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Abstract
Purpose  To assess the role of CT-texture analysis (CTTA) for differentiation of pancreatic ductal adenocarcinoma (PDAC) 
from pancreatic neuroendocrine neoplasm (PNEN) in the portal-venous phase as compared with visual assessment and 
tumor-to-pancreas attenuation ratios.
Methods  53 patients (66.1 ± 8.6y) with PDAC and 42 patients (65.5 ± 12.2y) with PNEN who underwent contrast-enhanced 
CT for primary staging were evaluated. Volumes of interests (VOIs) were set in the tumor tissue at the portal-venous phase 
excluding adjacent structures. Based on pyradiomics library, 92 textural features were extracted including 1st, 2nd, and 
higher order features, and then compared between PNEN and PDAC. The visual assessment classified tumors into hypo-, 
iso-, or hyperdense to pancreas parenchyma or into homogeneous/heterogeneous. Additionally, attenuation ratios between 
the tumors and the non-involved pancreas were calculated.
Results  8/92 (8.6%) highly significant (p < 0.005) discriminatory textural features between PDAC and PNEN were identi-
fied including the 1st order features “median,” “total energy,” “energy,” “10th percentile,” “90th percentile,” “minimum,” 
“maximum,” and the 2nd order feature “Gray-Level co-occurrence Matrix (GLCM) Informational Measure of Correlation 
(Imc2).” In PNEN, the higher order feature “GLSZM Small Area High Gray-Level Emphasis” proved significantly higher 
in G1 compared to G2/3 tumors (p < 0.05). The tumor/parenchyma ratios as well as the visual assessment into hypo-/iso-/
hyperdense or homogeneous/heterogeneous did not significantly differ between PDAC and PNEN.
Conclusions  Our data indicate that CTTA is a feasible tool for differentiation of PNEN from PDAC and also of G1 from G2/3 
PNEN in the portal-venous phase. Visual assessment and tumor-to-parenchyma ratios were not useful for discrimination.
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Introduction

CT-texture analysis (CTTA) is an emerging field of investi-
gation capable to identify specific tissue features meant to 
more accurately characterize tumors and other tissue types 

(e.g., inflammatory disorders) by using image data quan-
tification [1, 2]. Results of CTTA can be further tested for 
correlations with other non-image-based patient data (labo-
ratory, genetic, etc.) in order to allow for a more individual-
ized approach of these patients and their diseases, to provide 
valuable information capable of stratifying prognosis, and 
search for the most appropriate therapy [3–5].

Pancreatic ductal adenocarcinoma (PDAC) is the most 
frequent pancreatic malignancy with dismal prognosis if not 
amenable for primary surgery [6]. CT is the most frequently 
used imaging technique due to its excellent spatial resolu-
tion, tissue contrast, and availability. The primary aims of 
imaging are tumor detection and delineation, assessment of 
vascular invasion, and distant seeding. However, primarily 
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non-invasive differentiation from other pancreatic neoplasms 
is also important. Among the less frequent solid pancreatic 
tumors (e.g., metastases, acinar cell carcinoma, papillary 
and solid tumor, adenoma, hamartoma, etc.) the neuroen-
docrine tumors are playing an increasingly important role 
due to their in part overlapping imaging findings to PDAC 
and different management options [7, 8]. Whereas PDAC are 
generally hypo- or isoattenuated compared to the adjacent 
pancreatic tissue in the portal-venous enhancement phase, 
PNEN usually are expected to be hyperattenuated [8]. Dif-
ferentiation between these two pancreatic tumor entities 
requires generally a multi-phase examinational protocol as 
PNEN are best delineated on arterial phases due to their 
early and high amount of vascularization, whereas PDAC are 
inducing desmoplastic reaction experiencing mostly a late 
enhancement. However, many PDAC and PNEN patients 
undergo first portal-venous CT for elucidation of the cause 
of cholestasis (e.g., in case of a pancreatic head mass) and 
of other non-specific symptoms or the tumors are detected 
incidentally. In the portal-venous enhancement phase up to 
42% of PDACs may be isoattenuated to the normal pan-
creatic tissue and in PNEN the contrast blush can already 
have fade away so that differentiation between the two may 
be challenging depending strongly on the applied exami-
national protocol (e.g., contrast agent volume, flow, delay 
time, etc.) [9]. Moreover, PNEN may also exhibit differ-
ent attenuation values on portal-venous enhancement phase 
which correlates well with the intratumoral microvascular 
density, the amount of tumor stroma, and tumor grading [10, 
11]. PNEN are expected to be homogeneous hypervascular 
followed by early wash-out in the venous phase due to their 
origin from the highly vascularized islet cells, which receive 
10–20% of the entire pancreatic supply [12]. As progres-
sion towards malignancy is associated with derangement in 
vessel architecture and function, larger PNEN have a less 
homogenous hypervascular pattern and may show a delayed 
contrast enhancement [13].

Hence, considerable overlap in the mean attenuation of 
PDAC and PNEN exist in this enhancement phase. Moreo-
ver, the contrast between the tumor and the non-involved 
adjacent pancreatic tissue is dependent on the patient age 
and pancreas size and consistency [14]. Previous reports 
have addressed the issue of image data quantification in 
PNEN and PDAC using textural features [15–18]. They 
emphasized mainly the role of texture analysis for predict-
ing tumor grading.

In this current retrospective evaluation of ninety-five 
patients with primarily diagnosis of PDAC and PNEN we 
aimed at defining CTTA-based imaging fingerprints for dif-
ferentiation of these two tumor entities in the portal-venous 
enhancement phase using ninety-two representative features 
belonging to all statistical (1st, 2nd, and higher) orders.

Materials and methods

Patient characteristics

This was a retrospective analysis of 53 patients (66.1 ± 8.6y, 
24 female) with PDAC and 42 patients (65.5 ± 12.2y; 18 
female) with PNEN identified by a patient chart search at 
our institution between 09/2008 and 08/2018. Our insti-
tutional ethic board committee approved the retrospective 
data evaluation and registered this study under the number 
140/2019BO2.

CT‑examination protocol

Computed tomography (CT) was performed with patients 
in the supine position using 128-slice MDCT scanners 
(SOMATOM Definition AS + or SOMATOM Definition 
Flash, Siemens Healthcare). All patients underwent con-
trast-enhanced CT in the portal-venous enhancement phase 
(60–70 s delay) using thin-slice image data acquisition. Fol-
lowing examinational parameters were used: 120 kV tube 
voltage, 200–250 mAs tube current, soft tissue image recon-
struction kernel, and 1 mm slice thickness for image recon-
struction. Weight-adapted iodine contrast agent was given 
intravenously at a rate of 2 mL/s followed by a 30 mL saline 
chaser. Image reconstruction was performed in all patients 
using filtered back projection.

Computed tomography texture analysis (CTTA)

CTTA was performed using radiomics software (Siemens 
Healthcare) that is based on the pyradiomics package, a 
python package for the extraction of radiomics features 
from medical imaging [19]. A total of 1600 radiomic fea-
tures were primarily extracted. However, in order to limit 
redundancy of some of the results derived, e.g., from the use 
also of customized (derived) features, we decided to restrict 
to the original 92 features including 18 first-order features, 
23 Gray-Level Co-occurrence Matrix (GLCM) features, 14 
Gray-Level Dependence Matrix (GLDM) features, 16 Gray-
Level Run Length Matrix (GLRLM) features, 16 Gray-Level 
Size Zone Matrix (GLSZM) features, and 5 Neighboring 
Gray Tone Difference Matrix (NGTDM) features (Fig. 1).

CTTA was applied on image data sets that were recon-
structed with 1 mm slice thickness. Volumes of interest 
(VOIs) were drawn freehand on the transversal portal-
venous CT-image data using the largest cross-section 
diameter (Fig. 2). Neighboring tissue (e.g., blood ves-
sels), calcifications as well as visible necrotic areas were 
carefully excluded. The procedure of VOI setting was 
performed by a senior radiologist with 25 years of expe-
rience in abdominal and oncologic imaging. To provide 
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comparability for all data sets standardized measurements 
were performed. The computation of each texture type for 
an input volume of interest involved assigning a new value 
(“texture value”) to all voxels of that volume of interest 
and thus creating a “texture image.” In a first step, we per-
formed image filtration for selectively extracting features 
of different sizes and intensity variations. In the second 
step, quantification of tissue radiomics was performed 
using a series of derived images displaying features at a 
fine spatial scale (2 mm in radius) within a volume of 
interest. Window ranges of 0–400 HU were used. Compu-
tation was performed on the current voxel and its neigh-
borhood, and the results of that were stored as the texture 
value of the current voxel. This was repeated for every 

voxel in the volume of interest. The radiomics features 
used belonged to 1st order (energy, total energy, entropy, 
minimum, maximum, mean, median, interquartile range, 
mean absolute deviation, robust mean absolute deviation, 
standard deviation, skewness, kurtosis, variance, and uni-
formity); 2nd (gray-level co-occurrence matrix) order 
and higher order features (gray-level size zone matrix, 
gray-level run length matrix, neighboring gray-tone dif-
ference matrix, and gray-level dependence matrix), the 
latter including subfeatures described by the pyradiomics 
library (Supplementary material).

Finally, we grouped the PNEN according to their grad-
ing (G2 + G3) versus G1 as well as PDAC G1 versus G2 
versus G3 and applied again radiomics analysis trying to 

Fig. 1   Textural feature selection

Fig. 2   Tumor segmentation. A 
80-year-old male patient with 
PDAC infiltrating the celiac 
trunk and showing only moder-
ate tracer avidity in 18F-fluoro-
deoxyglucose (FDG) positron 
emission tomography/computed 
tomography (PET/CT) (right 
upper row). Three-dimensional 
tumor segmentation under 
exclusion of adjacent structures
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identify significant features enabling non-invasive evaluation 
of tumor grading (Fig. 3a).

Visual tumor characterization and quantification 
of tumor‑to‑parenchyma ratios

16/53 patients with PDAC underwent 18F-FDG-PET/CT 
and 18/42 patients underwent 68Ga-DOMITATE-PET/CT 
for staging, in which the lesions could be identified due to 
increased radiotracer uptake and routinely performed arterial 
phase. The other patients received a dual phase CT (includ-
ing an arterial phase). Additionally, 48/95 patients received 
a contrast-enhanced MRI of the pancreas. These information 
were used for placing large hand drawn ROIs both in the 
tumor tissue and in the non-involved pancreas parenchyma 
avoiding partial volume averaging. Attenuation values 
(Hounsfield Units, HU) were measured and subsequently 
tumor-to-parenchyma ratios calculated (Fig. 3b). Addi-
tionally, based on their attenuation, tumors were classified 

hypodense, isodense or hyperdense by comparison with 
the adjacent, non-involved pancreas parenchyma and also 
assigned to one of the two categories “homogeneously” ver-
sus “heterogeneously” attenuated.

Statistical analysis

Statistical analysis was performed using SPSS Version 22 
(IBM Corporation). We tested all parameters for the normal-
ity by using Kolmogorov–Smirnov test. A Mann–Whitney-
U test was used to test the difference in textural features 
between the two groups (PDAC and PNEN). To address the 
multiple comparisons, a Benjamin Hochberg correction was 
applied. The adjusted p-values were considered significant 
at a level of 0.05.

On all parameters a z-transformation was applied fol-
lowed by binary logistic regression analysis (forward LR 
stepwise method) using the most significant parameters to 

Fig. 3   a 65-year-old patient 
with a G1 PNEN in the tail of 
the pancreas (yellow arrows). 
The tumor shows an increased 
radiotracer uptake in 68Ga-
DOMITATE-PET. b 72-year-
old patient with a G3 PNEN in 
the transition between pancreas 
body and tail. The tumor (yel-
low arrows) appears isodense 
(67.7 ± 14 HU) to the pancreas 
parenchyma (68.1 ± 8 HU). 
68Ga-DOMITATE-PET reveals 
an increased radiotracer uptake 
of the tumor



754	 Abdominal Radiology (2020) 45:750–758

1 3

construct multi-indicator models for prediction of PDAC or 
PNEN. To test the significance of the logistic regression 
model a χ2 test was applied and the Cox & Snell-R2 was 
calculated. Receiver operating characteristic (ROC) analysis 
was performed to assess the predictive value by calculating 
the areas under the ROC curve (AUCs). The ROC curve 
was generated by computing sensitivity and specificity at 
each observed cut-off. The optimal cut-off values are derived 
from the point on the ROC curve with the minimum distance 
to the upper left corner (where sensitivity and specificity 
equal 1, respectively).

Results

Patient characteristics

53 patients (66.1 ± 8.6y, 24 female) with PDAC and 42 
patients (65.5 ± 12.2y; 18 female) with PNEN were included. 
In PNEN, 21/42 patients had tumor grade II/III and 8/42 
patients had tumor grade I. In 13 PNEN patients no infor-
mation regarding tumor grading was available. In PDAC, 
2/53 patients had tumor grade I, whereas 16/53 patients had 
tumor grade II or III. No information regarding tumor grad-
ing was available in 35 patients, most of them being sam-
pled at other institutions. The clinical characteristics of all 
patients are summarized in Table 1.

Analysis of CT‑textural features in PDAC and PNEN

Of 92 textural features, 8 (8.7%) proved significantly dif-
ferent between PDAC and PNEN. The first-order features 
“median” and “maximum” were both significantly lower in 
PDAC (− 0.37 ± 1.07 [median]; − 0.21 ± 1.10 [maximum]) 
compared to PNEN (0.41 ± 0.77 [median], p = 0.0003; 
0.27 ± 0.78 [maximum], p = 0.04). Complementary, the first-
order feature “90th percentile” (Fig. 4a) proved significantly 
lower in PDAC (− 0.26 ± 1.10) than in PNEN (0.33 ± 0.74; 
p = 0.001), which was also observed for “10th percentile” 
(− 0.46 ± 0.99 [PDAC] vs. 0.45 ± 0.84 [PNEN]; p = 0.001). 
The other first-order features “energy” (p = 0.02), “total 
energy” (p = 0.0001), and “minimum” (p = 0.00002) were 
significantly higher in PNEN compared to PDAC with high 
standard deviations (Table 1; Fig. 4b). In contrast, the first-
order “entropy” proved higher in PDAC (− 0.17 ± 1.26) com-
pared to PNEN (− 0.33 ± 1.15), however, without reaching 
statistical significance (p > .05).

The 2nd order feature GLCM Imc2 was signifi-
cantly higher in PDAC (− 0.03 ± 1.47) than in PNEN 
(− 0.89 ± 0.99; p = 0.0002) (Fig. 4c).

Multivariate logistic regression analysis 
for classification of PDAC Versus PNEN

The logistic regression analysis including significantly dif-
ferent features between PDAC and PNEN resulted in a sig-
nif icant  model  (χ2(8)  = 34.50;  p  < .001)  with 
r2
Cox & Snell

= 0.30 , a Nagelkerke’s r2 = 0.41 and a Cohen’s 
effect size of f =

√

0.41

1−0.41
= 0.83 . 75.8% of patients had 

been classified correctly as PDAC or PNEN by the logistic 
model. 42/53 patients had been predicted correctly as PDAC 
(sensitivity 79.2%) and 12/42 patients had been predicted 
correctly as PNEN (sensitivity 71.4%).

In this multivariate logistic regression model, GLCM 
IMC2 proved to be the variable with the most impact on the 
odds ratio. The results containing all explanatory variables 
(full model) are shown in Table 2. For GLCM IMC2 the 
ROC analysis derived − 0.49 as a cut-off value to differenti-
ate between PDAC and PNEN with a sensitivity of 0.79 and 
a specificity of 0.71 (Fig. 5).

Table 1   Patient characteristics

Characteristics PDAC PNEN

N 53 42
Age (years)
 Mean ± SD 66.1 ± 8.6 65.5 ± 12.2

Sex, n (%)
 Males 29 (54.7%) 24
 Females 24 (45.3%) 18

pTNM-Stage
 T1 2 4
 T2 4 6
 T3 31 16
 T4 5 2
 Tx 11 14
 N0 9 8
 N1 27 19
 Nx 17 15
 M0 28 15
 M1 9 23
 Mx 16 4

Grading
 G1 2 8
 G2 11 15
 G3 5 6

Tumor localization
 Pancreas head 32 15
 Pancreas body 15 11
 Pancreas tail 6 16

Tumor size (Mean ± SD) 2.6 ± 0.9 cm 3.2 ± 1.8 cm
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Subgroup analysis of PDAC and PNEN depending 
on grading

In PNEN, the higher order feature GLSZM Small Area 
High Gray-Level Emphasis proved significantly higher in 
patients with G1 (0.80 ± 0.90) compared to patients with 
G2/3 tumors (− 0.47 ± 0.86; p < .05) (Fig. 6). In PDAC, no 
significant differences in textural features between patients 
with G1 and G2/3 tumors were observed.

Fig. 4   a–c Box plots showing the distribution of 1st order statistical 
features energy, 90th percentile and 2nd order gray-level co-occur-
rence matrix informational measure of correlation 2 in pancreatic 
adenocarcinoma (PDAC) and pancreatic neuroendocrine neoplasms 
(PNEN)

Table 2   Results from multivariate logistic regression model contain-
ing all explanatory variables (full model)

Radiomic feature Exp (β) 95% CI p value

Median 0.42 0.002–86.78 0.75
Maximum 3.98 0.22–72.69 0.65
Minimum 1.35 0.20–9.08 0.76
10th percentile 5.66 0.16–197.44 0.34
90th percentile 0.28 0.001–52.34 0.63
Total energy 5.25 0.20–1407.36 0.56
Energy 0.27 0.001–74.59 0.27
GLCM Imc2 0.56 0.36–0.89 0.01

Fig. 5   ROC analysis for gray-level co-occurrence matrix informa-
tional measure of correlation 2 for differentiation of PDAC from 
PNEN

Fig. 6   Box plots showing the distribution of gray-level size zone 
matrix [GLSZM] Small Area High Gray-Level Emphasis in pancre-
atic neuroendocrine neoplasms (PNEN) grade 1 versus grade 2/3
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Visual tumor classification and tumor‑to‑pancreas 
attenuation quantification

In the subgroup of patients with PDAC, the mean attenuation 
value was 73 ± 26 HU with a mean attenuation of pancre-
atic parenchyma of 85 ± 20 HU. The calculated tumor-to-
pancreas ratio was 0.85.

In PNEN, we measured a mean attenuation value of 
80.3 ± 19 HU, whereas the attenuation of the pancreas paren-
chyma was 88 ± 22 HU resulting in a tumor-to-parenchyma 
ratio of 0.90. Differences between the tumor-to-pancreas 
ratios measured in PDAC and PNEN did not reach statisti-
cal significance (p > 0.05).

In both PDAC and PNEN only 50% of the tumors exhib-
ited homogeneous attenuation.

PDACs and PNENs were classified into hypo-, iso- or 
hyperdense in 50%/50%/0% and 45%/45%/10%, respectively 
(p > 0.05).

Discussion

Our results show that CT-textural features quantified on 
portal-venous CT-image data are capable to differentiate 
between PDAC and PNEN. In fact, 8.7% of all analyzed 
statistical features proved discriminatory including 1st order 
and 2nd order variables. Interestingly, these features concen-
trate mainly on differences in the tumor attenuation (median, 
maximum, minimum, 10% and 90% percentile, energy, total 
energy) as well as on tumor structure (gray-level co-occur-
rence matrix) judged by tumor intensity histogram analysis 
(1st order) as well as on the second-order conditional prob-
ability density function.

These disparities quantified by means of textural (radi-
omics) features presumably reflect both distinctions in the 
composition of these tumors (cell size, density, amount of 
fibrotic stroma, etc.) and such related to the properties of the 
vascular network (microvessel density, irregularities in the 
shape and distribution of the glands, blood flow character-
istics, vessel leakiness, intratumoral pressure) [20]. PDAC 
is known for its extensive desmoplastic reaction, whereas its 
vascular network is less well developed as in PNEN which 
has a highly vascularized tumor stroma [20, 21]. Previous 
reports using perfusion-CT demonstrated a 60% reduction 
in blood flow in PDAC compared to normal pancreas tissue 
[22]. D’assignies et al. reported a doubling of blood flow 
values in PNEN compared to the normal pancreas tissue 
[13]. Hence, differences in the amount of blood supply to 
PDAC versus PNEN are large and seem to play a major role 
in the distinction of these two entities even in the portal-
venous phase which in this particular setting can be gener-
ally regarded as less specific. Notably, the entropy in PDAC 
was found higher compared to PNEN; however, this value 

did not reach statistical significance. Nevertheless, this result 
is in support of an increased complexity of the tissue tex-
ture in PDAC as evaluated by the gray-level co-occurrence 
matrix which proved significantly different to PNEN. This 
feature (Informational Measure of Correlation) assesses the 
correlation between the probability distributions of voxel 
values showing a more even texture in PNEN.

The idea of adding quantification to the qualitative visual 
imaging findings for more accurate characterization of pan-
creatic tumors is not new and different imaging techniques 
have been advocated for this task over the time [23–26]. 
Nevertheless, CT remains the working horse for primary 
imaging diagnosis and the idea of empowering the qual-
ity of this technique by adding image data quantification is 
attractive. In a recent report, Li et al. described differences 
in the magnitude of some of the 1st order radiomics features 
between PDAC and atypical neuroendocrine tumors [27]. In 
their analysis, mean, median, 5th, 10th, and 25th percentiles 
proved lower, whereas skewness proved higher in PDAC 
compared to atypical neuroendocrine tumors which is in line 
with most of our own results. Of note, these authors used a 
different post-processing tool, but a similar time delay for 
the portal-venous enhancement phase on which they applied 
textural analysis which suggests reproducibility of 1st order 
feature quantification. In a similar attempt, Toshikazu et al. 
using an MRI-approach found significantly higher entropy, 
skewness, and kurtosis in PDAC and higher means in neu-
roendocrine tumors by applying 1st order radiomics analysis 
on ADC-image data, which again are in support of their 
diagnostic value beyond the limits of individual imaging 
modalities [23].

A few other reports addressing the role of radiomics 
analysis in pancreatic tumors focused exclusively on the 
correlations between tumor grading and local tumor aggres-
siveness using different numbers of extracted textural fea-
tures [15–18]. In particular, entropy was found to correlate 
well with the risk of early disease progression after surgical 
resection [28]. In a report by Choi et al., grade 2/3 pancre-
atic neuroendocrine tumors were more likely to show higher 
skewness, lower kurtosis, higher homogeneity, larger vol-
ume, and lower GLCM (gray-level co-occurrence matrix) 
moments [15]. D’Onofrio et al. found significant differences 
in the magnitude of entropy and kurtosis in pancreatic neu-
roendocrine tumors using radiomics analysis on CT-image 
data acquired in the portal-venous phase [16]. Indeed, the 
portal-venous enhancement phase has been recommended 
by many previous studies as comparable with the pancreatic 
phase for improved tissue contrast; however, this perception 
is questionable [29, 30]. In our cohort, the joint distribution 
of smaller size zones with higher gray-level values (pro-
portion of the joint distribution of smaller size zones with 
higher gray-level values in the image) which is a measure 
of homogeneity was significantly higher (> double) in G1 
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PNEN versus G2/G3 PNEN. Focusing on the statistically 
significant textural feature of the 2nd order (co-occurrence 
matrix), results are suggesting a higher magnitude of higher-
gray-level values and joint distribution in PNEN versus 
PDAC. Interestingly, we found no significant differences 
in terms of radiomics features among PDAC of different 
gradings.

Finally, our results showed great overlap between the two 
tumor entities in terms of visual assessment and even quan-
tification of tumor-to-parenchyma ratios with no signal sig-
nificant finding. Consequently, we believe that in such cases 
the additional use of CTTA could improve diagnostic quality 
delivering complementary information without the need for 
subsequent additional imaging which might improve patient 
management (e.g., staging procedures).

Our study has some limitations. First, our image data 
were collected on different multi-slice scanner, but using a 
similar examination and contrast agent injection protocol. 
Nevertheless, some variations in image quality are inher-
ently expected. This aspect should stress also the applicabil-
ity of textural analysis on different image data sets with com-
parable results in our cohort. Second, morphologic imaging 
features (e.g., form, size, contours) were not evaluated in 
this cohort as we considered that there is already enough 
evidence on this topic in the current specialty literature.

In conclusion, our data indicate that CT-texture analysis 
is a feasible tool for differentiation of PNEN from PDAC 
and also of G1 from G2/3 PNEN in the portal-venous phase. 
Most textural features reflect lower tissue attenuation and 
uniformity in PDAC as compared to PNEN. Notably, CTTA 
seems to outmatch the results of both visual assessment and 
tumor attenuation quantification.
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