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Abstract

α-Aryl-α-diazoamides were synthesized in two steps under mild conditions. This expeditious 

route employs Pd-catalyzed C–H arylation of N-succinimidyl 2-diazoacetate to obtain N-

succinimidyl 2-aryl-2-diazoacetates, followed by aminolysis. The ensuing diazo compounds can 

esterify carboxyl groups in aqueous solution, and the ester products are substrates for an esterase. 

The broad scope of the synthetic route enables the continued development of diazo compounds in 

chemical biology.

Graphical Abstract

Since the discovery of diazomethane by von Pechmann in 1894,1 diazo compounds have 

become important reagents in synthetic organic chemistry. Often, diazo groups are utilized 

via thermal, photochemical, or transition metal-mediated carbenoid formation for 

constructing new C–C, C–O, or C–N bonds.2 Recently, the utility of diazo compounds has 

been extended into the realm of chemical biology.3,4

Recent work has shown that α-aryl-α-diazoacetamides can esterify carboxyl groups in 

proteins (ribonuclease A,5 green fluorescent protein,6 and ribonuclease 17), enabling their 

delivery across cellular membranes (Figure S1).6,7 This strategy bears analogy to the use of 

ester prodrugs of small-molecule carboxylic acids.8 The critical attribute of efficacious diazo 

compounds is their basicity,9 which leads to abstraction of a proton from a carboxylic acid 

but not water and thereby to the esterification of carboxyl groups in aqueous solution.5,10 

Moreover, the ensuing esters are substrates for intracellular esterases.6,7 This 

*Corresponding Author: rtraines@mit.edu. 

The authors declare no competing financial interest.

HHS Public Access
Author manuscript
Org Lett. Author manuscript; available in PMC 2021 April 28.

Published in final edited form as:
Org Lett. 2021 April 16; 23(8): 3110–3114. doi:10.1021/acs.orglett.1c00793.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



bioreversibility11 provides a unique means to “cloak” protein carboxyl groups in a traceless 

manner (Figure 1A).

Although this application of α-aryl-α-diazoamides has demonstrated promise, synthetic 

accessibility (e.g., a lengthy preparation time and a lack of scalability) has been a major 

deterrent to progress. Previously, such diazo compounds have been accessed via 

deimidogenation of the corresponding azide (Figure S1).12 This approach has a high 

tolerance for functional groups, but access to the azide typically required lengthy low-

yielding synthetic routes.13 Additionally, the deimidogenation reaction was not compatible 

with 2-aryl-2-azidoacetamides containing bulky N-substituents.6

We sought a facile and general route to the modular α-aryl-α-diazoamide scaffold. Known 

synthetic routes can provide access to α-diazo carbonyl compounds. Most, however, focus 

on stable diazoketones, diazoesters, or aryl diazomethanes14 and employ explosive diazo-

transfer reagents, high temperature, or strong base3,15—conditions that can be incompatible 

with applications in chemical biology. Routes to α-aryl-α-diazoamides are underdeveloped 

and have limited substrate scope.14,16 Their preparation and isolation is challenging because 

of insolubility and functional group incompatibility.3,12,15,17

Here, we report on the mild, efficient, and versatile synthesis of α-aryl-α-amides in two 

steps from a commercially available18 and highly scalable precursor, N-succinimidyl 2-

diazoacetate (1).19 Desired α-aryl-α-diazoamides are accessed via palladium-catalyzed C–H 

arylation followed by aminolysis under mild and safe conditions (Figure 1B). This route 

encompasses multiple benefits for applications in chemical biology: (1) facility, (2) broad 

applicability because of available building blocks (i.e., aryl iodides and amines), and (3) 

compatibility with diverse functionality (e.g., azido and alkynyl groups) that can be useful 

for late-stage bioconjugation.

Metal-catalyzed C–H arylation in the presence of a diazo group has been reported only 

sporadically due to the undesired competitive formation of metal–carbene species (Figure 

1B).20 Wang and coworkers reported on the C–H functionalization of ethyl diazoacetate 

using Pd(PPh3)4.20b,21 The product, however, required the use of a strong base or metal 

catalyst to effect amidation.22 Mendoza and coworkers used another catalytic system, Pd(II) 

acetate and tris(2-furyl)phosphine (P(2-Fu)3), for the C–H arylation of N-phthalimidoyl 

diazoacetate to couple (hetero)aryl groups but encountered incompatibility with p-

substituted electron-rich aryl groups (e.g., 4-iodoanisole).20c Recently, Nelson and 

coworkers reported a suite of methods for the synthesis of α-diazoamides, including the C–

H arylation of α-diazo N,N-disubstituted acetamides.15 Similarly, this method failed in the 

coupling of electron-rich substrates (e.g., 4-iodoanisole) and provided no examples of C–H 

arylation with α-diazo N-monosubstituted acetamides.

To access a large number of target compounds under mild conditions, we investigated diazo 

compound 1 as a coupling partner for C–H arylation. Diazo compound 1 has been used to 

install a diazo group via acyl transfer reactions with amines, phenols, thiophenol, and 

peptides.19 We envisioned that the C–H arylation of diazo compound 1 could enable a rapid 
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entry into more complex succinimidyl diazo compounds (2), and ultimately into diverse α-

aryl-α-diazoamides (3).

We found that diazo compound 1 can undergo arylation with aryl iodides containing a wide 

variety of functional groups (Scheme 1). To do so, we prepared diazo compound 1 on a gram 

scale (Figure S2)19,23 and employed a Pd(OAc)2/P(2-Fu)3 catalytic system. Two additives, 

triethylamine (Et3N) and silver carbonate (Ag2CO3), prevent product decomposition and 

scavenge iodide, respectively.21,24 The reaction mixture was stirred in EtOAc at room 

temperature for 6 h. A range of aryl iodides, spanning electron-donating to -withdrawing p-

substituted phenyl iodides, bulky m-substituted phenyl iodides, and a heteroaryl iodide, were 

subjected to the same reaction conditions. Notably, the electron-rich (2a), electron-neutral 

(2c), and electron-poor (2d) phenyl iodides all afforded high isolated yields (≥77%). Of the 

sterically hindered phenyl iodides, methoxy (2f) and trifluoromethyl (2h) functional groups 

at the m-position resulted in >80% isolated yields, whereas the smaller hydroxy group (2g) 

gave an even higher yield of 90%. We note too that 3-iodophenol (2g) proved to be 

orthogonal to the N-succinimidyl diazoester moiety, whereas 1-(4-iodophenyl)piperazine did 

not (Figure S11). The cross-coupling condition was compatible with heteroaryl substrate (2i) 
and a variety of fluoro groups, including trifluoromethoxy (2b), which is an important 

functional group for medicinal chemistry because of its high metabolic stability and cell 

permeability.25 We effected C–H arylation in the presence of a TMS-protected alkynyl (2e) 

or azido (2j) group in 95% and 66% yields, respectively. Further, compound 2j highlights a 

convenient means of diversification. This compound was accessed by a condensation 

reaction with 4-iodophenyl acetic acid. Lastly, we note that previously reported routes failed 

in arylation with 4-iodoanisole,15 whereas our route provided 2a in 65% yield. Overall, we 

successfully demonstrated metal-catalyzed C–H arylation in the presence of N-succinimidyl 

and diazo groups, both of which will serve as important functionality for instilling diversity.

Next, we examined the aminolysis of representative N-succinimidyl α-aryl-α-diazoacetates 

2b–2f and 2h. We first tested the aminolysis of analogous N-phthalimidoyl diazoesters S5–

S7, which were synthesized by a method reported previously (Figure 2A).20c Those 

diazoesters yielded only a trace amount of diazoamide product based on liquid 

chromatography–mass spectrometry (LC–MS) analysis. Even after an extensive screening of 

reactant concentrations, solvents, and additives, aminolysis at N-phthalimidoyl diazoesters 

proved to be unattainable, possibly due to rapid decarboxylation (Table S1). An initial 

evaluation of aminolysis with 2c showed that the use of 1,8-diazabicycloundec-7-ene (DBU) 

led to degradation, whereas Et3N afforded the desired product (Figure 2A). In these 

reactions, a solution of the N-succinimidyl diazoester was treated with a secondary amine 

and Et3N in tetrahydrofuran (THF) at 0 °C. The reaction mixture was stirred for 1–3 h at 

room temperature to yield the corresponding α-diazoamide (3e–3l) in up to 76% yield. An 

excess of Et3N was used to prevent product decomposition. Most of the reactions showed 

quantitative conversion based on analysis with TLC (Figure S12). Due to their apparent 

degradation on silica, the isolated yields for diazoamide compounds 3a, 3c, 3e, 3i, and 3k 
were low. Still, a wide range of aryl diazoesters was converted into N,N-disubstituted 

diazoamides.
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Then, we demonstrated that the aminolysis of N-succinimidyl α-aryl-α-diazoacetates is also 

effective with various primary amines (Scheme 2). Those containing a pyridinyl (4a), 

arylhalo (4b), Boc-protected amino (4c), alkynyl (4d), or azido (4e) group displaced the N-

hydroxysuccinimide moiety of 2c to yield the desired N-monosubstituted diazoamides. 

Additional scope for this reaction includes 6 N-succinimidyl α-aryl-α-diazoacetates × 4 

primary amines = 24 α-aryl-α-diazoacetamides (see: Scheme S1).

Having accomplished the facile synthesis of α-aryl-α-diazoamides, we turned our attention 

to their esterification of carboxylic acids. Specifically, we screened for the O-alkylation of 

five structurally diverse small molecules: pivalic acid, rhodamine B, coumarin-3-carboxylic 

acid, biotin, and HGluOMe by three representative diazo compounds (3h, 3j, and 3l) in 1:1 

acetonitrile:MES–NaOH buffer, pH 6.0, at 37 °C for 19 h (Figure S6). Each of the reactions 

was analyzed by LC–MS to quantify the esterified product as well as the hydrolyzed 

byproduct, α-aryl-α-hydroxyamide (Table S2). Though hydrolysis is unavoidable due to the 

excess of water, esterification was successful regardless of the steric and electronic nature of 

the carboxylic acid or diazo compound.

Finally, we tested the bioreversibility of esterification by our diazo reagents. As a model 

acid, we used AcGluNH2 (5), which we derived from L-glutamic acid and which represents 

the most common residue for protein esterification6 and 6.4% of the residues in human 

proteins.26 In compound 5, the N-terminal amino group is acetylated to prevent aminolysis 

of a side-chain ester and the C-terminal carboxyl group is amidated to prevent main-chain 

esterification (Scheme 2). Compound 5 was treated with 3j to yield ester 6, which was then 

subjected to hydrolysis in the presence or absence of pig liver esterase (PLE) under 

biomimetic conditions at 37 °C (pH 5.8 for endosomes, pH 7.2 for the cytosol, and pH 8.0 

for mitochondria).27 Though stable at pH 5.8, ester 6 hydrolyzed readily at pH 8.0, even in 

the absence of PLE (Figure S10). The hydrolysis at pH 7.2 was, however, reliant on PLE 

(Figures 3 and S9). These data suggest that cellular esterases will catalyze the hydrolysis of 

a nascent ester to reveal the native carboxylic acid of a protein.

In conclusion, we demonstrated a facile two-step synthesis of α-aryl-α-diazoamides, which 

are modular reagents. This route will expedite the ongoing exploration of diazo compounds 

as reagents in chemical biology. We anticipate that the bioreversibility of our modification 

will enable applications in chemical biology, including the cellular delivery of proteins.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
(A) Bioreversibility of protein esterification by an α-aryl-α-diazoacetamide. (B) Two-step 

synthesis of α-aryl-α-diazoacetamides. EDG, electron-donating group.
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Figure 2. 
(A) Aminolysis of N-succinimidyl α-aryl-α-diazoacetates with secondary amines. (B) 

Scope of the ensuing N,N-disubstituted α-aryl-α-diazoamides.
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Figure 3. 
LC–MS analysis of the enzyme-catalyzed hydrolysis of γ-glutamyl ester 6 at pH 7.2 and 37 

°C.
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Scheme 1. 
Scope of the C–H Arylation of Diazo Compound 1
aReaction conditions: 10 mol% Pd(OAc)2 20 mol% P(2-Fu)3.
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Scheme 2. 
Scope of the Aminolysis of N-Succinimidyl α-Aryl-α-diazoacetates with Primary Amines; 

Isolated Yields Are Reported
aReaction conditions: 1.0 equiv of H2NR.
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