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Pneumonia remains a threat to human health; the coronavirus disease 2019 (COVID-19) that began at the end of 2019 had a major
impact on the world. It is still raging in many countries and has caused great losses to people’s lives and property. In this paper, we
present a method based on DeepConv-DilatedNet of identifying and localizing pneumonia in chest X-ray (CXR) images. Two-stage
detector Faster R-CNN is adopted as the structure of a network. Feature Pyramid Network (FPN) is integrated into the residual
neural network of a dilated bottleneck so that the deep features are expanded to preserve the deep feature and position
information of the object. In the case of DeepConv-DilatedNet, the deconvolution network is used to restore high-level feature
maps into its original size, and the target information is further retained. On the other hand, DeepConv-DilatedNet uses a
popular fully convolution architecture with computation shared on the entire image. Then, Soft-NMS is used to screen boxes
and ensure sample quality. Also, K-Means++ is used to generate anchor boxes to improve the localization accuracy. The
algorithm obtained 39.23% Mean Average Precision (mAP) on the X-ray image dataset from the Radiological Society of North
America (RSNA) and got 38.02% Mean Average Precision (mAP) on the ChestX-ray14 dataset, surpassing other detection
algorithms. So, in this paper, an improved algorithm that can provide doctors with location information of pneumonia lesions is
proposed.

1. Introduction

According to a study by Liu et al. [1] in 2015, among the 5.9
million deaths of children under 5, over 15.6% were due to
pneumonia; timely diagnosis and treatment could greatly
reduce this mortality level. However, the contrast in chest
X-ray [2] images is low, making manual evaluation inefficient
[3]. Computer-aided diagnosis [4] can enhance efficiency
and lead to timely treatment.

The size, shape, and position of pneumonia can vary a
great deal [5]. Its target contour is very vague, which leads
to great difficulty with detection, and enhancing the accuracy
of detection is a major research problem. At present, detec-
tion algorithms include two-stage object detectors such as
Faster R-CNN and one-stage detectors such as YOLO and
SSD. The latter uses an additional stage to complete the task

of multiscale target detection. They are faster than two-stage
detectors but less accurate. Medical testing has high require-
ments for accuracy, and two-stage detectors have an advan-
tage in this respect.

However, there are still problems with the backbone net-
work of the current detection algorithms. For example, VGG
and ResNet generally have two problems: a large network
depth leading to long training time and massive downsam-
pling that leads to the target position and semantic informa-
tion being lost [6]. The goal is to assess using a deep feature
map, since such a map has a large receptive field and the cor-
responding anchor is also large. However, the deeper the
map, the lower the object-edge resolution, which reduces
the assessment accuracy of the regression curve. In the low-
resolution feature map, after continuous downsampling, the
semantic features of the small target disappear in the deep
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layer; the semantic information of the large target is also par-
tially lost, and the position will move, which is not conducive
to accurate target detection. Usually, the way to optimize a
network, such as GoogLeNet [7], is to extend its depth or
width, but this generates huge numbers of parameters, easily
leads to overfitting, and requires large amounts of tagged data
to train.

Traditional deep networks reduce partial information
when extracting features, and this affects their capacities for
detection. The residual neural network structure of the low-
complexity dilated bottleneck adopted in this paper avoids
the computational lag associated with network depth and
the problems involved in the large numbers of parameters
associated with network width and integrates into the FPN
[8] network. Extracting deep feature semantic information
from an image, thereby avoiding loss of information, the
Soft-NMS [9] operation is performed on props generated
by the RPN; useful information is retained while filtering
the extra box, and finally, a model able to detect pneumonia
to a high level of precision is obtained.

2. Related Studies

2.1. Object Detection Works. In 2016, Redmon et al. [10] pro-
posed YOLO, which does not require a separate region pro-
posal network, so its detection speed is extremely fast and
can reach 45FPS. In the same year, Liu et al. [11] proposed
the SSD algorithm. Both SSD and YOLO win in detection
speed, but SSD uses a multiscale feature map to detect inde-
pendently, the spatial resolution of images in deep networks
has been significantly reduced, and it may not be possible
to locate small targets that are difficult to detect in low reso-
lution, reducing the accuracy of detection. YOLO does not
use multiscale feature maps for independent detection. It
smoothes the feature map and splices it with another lower-
resolution feature map, but it treats the detection only as a
regression problem and the detection accuracy is low. In
2014, Girshick et al. proposed R-CNN, which greatly
improved the speed of training. On the PASCAL VOC
2010 dataset, the mAP improved from 35.1% to 53.7%. In
2015, Ren [12] and others proposed the Faster R-CNN algo-
rithm, which uses RPN (region proposal network) to gener-
ate proposals on the feature map.

In 2018, Lee et al. [13] proposed DetNet, which was
designed specifically for target detection and achieved better
detection results with fewer layers. To avoid the large compu-
tational complexity and memory consumption caused by the
high-resolution feature map, the network adopts a low-
complexity dilated bottleneck structure; a higher resolution
of the feature map is ensured while obtaining a higher sub-
tractive field. This paper draws on the idea of DetNet and
the framework of Faster R-CNN to study the detection of
pneumonia.

2.2. Pneumonia Detection Works. In recent years, many
scholars have made efforts to detect pneumonia. Abiyev
and Ma’aitah [14] apply a convolutional neural network
(CNN) for the diagnosis of chest X-ray diseases. Compared
to BPNN and RNN, CNN gets higher precision but longer

training time. Vijendran and Dubey [15] combine multilayer
extreme learning machine (MLELM) and online sequential
extreme learning machines (OSELM) to detect pneumonia
on the chest X-ray image. Abiyev and Ma’aitah [14] explore
the features extracted from layers of the CNN along with a
set of classical features, including GIST and bag of words
on a dataset of more than 600 radiographs.

The above algorithms performed well in the detection of
pneumonia, but the amount and size of data involved are not
large, and then, some scholars used a large amount of data on
the deep network to do research. Jaiswal et al. [16] predicted
potential pneumonia on the RSNA (Radiological Society of
North America) dataset by Mask R-CNN, and the intersec-
tion over union-based mAP achieves 21.8%. Guendel et al.
[17] proposed to use the DenseNet to solve the detective on
the chest X-ray dataset. Chakraborty et al. [18] design a con-
volutional neural network architecture which contains a 17-
layer network and many dense layers. It achieves 95.62%
AP on the dataset of chest X-ray. Wang et al. [19] add unified
weakly supervised multilabel image classification and disease
localization framework in a deep convolutional neural net-
work to solve the problems in ChestX-ray8. These mentioned
approaches have been adjusted on the structure of the net-
work, but not for improvements on the backbone. A back-
bone that is specifically for detection only is needed.

The COVID-19 pneumonia epidemic that broke out at
the end of 2019 still threatens the survival of all mankind.
At the same time, because of the rapid rate of infection of
new crown pneumonia, how to quickly detect new crown
pneumonia has placed great demands on the global medical
system. Deep learning assists in the diagnosis of new crowns.
Pneumonia research has proposed many methods. In 2020,
Wang andWong [20] proposed COVID-Net, which is a deep
convolutional neural network design tailored for the detec-
tion of COVID-19 cases from chest X-ray (CXR) images.
Mangal et al. [21] proposed CovidAID: COVID-19 AI Detec-
tor, which is a novel deep neural network-based model to tri-
age patients for appropriate testing. Ozturk et al. [22]
proposed a new model for automatic COVID-19 detection
using raw chest X-ray images; this model is used to provide
accurate diagnostics for binary classification (COVID vs. no
findings) and multiclass classification (COVID vs. no find-
ings vs. pneumonia). The accuracy of the former is 98.08%,
and that of the latter is 87.02%. However, these studies only
performed classification tasks and finally obtained an assess-
ment of the probability of disease on the X-ray, and there was
no way to detect the location information of the lesion.

3. Methodology

In this part, we introduce in detail our proposed DeepConv-
DilatedNet method, including the data processing, the archi-
tecture of our network, and the effective enhancement effect
of Soft-NMS.

3.1. Data Processing. In 2018, the Radiological Society of
North America (RSNA) [b20] released a dataset on the detec-
tion and localization of pneumonia in chest X-rays [71]. The
dataset is from the National Institutes of Health (National
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Institutes of Health) [48] public chest X-ray images, with
radiologist [72] annotations. The detailed information of
the RSNA pneumonia detection dataset can be found on
the Kaggle website [73]. The RSNA pneumonia data used
in this experiment contains data of 26684 cases, of which
only 6012 pneumonia images (accounting for 22.03%), and
the remaining 8851 normal images (accounting for 31.19%)
and 11821 images (accounting for 44.77%), an image that is
abnormal or has no turbidity in the lungs. In most deep
learning, images without targets are of no use to the training
of the network, so this part of the meaningless data is elimi-
nated in the initial stage. Since the patient’s chest pneumonia
may have more than one location, there may be one to four
locations. Therefore, in order to maintain sample balance,
we finally use 6012 images with annotations, of which 4/5 is
selected as the training set and 1/5 as the test set. And count
the number of lesions in the training set and test set as shown
in Table 1.

The images in training sets are augmented by flipping
horizontally and vertically as shown in Figure 1. Finally,
14428 training images are acquired.

This paper analyzes the pixel characteristics of the pneu-
monia site. Pneumonia is considered to be slightly more opa-
que than its surroundings. All 6012 images have pneumonia;
among them, 3265 cases have two areas of pneumonia, which
accounted for the largest proportion in the dataset. There is
an area in 2617 images, three areas in 118 cases, and four
areas in 12 cases. Pneumonia is usually distributed in the left
and right lobes, and its grayscale is blurred, which is difficult
to identify directly [23]. The histogram of the average gray
value distribution of the target area is shown in Figure 2.
The image is first subjected to gradation, and then, the target
area is cut. A gradation mean value statistic is performed on
the target area being cut, and the average gradation value of
each target area is obtained by reading the gradation value
of each pixel and then averaging. The analysis shows that
the gray values are concentrated between 50 and 200, a very
wide range, making manual observation time-consuming
and labor-intensive. Therefore, it is important to put to use
the end-to-end method of deep learning.

Due to the characteristics of low brightness and low con-
trast of the chest X-ray image, to better detect the target area
of pneumonia and improve the detection accuracy, the chest
X-ray image can be preprocessed. In X-ray images, normal
lungs will not absorb X-rays, so it will appear black. The loca-
tion of the pneumonia is a gray dashed shadow or a cloudy
area. To improve the recognition rate, contrast and bright-
ness enhancement operations can be performed on X-ray
images. In this article, the CLAHE algorithm is used to
equalize the gray histogram to enhance contrast and bright-
ness. The images before and after processing are shown in
Figure 3.

To improve the effect of model training, it is necessary to
enhance the training set. At first, we used the CLAHE algo-
rithm to equalize the gray histogram of 6012 pictures with
pneumonia given by RSNA, to enhance contrast and bright-
ness. And then, the target area of pneumonia in every picture
is used as a positive sample, and the remaining areas are used
as a negative sample for training. Among them, 80% of

samples, about 4810 pictures, are used as the training set,
and 1202 pictures are used as the test set. The training set
has less data, so it is increased by data enhancement. After
horizontal flipping and vertical flipping, we finally get
14430 pictures as the training set.

3.2. Function of Convolution. The calculation equation of the
convolutional neural network is shown in

N = W − F + 2Pð Þ
S

+ 1, ð1Þ

where N is the output size, W is the input size, F is the
convolution kernel size, P is the padding value, and S is the
stride value. For example, we input an RGB image, the size
of our input image is 227 × 227 × 3, that is, it has three chan-
nels, and the size of each channel is 277 ∗ 277. We set the
padding as 0 and the stride as 4, and then, the convolution
kernel size is 3 ∗ 3. Through Formula (1), we can calculate
the output size as N = ð227 − 3 + 2 × 0Þ/4 + 1 = 57. Generally
speaking, the larger the convolution kernel, the larger the
receptive field, the more image information you can see,
and the better the features you can obtain. That being said,
a large convolution kernel will cause a surge in calculations,
which is not conducive to the increase of model depth, and
calculation performance will also decrease. Therefore, better
features can be obtained by mixing convolution kernels of
different sizes. In this paper, 1 ∗ 1, 3 ∗ 3, and 7 ∗ 7 convolu-
tion kernels were used to get better feature maps.

3.3. Detecting Pneumonia Using Deep Learning. The size of
the anchor box will directly affect the detection performance
of the model. This article analyzes the target area of the train-
ing data of the pneumonia X-ray dataset. In the traditional
Faster R-CNN algorithm, the size of the anchor box depends
on empiricism. Therefore, this article refers to the method of
generating the anchor box in YOLOV3 and uses the K-
Means++ algorithm to determine the aspect ratio suitable
for the dataset. In this study, the K-Means++ algorithm is
used to analyze the target region of the training set, and the
pneumonia anchor box with three scales of [72, 73], [102,
120], and [140, 279] were generated. So the scale ratio of
the anchor box was set to 0.5, 1.0, and 1.5.

FPN combines low-level and high-level features to obtain
feature sets that can reflect multidimensional information.
Researchers use upsampling to recover the original size
feature map from high-level feature maps. Upsampling is
an algorithm that restores an image to its original size. But
deconvolution is another way to resize feature maps.
Figure 4 demonstrates that deconvolution can keep more fea-
tures than upsampling.

Table 1: Number of marking frames of lesions in the training set
and test set.

Dataset/lesion areas in each picture 1 2 3 4

Training set 2068 2628 104 10

Test set 545 629 25 3
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All the current state-of-the-art image classification
networks are convolutional networks, such as ResNet and
GoogLeNet. Of note, the target detection network can be
implemented using a fully convolutional network. Therefore,
we design the DeepConv-DilatedNet that the fully connected
layer and upsample layers are replaced by convolution layers.

The deep-learning pneumonia-detection method used in
this paper is based on the Faster R-CNN, in which the
backbone uses the low-complexity dilated bottleneck residual
neural network called DeepConv-DilatedNet.

In the DetNet network, the first four phases of the
backbone are consistent with the original ResNet50 phase,

(a) Original image (b) Vertically flipped image (c) Horizontal flipped image

Figure 1: Flip processed image.
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Figure 2: Average gray value distribution histogram.
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Figure 3: Chest X-ray image preprocessing.
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maintaining a 16x receptive field from the fifth stage and
adding a stage, using 1 × 1 convolutions and 3 × 3 dilated
convolutions in the fifth and sixth stages. The mapping per-
forms channel superposition to form a bottleneck structure
that expands the receptive field. Starting from the fourth
stage, a different bottleneck structure is used to increase the
receptive field and keep the feature layer dimension 256
unchanged, thus reducing the number of weight parameters.
Adaptive average pooling is used throughout the network.

To enhance the pictorial information output of the
DetNet network, this paper combines FPN and DetNet to
enhance the feature-extraction mode of the network. And put
forward the DeepConv-DilatedNet. DeepConv-DilatedNet
removes the fully connected layer and only uses the convolu-
tional layers to compute feature maps, speeding up the net-
work. Meanwhile, we remove the upsample layers in FPN,
and deconvolution is used to upsample the feature maps in
FPN. The DeepConv-DilatedNet is shown in Figure 5.

The RPN generates a large number of anchor boxes
through the sliding window, with many overlapping parts
between them. In this paper, the Soft-NMS literature is used
to filter the overlapping anchor boxes, as in Formula (2). For
example, i ⊂M is the label of the box, and the IoU value cor-
responding to bi, as an input to the function, is finally multi-
plied by Si as the score of bi in the final box. After the
screening is completed, RoI align pooling is performed; the
feature map after the pooling process is input to the fully con-
nected layer, and finally, the detection box and category of
the target are output.

Si = Sie
− IoU M, bið Þ2

σ
: ð2Þ

3.4. Soft-NMS. In the process of target detection, whether
using a sliding window or an RPN, many duplicate candidate

frames will be generated. Therefore, even in the most
advanced detectors, nonmaximum suppression algorithms
are used to obtain the final detection set because it greatly
reduces the number of false alarms. The core idea is an
iterative-traversal-elimination process, and the low-scoring
frame with an overlap rate greater than a fixed threshold will
be suppressed by the high-scoring frame.

However, the traditional NMS method uses hard deci-
sions to determine which candidate frames are retained or
suppressed. Therefore, an object appears in the overlapping
area of another object. That is, when two target frames are
close, the frame with a lower score will be ignored. The over-
lapping area is too large and is deleted, which causes the
detection of the object to fail and reduces the average
detection rate of the algorithm. In this case, the detection
algorithm should have output two detection frames, but the
traditional nonmaximum value suppression algorithm will
be filtered out because the score of one frame is low and the
IoU of the two frames is greater than the set threshold. A tar-
get was detected. Therefore, it is necessary to use Soft-NMS,
instead of simply and rudely setting the NMS to zero the
score of the box whose IoU with the highest score is greater
than the threshold, but replacing the original score with a
slightly smaller score. Experiments also show that in a single
model, Soft-NMS can increase the target detection result
from 39.8% to 40.9% [9].

3.5. Our Method. For target detection, first, we chose the two-
stage model Faster R-CNN with a suitable detection effect as
the prediction framework, and then, we considered the excel-
lent effect of DetNet59 as the backbone, so we used DetNet59
for the feature extraction of the target. But because DetNet59
upsampling will lose features, we improve DetNet59 and
change upsampling to deconvolution to reduce feature loss,
and at the same time, add hole convolution to expand the

(a) Upsampling1 (b) Upsampling2

(c) Deconvolution1 (d) Deconvolution2

Figure 4: The comparison of upsampling and deconvolution.
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receptive field. Besides, the initial anchor box has a great
influence on the training and prediction of the model, so
we borrowed from the YOLO method and used the K-
Means++ algorithm to obtain the initial anchor box for the
pneumonia target dataset to improve the detection effect.
Finally, because Soft-NMS improves the performance of the
target detection network, we have joined Soft-NMS. Finally,
we get the DeepConv-DilatedNet+Faster R-CNN shown as
Figure 6.

4. Experiments

4.1. Training. In the beginning, we did not filter the initial
RSNA dataset, so the dataset is full of many useless images,
and the prediction effect of the model trained using such a
dataset is very poor. After screening the dataset, the dataset
without data enhancement is used to train the model, but
because the amount of data was too small, the model could
not fully converge and the prediction effect was not good.

Finally, we reprocessed the dataset and got the current model
training results.

The experiments were performed on the NVIDIA
GeForce GTX 1080 configuration. With Cuda acceleration,
processing 2 images per batch, the initial learning rate is set
to 0.001, and the 10th epoch is reduced tenfold using the
SGD optimization algorithm. The RPN bounding box regres-
sion uses the Smooth L1 loss function, and the classification
uses the binary cross-entropy (CE) loss function.

To verify the effectiveness of the proposed method, we
trained and evaluated four different backbones. The number
of iterations exceeded 90000, and the model appeared to be
stable. We plotted the classification and regression with the
total loss curve for each model presented in Figure 7. The loss
value of DeepConv-DilatedNet converges stably in the range
of 0.4 to 0.5. The fitting effect is ideal. The loss value of Det-
Net59 and ResNet50 becomes gradually stable at around
0.24. The smooth drop of VGG16 is finally stabilized at
0.25; the fluctuation of ResNet101 becomes marginally stable
at around 0.45, with a poor-fitting effect.
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Figure 5: DeepConv-DilatedNet.
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4.2. Evaluation Metrics. The IoU-threshold-based Average
Precision (AP) value is utilized to illustrate the detection
results. IoU is the overlap rate between the prediction box
and the ground truth box. As seen in Formula (3), AP refers
to the average score of each picture.

AP S, ið Þ = ΣiSi
N

, ð3Þ

IoU Pred, GTð Þ = Pred
T

GT
Pred

S
GT

: ð4Þ

In Formula (4), Pred is the prediction box, GT refers to
the ground truth box, where S presents the score of each test-
ing picture and N specifies the number of all test pictures.
Suppose IoU threshold is equal to a certain threshold when
the predicted image’s IoU threshold is more than or equal
to the threshold; otherwise, S is 0.

mAP p, tð Þ = Σtpt
n

: ð5Þ

In this paper, the Mean Average Precision (mAP) is used
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Figure 6: Network structure for pneumonia detection.
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Table 2: Assessment results for different IoU thresholds.

AP@0.4 AP@0.5 AP@0.6 AP@0.7 mAP

DetNet59 0.6317 0.4201 0.2068 0.0657 0.3311

ResNet50 0.6066 0.3791 0.1863 0.0513 0.3058

ResNet101 0.5539 0.3508 0.1540 0.0406 0.2748

VGG16 0.5506 0.3559 0.1881 0.0660 0.4210

DeepConv-DilatedNet 0.6419 0.4570 0.2732 0.0746 0.3617
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to describe the whole model’s detection accuracy, such as in
Formula (5), t refers to the threshold of IoU and the AP value
at threshold t is p. n refers to the number of classes, so in this
paper n = 1.

FPR =
FP

FP + TN
, ð6Þ

TPR =
TP

TP + FN
: ð7Þ

ROC is a tool for measuring nonequilibrium in classifica-
tion [24], and its abscissa is the false-positive rate (FPR) as
shown in Formula (6), and the ordinate is a true-positive rate
(TPR) as shown in Formula (7). ROC curves are often used to
evaluate the pros and cons of a binary classifier. The closer the
ROC curve is to the upper left corner, the higher the true-
positive rate obtained by the classifier in comparison to its
false-positive rate, indicating that the classifier performs well.

To more fully verify the experimental results, we calcu-
lated the AUC (area under the curve) value [25]. AUC is a
probability value. When positive and negative examples are
randomly selected, the probability that the current classifica-

tion algorithm ranks the positive instances ahead of the
negative based on the calculated score is the AUC value.
Therefore, the larger the AUC value, the more likely the clas-
sification algorithm is to rank positive examples ahead of
negative ones, which makes for better classification.

4.3. Experimental Result. In experiments, a comparison of
four different backbone AP indexes with different IoU
thresholds is made, and the mAP values (t ∈ 0:4,0:5,0:6,0:7)
are calculated as shown in Table 2. Firstly, comparing the
detection effect of the model using DetNet59 as the backbone
and the method using Vgg16, ResNet50, and ResNet101 as
the backbone, respectively, we found that the effect of using
DetNet59 as the backbone model is significantly better than
others. Then, we compare our improved network with Det-
Net59; the result shows that our method is better than
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Figure 8: The blue and yellow, respectively, represent the AP values before and after filtering the proposals using Soft-NMS, and the numbers
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Table 4: Comparison of results for different networks.

Network MS

Mask R-CNN 0.2181

DeepConv-DilatedNet+Soft-NMS 0.35087

Table 3: Assessment results via Soft-NMS.

Network mAP@0.4 mAP@0.5 mAP@0.6 mAP@0.7 mAP

DetNet59+Soft-NMS 0.6617 0.4751 0.2638 0.0879 0.3721

DeepConv-DilatedNet+Soft-NMS 0.6849 0.4940 0.2863 0.1040 0.3923

ResNet50+Soft-NMS 0.6234 0.4268 0.2495 0.0842 0.3460

ResNet101+Soft-NMS 0.5790 0.3992 0.2077 0.0630 0.3122

VGG16+Soft-NMS 0.5925 0.4179 0.2462 0.0940 0.3377
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DetNet59. As can be seen from Table 2, the Faster R-CNN
with DeepConv-DilatedNet as the backbone is higher than
the DetNet59, ResNet50, ResNet 101, and VGG16 network
models on each AP with different thresholds. On the RSNA
dataset, DeepConv-DilatedNet reached 0.4570 at AP@0.5.

Next, we use Soft-NMS to filter the anchor box in the
DeepConv-DilatedNet-based Faster R-CNN, with the model
optimized for greater detection accuracy, as shown in
Table 3. The same optimization of the other four networks
leads to a detection performance that is still lower than that
of DeepConv-DilatedNet, and DeepConv-DilatedNet has a
clear advantage in terms of accuracy of detection of the IoU
threshold of 0.4 to 0.5, which is 2.0175% more than the Det-
Net59 in the mAP index, 4.6325% more than ResNet50, and
5.465% more than VGG16. The results show that Soft-NMS
can effectively improve the performance of target detection.

Besides, we plotted the specific changes of the AP value of
the network in IoU ∈ ½0, 1�, as shown in Figure 8. The
optimization effect of Soft-NMS is very obvious when
IoU ∈ ½0:5,0:6�.

Furthermore, we compared our work with that of others,
as shown in Table 4. MS is the mean score for every image
overall threshold (ranges from 0.4 to 0.75 at a step size of
0.05) values; our result is 10.9% higher than those obtained
by Abiyev and Ma’aitah [14] using Mask R-CNN, which
shows that our model is reliable for detecting pneumonia.

To further verify the validity of the model, we also plot the
ROC curve, as shown in Figure 9. The AUCs of DeepConv-
DilatedNet and DetNet59 are 0.81 and 0.74, respectively; the
AUC value of DeepConv-DilatedNet is 10% higher than that

of DetNet59. A low false-positive rate yields higher sensitivity,
which indicates that, compared with the traditional DetNet
network, the subtle complexity dilated bottleneck is a very
efficient feature extractor for detection tasks.
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(a) Vgg16: Simple Target (b) Vgg16: Double Target

(c) Vgg16: Three Target (d) Vgg16: Four Target

(e) ResNet50: Simple Target (f) ResNet50: Double Target

(g) ResNet50: Three Target (h) ResNet50: Four Target

(i) ResNet101: Simple Target (j) ResNet101: Double Target

Figure 11: Continued.
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(k) ResNet101: Three Target (l) ResNet101: Four Target

(m) DetNet59: Simple Target (n) DetNet59: Double Target

(o) DetNet59: Three Target (p) DetNet59: Four Target

(q) Our Method: Simple Target (r) Our Method: Double Target

(s) Our Method: Three Target (t) Our Method: Four Target

Figure 11: Comparison of test results of different models.
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The PR line (precision/recall curve) of the five models
shown in Figure 10 shows that the DeepConv-DilatedNet
has excellent accuracy and recall rates.

We compare the detection effects of all methods on dif-
ferent quantities of ROI areas, as shown in Figure 11. No
matter single target or multiple targets, the detection effects
of our model are preferable to those of other benchmark
models. The detection box is closer to the real target, and
the number of detection boxes on the target box is closer
and more accurate.

To know the usefulness of our model, we test our method
on the ChestX-ray14 dataset. The ChestX-ray14 dataset
contains 30805 patients and 112,120 chest X-ray images.
The size of each image is 1024 × 1024 with 8 bits grayscale
values. The corresponding report includes 14 pathology clas-
ses. There are 120 pneumonia images with bounding box
annotations in ChestX-ray14. We choose all of them to check
our model. From the result shown in Table 5, we can see the
detection effect of DeepConv-DilatedNet is still better than
other models.

5. Conclusion

In this paper, a low complexity residual neural network with
a dilated bottleneck structure, called DeepConv-DilatedNet,
is invoked as the backbone of a two-stage detector using
Faster R-CNN. Because of the turbidity of the pneumonia
target, the image has further been enhanced with the CLAHE
algorithm to make the target area more prominent. In the
RPN, we use the Soft-NMS algorithm to filter the anchor
box and ensure its quality. To speed up the convergence of
the algorithm and improve the prediction accuracy of the
target area, we also used the K-Means++ algorithm in
YOLOV3 to obtain the initial anchor box size. We implant
deconvolutions in FPN to variance in scale and thus facilitate
recognition from features computed on a single input scale.
Finally, we got the result of this method. Combining the
different sets of work done in each network, the ability of
the algorithm to detect pneumonia accurately in the RSNA
dataset is enhanced. To verify the validity of the model, we
also compared it in detail with the traditional DetNet59,
ResNet50, ResNet101, and VGG16 networks and compared
them with other high-quality results; our algorithm does a
good job in this task. Networks that do not join the dilated
bottleneck structure lose some feature information in the
deep network, so the detection accuracy is not that good.

Data Availability

The image data used to support the findings of this study can
be obtained from the following connection: https://www
.kaggle.com/paultimothymooney/chest-xray-pneumonia.
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