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ABSTRACT
Context: Pectin is a plant heteropolysaccharide that is biocompatible and biodegradable, enabling it to
be an excellent reducing agent (green synthesis) for metallic nanoparticles (MNPs). Nevertheless, in the
biological industry, pectin has been left behind in synthesising MNPs, for no known reason.
Objective: To systematically review the biological activities of pectin synthesised MNPs (Pe-MNPs).
Methods: The databases Springer Link, Scopus, ScienceDirect, Google Scholar, PubMed, Mendeley, and
ResearchGate were systematically searched from the date of their inception until 10th February 2020.
Pectin, green synthesis, metallic nanoparticles, reducing agent and biological activities were among the
key terms searched. The data extraction was focussed on the biological activities of Pe-MNPs and
reported following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) rec-
ommendations for systematic reviews.
Results: A total of 15 studies outlined 7 biological activities of Pe-MNPs in the only three metals that have
been explored, namely silver (Ag), gold (Au) and cerium oxide (CeO2). The activities reported from the
in vitro and in vivo studies were antimicrobial (9 studies), anticancer (2 studies), drug carrier (3 studies),
non-toxic (4 studies), antioxidant (2 studies), wound healing (1 study) and anti-inflammation (1 study).
Conclusions: This systematic review demonstrates the current state of the art of Pe-MNPs biological
activities, suggesting that Ag and Au have potent antibacterial and anticancer/chemotherapeutic drug
carrier activity, respectively. Further in vitro, in vivo, and clinical research is crucial for a better understand-
ing of the pharmacological potential of pectin synthesised MNPs.
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Introduction

Green synthesis is described as the eco-friendly method of syn-
thesising nanoparticles using plant, plant compounds, or micro-
bial resources rather than harmful chemicals as a reducing agent
(Park 2014). Pectin extracted from the middle lamella and cell
walls of plants is soluble in water, making it a vital reducing
agent for the synthesis of nanoparticles (Voragen et al. 2009;
Daher & Braybrook 2015; Rana et al. 2019). Furthermore, due to
its availability, cost-effectiveness, non-toxic, biocompatible, and
biodegradable nature (Liu et al. 2003; Das et al. 2011; Meneguin
et al. 2014; Devendiran et al. 2016; Kumari et al. 2016), pectin is
often studied for various purposes.

The pectin schematic structure (Figure 1) consists of a homo-
galacturonan (HG) backbone, xylogalacturonan (XGA), rhamnoga-
lacturonan I (RG-I) and rhamnogalacturonan II (RG-II) regions.
The pectin foundation comprises of acetylated and methylated a
(1–4)-galacturonic acid units. The HG region is the most abun-
dant and stretches up to 100 GalA, comprising approximately
60% of the pectin. The XGA region differs from HG only by sub-
stituting O-3 with b-linked xylose (Mohnen 2008).

The RG-I region makes up approximately 20–35% of
pectin and is composed of arabinan and galactan side
chains, which contain hydroxyl groups (Mohnen 2008;
Hileuskaya et al. 2020). Due to the shift of the tautomeric equi-
librium (cyclo-oxo-tautomerism), the free hemiacetal hydroxyl

groups may be converted to free aldehyde groups in an alkaline
medium. The reducing properties of pectin macromolecules are
provided by these aldehyde groups (Hileuskaya et al. 2020).
Thus, RG-1 reduces metal salts to metal nanoparticles (Figure 2),
enabling pectin to reduce metallic nanoparticles (MNPs) and
form pectin metallic nanoparticles (Pe-MNPs). The RG-II region,
however, is the most complex and is made up of some of the
rarest moieties, such as 3-deoxy-D-lyxo-2-heptulosaric acid
(DHA), 3-deoxy-D-manno-2-octulosonic acid (Kdo), aceric acid,
fucose, and apiose (Tan et al. 2018). This region has contributed
to several studies, including mitogenic activity and immune com-
plexes clearance enhancing activity (Shin et al. 1997; Sakurai
et al. 1999).

MNPs are inorganic nanoparticles within the range of
1–100nm made of pure metals or their compounds (Bhattacharya
& Mukherjee 2008; Venkatesh et al. 2018; Pinon-Segundo et al.
2019). To date, several MNPs, including cerium oxide (CeO2)
(Patil et al. 2016), copper (Cu) (Venkatakrishnan et al. 2014), gold
(Au) (Nigoghossian et al. 2015; Ahmed et al. 2016), iron (Fe)
(Ngenefeme et al. 2013), palladium (Pd) (Khazaei et al. 2013;
Baran 2018), platinum (Pt) (Hikosaka et al. 2008), selenium (Se)
(Pornwilard et al. 2014), silver (Ag) (Kong et al. 2008; Al-
Muhanna et al. 2015; Nigoghossian et al. 2015), titanium oxide
(TiO2) (Dash et al. 2019) and zinc (Zn) (Pistone et al. 2017) have
been synthesised using pectin as reducing agent.
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Although all these metals have used pectin as their reducing
agent, the biological activities of only three metals, namely Ag,
Au, and CeO2, have been reported. This systematic review
focuses on the green synthesis of MNPs using pectin as a reduc-
ing agent and the biological activities of Pe-MNPs in its anti-
microbial, anticancer, drug carrier, non-toxic, antioxidant,
wound healing, and anti-inflammatory activities.

Methods

In this systematic review, all published data were searched and
collected from inception until 10 February 2020, using multiple
electronic databases according to the Preferred Reporting Items
for Systematic Reviews and Meta-Analyses (PRISMA) recom-
mendations for systematic reviews (Moher et al. 2009). The elec-
tronic search was conducted on Springer Link, Scopus,
ScienceDirect, Google Scholar, Mendeley, PubMed and
ResearchGate using the following keywords: Green synthesis,
Pectin, Metallic, Silver, Gold, Copper, Platinum, Titanium,
Selenium, Cerium, Palladium, Boron, Iron, Zinc, Capping,
Stabilising, Reducing, Nucleation and Nanoparticles. Additional
keywords were chosen for biological activities: antioxidant, anti-
inflammatory, anticancer, drug delivery, and wound healing. The
following inclusion criteria were used to obtain a more specific
search result: pectin as a reducing agent (green synthesis),

biological activities, articles accepted or published with availabil-
ity in electronic databases by 10 February 2020 and articles only
in English. The articles that focussed on encapsulation/entrap-
ment of pectin, extract of plant/fruit containing pectin as one of
the compounds, pectin as a stabilising and/or capping agent only
and studies not related to green synthesis or biological activities
were excluded. The information and data extraction were
focussed on the green synthesis of Pe-MNPs and biological activ-
ities. The specific applications featured reduction of pectin syn-
thesised MNPs, such as the particle size and types of biological
activities. After the search, two independent examiners screened
and reviewed the research titles and abstracts. The data collec-
tion, management, and analysis of all relevant evidence for Pe-
MNPs is presented in the flow diagram (Figure 3).

The synthesis method keywords were not included during the
search since articles about Pe-MNPs with biological activities
only were included in this review, excluding all other articles on
Pe-MNPs with other uses such as electrochemical sensors, elec-
trocatalysis, sorbents, soil management, magnetics, and
food packaging.

Results

Following the search of electronic databases, the yields were as
follows: Springer Link � 273 articles, Scopus � 197 articles,

Figure 1. A schematic representation of pectin; homogalacturonan (HG), xylogalacturonan (XGA), rhamnogalacturonan I (RG-I) and rhamnogalacturonan II (RG-
II) regions.

Figure 2. Mechanism of pectin synthesising metallic nanoparticles.

PHARMACEUTICAL BIOLOGY 493



ScienceDirect � 93 articles, Google Scholar � 88 articles,
Mendeley � 87 articles, PubMed � 39 articles, and ResearchGate
� 23 articles. All the articles were imported into Mendeley, and
the results from the databases were merged, obtaining 800
articles. Using a duplicate removal tool (Mendeley), 267 dupli-
cates were removed. Screening of the abstracts of the 533
remaining articles identified 398 unrelated articles. Of the
remaining 135 articles, 15 studies met the inclusion criteria, and
120 studies were excluded.

Therefore, 15 studies were included in the qualitative synthe-
sis. Eight studies focussed on pectin synthesised silver nanopar-
ticles (Pe-AgNPs), six studies on pectin synthesised gold
nanoparticles (Pe-AuNPs), and one study focussed on pectin
synthesised cerium oxide nanoparticles (Pe-CeO2NPs) that
reported biological activities. Manuscripts that evaluated more
than one biological activity were divided and assigned to the
relevant designated category.

Antimicrobial activities

Antimicrobial activities of Pe-MNPs are the most researched bio-
logical activity to date (Table 1). Ag is the most common metal
used among Pe-MNPs to study antibacterial activity, with only
one activity reported from another metal (CeO2). The first study

in this field, which was conducted by Balachandran in 2013,
reported that the supplementation of Pe-AgNPs had damaged
the cellular membrane of Escherichia coli cells with a minimum
inhibitory concentration (MIC) of 30–40 mg in nutrient agar and
60 mg in nutrient broth, respectively.

In 2015, Rao et al. studied the activity of Pe-AgNPs on
Gram-positive bacteria (Bacillus subtilis) in contrast to Gram-
negative bacteria (E. coli). Their results confirmed that the
Gram-positive inhibition zone (15.3 ± 0.5mm) was larger than
Gram-negative (10.3 ± 0.7mm) bacteria and concluded that Pe-
AgNPs film showed effective antimicrobial activity on both
strains. Su et al. (2019) reported the MIC of Gram-positive and
Gram-negative bacteria to be in a range of 80–160mg/mL, with
a slightly larger inhibition zone (10 and 11.6mm) in both sizes
(2.9 and 11.94 nm) of Pe-AgNPs tested in the Gram-positive bac-
teria. However, several studies reported that Pe-AgNPs had a
lower MIC in Gram-negative compared to Gram-positive bac-
teria (Patil et al. 2016; Pallavicini et al. 2017; Zhang et al. 2017;
Hileuskaya et al. 2020).

Hileuskaya et al. (2020) reported an interesting discovery,
where low methoxy (LM) and high methoxy (HM) pectin syn-
thesised AgNPs had a different activity. Among the 3 strains of
bacteria tested, HM_Pe-AgNPs showed elevated activity against
B. pumilis, B. subtilis, and E. coli, while LM_PeAgNPs only had
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an elevated activity against B. subtilis. However, this study did
not state an exact reason and concluded significant Pe-AgNPs
activity in Gram-negative bacteria (E. coli) with a MIC of
0.18–0.39mM compared to Gram-positive bacteria (Bacillus sp.)
with a MIC of 0.39–1.55mM. The difference in activity between
Pe-AgNPs in Gram-positive and Gram-negative bacteria is due
to the structural difference in their cell wall (Figure 4).

The cell wall of the Gram-negative bacteria consists of an
outer membrane with lipopolysaccharide (LPS) and a thin pep-
tidoglycan (PG) layer, whereas the Gram-positive bacteria have a
very thick PG layer (Slavin et al. 2017). In the Gram-negative
bacteria, AgNPs are absorbed by the LPS and cause direct dam-
age to the PG layer, leading to increased membrane permeability,
thus killing the bacteria via the diffusion of released Ag ions into
the cytosol. However, in Gram-positive bacteria, the AgNPs dir-
ectly penetrate through the thick PG layer to cause an Ag ion
leakage into the cytosol (Xu at al. 2019), enhancing the bacteri-
cidal activity.

Li et al. (2018) reported the antibacterial activity for Ag nano-
fibers synthesised using pectin. The nanofiber size was 450 nm
and used for the sustained release of the drug. The composite
nanofibers could inhibit E. coli for 7 days and release Ag for
4weeks, showing tremendous potential as a long-term antibacter-
ial drug.

Following these substantial antibacterial results, another
microbial target reported is antifungal activity. In 2019, Su et al.
demonstrated the inhibitory zones of Pe-AgNPs (19.3 and
19.4mm) on an Aspergillus japonicus strain, suggesting that the
potent antifungal activity could be due to the inhibition of coni-
dial germination. However, the molecular mechanism of the
antifungal activity was not reported.

Anticancer effects

Several studies reported Pe-MNPs anticancer effects via the
unloading of Au (Figure 5) or Ag from the Pe-MNPs (Table 2).
Suganya et al. (2016) reported that Pe-AuNPs induced
DNA damage in two breast cancer cell lines (MCF-7 and

MDA-MB-231) via the comet assay. The DNA lesions drastically
increased the comet tails length at the IC50 concentration (MCF-
7 at 8mg/mL and MDA-MB-231 at 2mg/mL), suggesting cell
death occurred from the fragmentation of DNA.

Furthermore, the exposure of phosphatidylserine (PS) residues
on the outer membrane were measured as an indicator of apop-
tosis. Suganya et al. (2016) employed a staining method,
Annexin V-FITC, to stain PS, indicating apoptosis and propi-
dium iodide (PI), a nuclear stain indicating necrosis. Pe-AuNPs
stained double-positive green with Annexin V-FITC and red
with PI, indicating apoptosis was induced in viable MCF-7 and
MDA-MB-231 cells. This study concluded that Pe-AuNPs medi-
ated apoptosis induction of MCF-7 and MDA-MB-231 cells were
via increasing the sub-G1 population, leading to the DNA dam-
age of cells.

Ghorab et al. (2016) studied the activity of natural polymers,
namely pectin, chitosan, and alginate, with different c irradiation
doses to synthesise AgNPs and tested it on Ehrlich ascites carcin-
oma (EAC) cells and Human colon adenocarcinoma (Caco) cells.
Pe-AgNPs reported the best growth of NPs with the highest sta-
bility among the three polymers tested. Pe-AgNPs at 5 kGy were
biocompatible and induced a concentration-dependent inhibition
of EAC and Caco cells. Ghorab et al. (2016) suggested that Pe-
AgNPs may have induced changes in cellular functions, which
led to a high hydrophobicity in the bovine haemoglobin that
caused a transition of alpha helixes to beta sheets and led to the
partial unfolding and aggregation of the protein. This study con-
cluded that Pe-AgNPs exhibited anticancer activities.

Drug carrier systems

Recently Pe-AuNPs have gained attention as a drug carrier sys-
tem to promote the delivery of doxorubicin (DOX) (chemothera-
peutic drug) and zidovudine (AZT) (antiretroviral drug). In
2016, Devendiran et al. reported Pe-AuNPs loaded with DOX
enhanced the in vitro cytotoxicity of colon cancer (HT-29). The
cationic DOX loaded on the anionic Pe-AuNPs exhibited excel-
lent stability (-21.3mV) at different pH levels and electrolytic

Figure 4. Possible mechanism of action of pectin synthesised silver nanoparticles on Gram-positive and Gram-negative bacteria. �ROS represents reactive oxy-
gen species.
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conditions with a pH-dependent sustained release of DOX. Folic
acid (FA) was conjugated to the DOX-loaded Pe-AuNPs to pro-
vide a cell-specific delivery as HT-29 cells are folate receptor-
positive. This study reported that the proportion of cells from
36.21% in Pe-AuNPs increased to 78.24% in the G2/M phase
after treatment with FA_Pe-AuNPsþDOX, indicating G2/M
phase arrest, making it a promising drug carrier targeting
colon cancer.

Borker and Pokharkar (2018) reported that Pe-AuNPs loaded
with DOX exhibited excellent stability (-21.64mV) under varying
pH and electrolyte conditions, similar to the study mentioned
above (Devendiran et al. 2016). However, this study reported the
effects of Pe-AuNPs loaded with DOX on human liver cancer

cells (HepG2 cells), overexpressing the asialoglycoprotein recep-
tor (ASGPR). A lack of cytotoxicity was observed in HepG2 cells
and HeLa cells, where > 85% of viable cells were reported after
48 h of receiving Pe-AuNPs. The non-cytotoxic trait of Pe-
AuNPs is attributed to the biocompatible nature of pectin, the
stability of Pe-AuNPs in the intracellular environment and a lack
of anionic AuNP interaction with the negatively charged cell
membrane (Goodman et al. 2004).

Pe-AuNPs loaded with DOX showed concentration-dependent
cytotoxicity. The viability of HepG2 and HeLa cells decreased
with increased concentration of DOX (0.01–5mg/mL). However,
the results showed a significant difference between the DOX and
Pe-AuNPsþDOX in HepG2 cells and not in HeLa cells because

Figure 5. Possible mechanism of action of pectin synthesised gold nanoparticles on cancer cells. �ROS represents reactive oxygen species.

Table 2. Anticancer activities of pectin synthesised metallic nanoparticles.

Metal Pectin source

Degree of
esterification
(aLM or bHM)

Role of pectin in
NP synthesis

Diameter
(nm) Shape

In vitro
model (cells) Function IC50 Concentration Reference

Gold Classic cu701
(Herbstreith &
Fox KG)

(LM) Reducing, stabilising
and
capping agent

14 Spherical HepG2, Hela Drug carrier In HepG2;
cDOX alone-
4.11mg/mL
Pe-AuNPsþDOX �
0.74mg/mL
In Hela;
DOX alone-
3.88mg/mL
Pe-AuNPsþDOX �
3.27mg/mL

Borker &
Pokharkar
2018

Gold Commercial
(Sigma Aldrich)

eNA Reducing, stabilising
and
capping agent

�34 Spherical HT-29 Drug carrier DOX alone � 483 nM
Pe-AuNPsþDOX �
351 nM
dFA-Pe-AuNPsþDOX
� 240 nM

Devendiran
et al. 2016

Gold Musa
paradisiaca
(Banana)

(HM) Reducing and
stabilising agent

8 Spherical MCF-7, MDA-
MB-231

Drug MCF-7� 8 mg/mL
MDA-MB-231� 2
mg/mL

Suganya
et al. 2016

Silver Citrus peel
(Sigma Aldrich)

eNA Reducing, stabilising
and
capping agent

26 Spherical EAC, Caco Drug EAC � 35 mg/mL
ACO� 39.5 mg/mL

Ghorab
et al. 2016

aLM refers to Low Methoxyl Pectin, bHM refers to High Methoxyl Pectin, cDOX refers to Doxorubicin, dFA refers to Folic acid and eNA refers to Not Available.
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the ASGPR receptor is expressed in HepG2 cells. This study sug-
gested that Pe-AuNPs could be a vital anticancer drug carrier to
treat hepatocellular carcinoma.

Another activity reported is targeted antiretroviral drug car-
rier of Pe-AuNPs via the encapsulation of AZT. The Pe-AuNPs
were taken up by the macrophages (RAW 264.7 cells), suggesting
that this method could reduce the toxicity of AZT being exposed
to normal tissues (Borker et al. 2017). Interestingly, there was a
slight increase in the survival rate (�20%) of cells receiving
AZT-Pe-AuNPs compared to AZT solution at a concentration of
1.25mM. This result demonstrated that the cytotoxicity of the
drug-loaded in Au nanoparticles was reduced due to the non-
cytotoxic nature of Pe-AuNPs, which could be attributed to the
points mentioned above (Goodman et al. 2004).

To better evaluate the in vitro results, an in vivo study using
male Wistar rats was performed. The results for Pe-AuNPs and
AZT-Pe-AuNPs were similar after 24 h, with the highest amount
of Au present in the liver (�70%), followed by spleen (�3%),
lymph nodes (�3%), blood (�0.5%), lungs (�0.5%) and kidney
(�0.4%). The preferential localisation of Pe-AuNPs was the liver
due to the presence of galactose residues in pectin. The galactose
residues bound specifically to the ASGPR receptor on the surface
of hepatocytes and led to an increased uptake via the receptor-
mediated endocytosis (Yik et al. 2002). The increased AuNP
uptake in the lymph nodes and spleen was due to the preferred
uptake of Pe-AuNPs by the MGL1 receptor expressed in macro-
phages and dendritic cells (Kawasaki et al. 1986). This observa-
tion, coupled with the in vitro cellular uptake results, led to the
conclusion that the Pe-AuNPs were taken up by macrophages.
Thus, Pe-AuNPs can prove useful for targeting viral reser-
voir sites.

Toxicity studies

Patil et al. (2016) studied the cytotoxicity of Pe-CeO2NPs via an
erythrocyte haemolysis assay (Table 3). The results suggested
that Pe-CeO2NPs are biocompatible in nature. However, the
haemolysis increased (0.55–8.31%) with increasing concentra-
tions (0.05–8.00mg/mL) of Pe-CeO2NPs. Since the permissible
limit of haemolysis set for biocompatibility assessments of mater-
ial/biomaterial is 5% (Singhal and Ray 2002), this study reported
a� 4mg/mL concentration of Pe-CeO2NPs (4.55% haemolysis),

exhibited minimal cytotoxicity and is considered safe for
human beings.

Devendiran et al. (2016) measured the toxicity of Pe-AuNPs
through a Zebrafish toxicity study. Zebrafish embryos were
employed to study the toxicity effects Pe-AuNPs, to which no
malformations in the embryos were observed, concluding an
absence of toxic effects upon hatching of the Zebrafish. A 100%
survival rate of Zebrafish was reported at all Pe-AuNPs
(200–1000 ng/mL) concentrations tested. This study suggested
that Pe-AuNPs are highly suitable for biomedical and drug deliv-
ery applications.

In 2017, Suganya et al. conducted a study that explored the
acute and sub-acute toxicity of Pe-AuNPs in Sprague-Dawley
rats. The acute toxicity study reported no mortality, organ dam-
age or abnormalities in the animal necropsies, concluding that
Pe-AuNPs would be orally safe at a single dosage of 5 and
10mg/kg. The subacute toxicity results indicated no abnormal
changes or significant adverse effects on the animal after a con-
tinuous dose administration for 4weeks. The in vivo acute and
sub-acute toxicity studies suggested that Pe-AuNPs are safe at
the sub-acute level with no significant toxicity (Suganya
et al. 2017).

Pallavicini et al. (2017) studied the cytotoxic activity of Pe-
AgNPs (0.001M Ag in 1.0% pectin) in fibroblast cells (NHDF
cells). This study compared the cytotoxicity of NHDF cells
between Pe-AgNPs and pure pectin (1% aqueous pectin) against
the medium that is not supplemented with foetal bovine serum.
The results reported at a dilution of 1:20, Pe-AgNPs had a viabil-
ity percentage of 120–140%, while pure pectin had a viability
percentage of 105–110%, which was comparable to the medium
supplemented with bovine serum. The results concluded that Pe-
AgNPs are not cytotoxic and enhances the viability of
NHDF cells.

Antioxidant effects

Antioxidant activities of Pe-CeO2NPs and Pe-AgNPs using 2,2-
diphenyl-1-picrylhydrazyl (DPPH) were reported in two separate
studies (Ghorab et al. 2016; Patil et al. 2016). The DPPH radical
scavenging capacity of Pe-CeO2NPs (4.0mg/mL) was up to 73%
in 60min. The antioxidant activity increased with the increase in
Pe-CeO2NPs concentration. The IC50 value was reported at a
concentration of 1.83mg/mL. This study suggested that CeO2

Table 3. Other biological properties of pectin synthesised metallic nanoparticles.

Metal/
Metal oxide Pectin source

Degree of
esterification
(aLM or bHM)

Role of pectin in
NP synthesis Diameter (nm) Shape Biological activity Sample Reference

Cerium oxide Indian red pomelo
fruit peels

79.04% (HM) Reducing and
stabilising agent

2–40 Spherical Antioxidant,
non-cytotoxic

Erythrocyte Patil et al. 2016

Silver Citrus peel
(Sigma Aldrich)

cNA Reducing, stabilising
and capping agent

26 Spherical Antioxidant EAC cells Ghorab
et al. 2016

Gold Musa
paradisiaca (Banana)

(HM) Reducing and
stabilising agent

8 Spherical Toxicity study Sprague–
Dawley rats

Suganya
et al. 2017

Gold Commercial
(Sigma Aldrich)

cNA Reducing, stabilising
and capping agent

�34 Spherical Toxicity study Zebrafish
embryo

Devendiran
et al. 2016

Gold Orange peel cNA Reducing and
stabilising agent

7–13 Spherical Anti-inflammatory Vero cells Reena
et al. 2017

Gold Classic cu701
(Herbstreith &
Fox KG)

32–38% (LM) Reducing and
stabilising agent

13 Spherical Antiretroviral
drug carrier

RAW 264.7 cells
Male
Wistar rats

Borker
et al. 2017

Silver Citrus peel
(Sigma Aldrich)

6–7% (LM) Reducing agent �8 Spherical Non-cytotoxic,
wound healing

NHDF cells Pallavicini
et al. 2017

aLM refers to Low Methoxyl Pectin, bHM refers to High Methoxyl Pectin and cNA refers to Not Available.
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possesses a fluorite crystalline structure responsible for the redox
reaction on the surface of the NPs, promoting antioxidant activ-
ity (Korsvik et al. 2007). The Pe-CeO2NPs can regenerate anti-
oxidant activity via having both catalase and superoxide
dismutase mimetic activity (Soren et al. 2015).

The Pe-AgNPs in Ghorab et al. (2016) study used c irradi-
ation at different doses to synthesise the nanoparticles. The find-
ings suggested that the antioxidant activity of Pe-AgNPs
decreased with an increase in c irradiation. At a radiation dose
of 5 kGy, which was the dose used in this study, the Pe-AgNPs
DPPH radical scavenging capacity was 60.67%, compared to the
citrus pectin alone, which was 50.61%. The IC50 of Pe-AgNPs
was reported at 10 kGy c irradiation. Thus, this study indicated
that the marginal increase in antioxidant activity of the synthes-
ised Pe-AgNPs was due to the stabiliser and reducer itself, which
is pectin, and not the AgNPs.

Wound healing effect

Since Pe-AgNPs were demonstrated to be non-cytotoxic
(120–140% viability) on NHDF cells, Pallavicini et al. (2017)
went on to test the proliferative and wound healing properties
via scratch-wound assay. The results were impressive because the
proliferation rate of NHDF cells was 2-fold higher in complete
medium (medium with serum) at 24 and 48 h compared to the
Pe-AgNPs group, but at 72 h, both groups managed to close the
gap in the scratch-wound assay. The findings could suggest that
Pe-AgNPs exhibited a time response activity. Pe-AgNPs pro-
moted cytokine regulation, which alleviated the healing of fibro-
blast colonies. This study suggested that the weakly interacting
oxygen molecules with the Ag surface increased the NHDF cells
viability. Therefore, concluding that Pe-AgNPs can be used as a
pre-treatment to prevent bacterial activity and promote implant
surgery recovery.

Anti-inflammatory effect

Pectin and AuNPs exhibited anti-inflammatory effects in previ-
ous studies (Ovodova et al. 2009; Popov et al. 2005; Ghanizadeh
2012). The anti-inflammatory activity of pectin is reported to be
mainly contributed by the galacturonan backbone (Markov et al.
2011), while the AuNPs is via the inhibition of inflammatory
cytokines (Chen et al. 2013). Reena et al. (2017) studied the anti-
inflammatory effects of Pe-AuNPs in contrast to Pe-AuNPs-
PLA-PEG-PLA nanoconjugates via membrane stabilisation and
protein denaturation in African green monkey’s kidney cell line
(Vero cells). The results at 200 mg/mL Pe-AuNPs reported a pro-
tein denaturation inhibitory activity of 58.2%, while the Pe-
AuNPs-PLA-PEG-PLA reported inhibition of 63.1%. Similarly,
the membrane stabilisation activity at 200 mg/mL reported being
60.1% in Pe-AuNPs and 64.1% in Pe-AuNPs-PLA-PEG-PLA.
Although no significant difference between the two groups could
be observed, the study suggested that the conjugation of PLA-
PEG-PLA enhanced the anti-inflammatory activity of Pe-AuNPs.

Discussion

This systematic review presents the key findings of the biological
activities explored using pectin as a reducing agent for the syn-
thesis of MNPs. It also provides an overview of the types of
MNPs explored and the shapes and sizes used. Detailed

documentation of information retrieved from articles enables
other researchers to verify the validity of the findings.

MNPs have been explored for decades in the biological field;
however, there is some evidence that MNPs contribute to liver
toxicity (Yao et al. 2019) with certain contributing factors,
namely MNPs size and the amount of metal stored in the liver
upon excretion (in vivo). The issue of the toxicity of MNPs has
been discussed but only to suggest that each metal has a different
level of toxicity, where Ag and Au were shown to be safer than
most other metals for biological studies (Bahadar et al. 2016).

Our findings identified that the majority of the biological
studies employing Pe-MNPs used Ag and Au nanoparticles. A
key factor is that the Food and Drug Administration or other
regulatory bodies have approved Ag (Sood and Chopra 2018)
and Au (Bobo et al. 2016) to be tested for use in biomedicine.
Ag has been used diversely as an antibacterial agent, causing oxi-
dative stress, DNA damage, protein denaturation and membrane
damage (Brandelli et al. 2017). However, Au has been proven to
have anticancer activities by inducing apoptosis, necrosis, and
autophagy (Sun et al. 2018). These reasons support the choice of
metals used by researchers to conduct studies using Pe-MNPs to
assess the antibacterial and anticancer activities, which consti-
tuted most of the biological activities studied.

Although these metals have often been studied, the synthesis
of MNPs with toxic or hazardous chemicals reduces the metal’s
biocompatibility, effectivity, and safety in living beings (Das et al.
2017). Biosynthesis (living materials) is a method used to rapidly
synthesise nanoparticles in an eco-friendly, non-toxic manner
with the ability to control the size of the nanoparticle (Ghozali
et al. 2015). Pectin is an ideal reducing agent soluble in water
and abundant in many plant sources (Rana et al. 2019).
Numerous bioactivities of this heteropolysaccharide have been
reported, including anti-inflammatory, hypoglycaemic, immunor-
egulatory, antioxidant, antibacterial, and antitumor activities
(Minzanova et al. 2018), which has led us to believe that the use
of Pe-MNPs is advantageous in the biological field.

The shape of all the Pe-MNPs studied was spherical with a
size of 40 nm and below except for one study reported on a
nanotube with a size of 450 nm. The Pe-MNPs exhibited an
excellent antibacterial and anticancer effect, which could be due
to their small (<100 nm) size and large surface-to-volume ratio
(Niazi and Gu 2009; Saeed et al. 2019).

The number of studies is not enough to obtain a definite idea
of the biological activities of Pe-MNPs and the mechanism of
actions. However, based on the results, it is evident that Pe-
MNPs exhibit antimicrobial, anticancer, drug carrier, antioxidant,
anti-inflammatory, wound healing, and non-cytotoxic properties,
which may be dependent on different factors such as metal type,
shape, and size. Nevertheless, more research should be conducted
on various biological activities to understand the pharmacological
potential of Pe-MNPs better.

Conclusions

Based on the results and discussion above, it can be concluded
that all the research conducted on Pe-AgNPs for the antibacterial
activities and Pe-AuNPs for the anticancer and drug carrier
activities exhibited positive results. Our systematic review con-
cludes that Pe-MNPs did show potent biological activities with
biocompatible and non-toxic nature, suggesting that Ag and Au
are suitable metals synthesised by pectin. However, due to the
limitation of studies conducted over the years, the biological
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activities of Pe-MNPs require further research in the in vitro,
in vivo, and clinical fields to confirm their efficacy.
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