimensional and the computational complexity and memory requirement of training the 

networks roughly increases with the input patch size by O(n3). The center cropping we 

applied to ensure a large enough receptive field, only exacerbated this problem, greatly 

reducing the efficiency of the prediction process. For example, if we increased the input 

patch size from 323 to 643, the training/prediction time and memory became 8x as long and 

only 1/8 of the computed patches were utilizied. Based on the observation that excessively 

large input patch sizes greatly increased the computational burden without improving the 

quality of the resulting QSM maps, we selected the 64→48 3D U-Net as the base network to 

integrate with the GAN.

The rationale for the GAN training, which included adding a discriminator or “critic”, was 

to guide the generator (or the 3D U-Net) to further refine its result so that it could not be 

distinguished from a real COSMOS QSM patch. Although it took a long time (48 hours) to 

train the QSMGAN, once the training was finished the discriminator was no longer needed. 

As a result, reconstruction or prediction of the QSM map for a new scan/subject from tissue 

phase only required one forward pass through the 3D U-Net for each input patch, thereby 

resulting in a computational complexity that is identical to the 3D U-Net baseline.

Although the QSMGAN was trained only on healthy volunteer data, when applying the 

network to patient data, it successfully recovered the previously unseen pathology of 

cerebral microbleeds and assigned values similar to those obtained from iLSQR. This 

demonstrated that the networks avoided overfitting and managed to learn the underlying 

dipole convolution relationship between tissue phase and susceptibility sources. We also 

observed unforeseen robustness to imperfect preprocessing from QSMGAN. This was likely 

due to the fact that our QSMGAN was trained on carefully processed training data with little 

artifacts, so the generator would favor outputs with similar image quality and therefore 

tended to remove any abnormal suscepbility sources and remaining background phase 

components. Although our QSMGAN was trained on only brain images because QSM has 
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been most widely utilized in the brain, the network can easily be trained using data from 

other organs of interest.

5. Conclusions

In this study, we implemented a 3D U-Net deep convolutional neural network approach to 

improve the dipole inversion problem in QSM reconstruction. To better approximate the 

global convolution property in the phase-susceptibility relationship through patch-based 

neural networks, we enlarged the input patch size and introduced center cropping to ensure 

an increased input receptive field for all neural network outputs. This cropping technique 

provided significantly lower edge discontinuity artifacts and higher accuracy. Including a 

generative adversarial network based on the WGAN-GP technique further improved the 

stability of training process, the image quality, and the accuracy of the susceptibility 

quantification. Compared to the other traditional non-learning dipole inversion algorithms 

such as TKD, MEDI and iLSQR, our proposed method could efficiently generate more 

accurate, COSMOS-like QSM maps from single-orientation, background-field-removed, 

tissue phase images. When tested on patients with radiation-induced CMBs, QSMGAN 

improved the robustness of the QSM reconstruction without sacrificing the sensitivity of 

CMB detection. Future directions include investigating the network’s ability to generalize to 

other scan parameters (such as TE, TR, and image resolution) and evaluating the 

performance of QSMGAN in patients with different pathologies and in other organs to 

ultimately improve patient care.
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Figure 1. 
QSMGAN network architecture. a) The generator part of the GAN, which adopts a 3D U-

Net with center cropping as a building block. b) The discriminator (“critic” in WGAN-GP) 

is constructed using 3D convolution with stride=2 to reduce image size. c) The overall GAN 

structure combines the generator and discriminator, where G is trained to generate more 

realistic and accurate QSM to fool D and D is trained to distinguish real and generated (fake) 

QSM.
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Figure 2. 
QSM data processing pipeline employed in this study. This figure shows processing of one 

scan orientation. Data from the other two orientations were processed similarly and 

introduced in the gray boxes in this figure to reconstruct the COSMOS-QSM.
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Figure 3. 
Demonstration of the relationship between receptive field and input/output patch size. a) 

Input patch size = output patch size, red dot represents voxels near the patch center. b) Input 

patch size = output patch size, voxels near the patch edge receive only information from the 

orange region. c) Input patch size > output patch size (with center cropping), voxels near the 

edge receive more information than in b).
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Figure 4. 
An axial slice of the original QSM (top left) and its histogram (top right) compared to the 

tanh transformed QSM (bottom left) and its histogram (bottom right). We can see that the 

tanh transform distributed the susceptibility values more evenly between −1.0 and +1.0, 

resulting in better contrast and value ranges for the network training.
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Figure 5. 
Comparison of reconstructed QSM using 3D U-Net with different input/output patch sizes 

(input→ output). The green box highlights the ground truth COSMOS QSM. Red arrows 

highlight the edge incontituity artifacts.
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Figure 6. 
Comparison of QSM of test subject 1 reconstructed using non-learning-based dipole 

inversion algorithms (TKD, MEDI and iLSQR) and 3D UNet and QSMGAN. Row 1,2: 

sagittal view and error map. Row 3,4: coronal view and error map. Row 5,6: axial view and 

error map. Numbers at bottom of each slice show the L1 error relative to COSMOS-QSM of 

the slice.
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Figure 7. 
Comparison of QSM of test subject 2 reconstructed using non-learning-based dipole 

inversion algorithms (TKD, MEDI and iLSQR) and 3D UNet and QSMGAN. Row 1,2: 

sagittal view and error map. Row 3,4: coronal view and error map. Row 5,6: axial view and 

error map. Numbers at bottom of each slice show the L1 error relative to COSMOS-QSM of 

the slice.
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Figure 8. 
Comparison of median CMB susceptibilities measured from different QSM algorithms. a) 

box plot of median CMB susceptibilities. B) Bland-Altman plots of algorithm pairs.
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Figure 9. 
QSM of two patients with brain tumors who had developed cerebral microbleeds due to 

prior radiation therapy. Subject 8 suffered from poor brain extraction and background field 

removal that resulted in severe susceptibility artifacts in the iLSQR QSM image. Both 3D U-

Net and QSMGAN sucessfully removed the artifact but QSMGAN generated higher quality 

maps with less edge discontinuity artifacts. as highlighted by the red arrow. Subject 12 had 

residual background phase that obscured the detection of a microbleed (denoted by the red 

arrow) that was correctly visualized on both the deep learning-based QSM maps. The input-

output size was 64-->48 for both subjects.
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Table 1.

Test set performance of U-Net baseline with different input and output patch sizes.

3D U-Net Patch Size (input→output) L1 error (1e-3) PSNR NMSE

32→32 1.490±0.184 42.25±1.01 0.302±0.056

48→32 1.403±0.204 43.07±1.22 0.252±0.063

64→32 1.316±0.230 43.39±1.37 0.237±0.072

96→32 1.319±0.216 43.38±1.32 0.237±0.068

48→48 1.424±0.195 42.58±1.13 0.281±0.061

64→48 1.309±0.210 43.53±1.31 0.229±0.065

96→48 1.310±0.212 43.37±1.28 0.237±0.067

128→48 1.311±0.215 43.40±1.31 0.236±0.068

64→64 1.389±0.211 42.87±1.21 0.264±0.063

96→64 1.316±0.207 43.46±1.28 0.233±0.066

128→64 1.322±0.211 43.32±1.27 0.240±0.067
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Table 2.

Test set performance of U-Net baseline, QSMGAN and non-learning-based algorithms.

Methods L1 error (1e-3) PSNR NMSE HFEN SSIM

TKD 2.826±0.178 38.82±1.69 0.496±0.076 99.84±4.86 0.806±0.023

MEDI 2.909±0.194 41.24±1.71 0.539±0.059 100.99±5.02 0.912±0.027

iLSQR 2.193±0.227 42.03±1.45 0.410±0.088 74.40±7.15 0.896±0.025

3D U-Net 64-->48 1.309±0.210 43.53±1.31 0.229±0.065 48.45±8.30 0.944±0.018

QSMGAN 64-->48 1.199±0.215 44.16±1.42 0.200±0.065 45.68±8.53 0.952±0.018
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Table 3.

Cerebral microbleed counts from iLSQR 3D U-Net and QSMGAN. No significant difference was observed 

between the two methods.

Subject iLSQR 3D U-Net QSMGAN

1 5 4 5

2 14 3 3

3 10 11 13

4 12 9 7

5 29 25 26

6 18 15 15

7 3 5 6

8 4 5 4

9 7 9 10

10 10 11 13

11 25 22 21

12 25 23 22

Total 158 142 145
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