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SUMMARY

Single-cell RNA sequencing data require several processing procedures to arrive
at interpretable results. While commercial platforms can serve as ‘‘one-stop
shops’’ for data analysis, they relinquish the flexibility required for customized
analyses and are often inflexible between experimental systems. For instance,
there is no universal solution for the discrimination of informative or uninforma-
tive encapsulated cellular material; thus, pipeline flexibility takes priority. Here,
we demonstrate a full data analysis pipeline, constructed modularly from open-
source software, including tools that we have contributed.
For complete details on the use and execution of this protocol, please refer to
Petukhov et al. (2018), Heiser et al. (2020), and Heiser and Lau (2020).

BEFORE YOU BEGIN

Single-cell, droplet-based library generation and sequencing

This pipeline was designed to take .fastq files as input generated from tag-based single-cell RNA-

sequencing (scRNA-seq) libraries, such as inDrop, 103 Chromium, or Drop-Seq, according to their

respective protocols (Klein et al., 2015; Macosko et al., 2015; Zheng et al., 2017). This pipeline con-

sists of three major sections, starting from the single-cell read alignment and DropEst quantifica-

tion, followed by quality control and droplet filtering, and ending with dimension reduction (DR)

structure preservation analysis. Ensure that these starting libraries are generated with technologies

compatible to the DropEst software, which is elaborated upon at https://github.com/hms-dbmi/

dropEst (Petukhov et al., 2018). Quality thresholds at this point should depend on the guidelines

set by the sequencing platform used. The single-cell read alignment and DropEst library quantifi-

cation section of this pipeline utilizes a whitelist of known cell barcodes which also correspond to

the sequencing platform used, ensure these are documented and accessible. We recommend

encapsulating more than 1,000 single cells and sequencing them to a minimum depth of 50,000

reads per cell.

Note: For this pipeline, the necessary reference and annotation files can be found through the

key resources table. Two sets of .fastq sequencing files can be found with the GEO accession

numbers GSM4804820 andGSM5068493. The first is a normal, human colonic dataset and the
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second is a subsampled version of it, useful for the rapid testing of this pipeline’s installation

on new computer systems. The expected results detailed in this protocol were generated with

GSM4804820.

Singularity and R environment

The single-cell read alignment and DropEst library quantification section requires reference tran-

scriptome and annotation files, of .fasta and .gtf format respectively, which must be locally acces-

sible. Further information on the reference files that were as examples used (and how to download

them) in this protocol can be found at https://github.com/Ken-Lau-Lab/STAR_Protocol. This

modular pipeline makes use of containerized packages, which have been organized through Sin-

gularity. For Debian systems, download the latest Go libraries to a local directory with the

following:

Singularity must be in installed to use our Singularity image, containing the libraries required for

DropEst and STAR alignment. The image can be found at https://hub.docker.com/r/ramiremars/

star_dropest and can be installed with the following code along with Singularity itself:

The following parameter is required:

a. VERSION: This is the version of singularity that will be installed. Set to ‘‘3.7.0’’ in this example.

Python environment preparation

The heuristic droplet filtering, automated droplet filtering with dropkick, and post-processing and

dimension reduction structure preservation analysis sections use a combination of command

line tools and Jupyter Notebooks managed through a Conda Python environment. Please

reference the Anaconda installation guidelines (Python >=3.8). Though this protocol is a full pipe-

line for scRNA-seq reads, its sections can be used modularly for the quality control (QC) and pre-

liminary analysis of data at various stages of processing. are compatible with pre-computed

droplet matrices, being a count matrix where the rows represent cell barcodes and columns

represent detected, expressed genes. Along with an example dataset, the necessary python

scripts and tutorial Jupyter Notebooks are available on our GitHub repository, where further Py-

thon environment setup instructions can also be found: https://github.com/Ken-Lau-Lab/

STAR_Protocol.

ll
OPEN ACCESS

2 STAR Protocols 2, 100450, June 18, 2021

Protocol

https://github.com/Ken-Lau-Lab/STAR_Protocol
https://hub.docker.com/r/ramiremars/star_dropest
https://hub.docker.com/r/ramiremars/star_dropest
https://github.com/Ken-Lau-Lab/STAR_Protocol
https://github.com/Ken-Lau-Lab/STAR_Protocol


KEY RESOURCES TABLE

MATERIALS AND EQUIPMENT

� Data – See the single-cell, droplet-based library generation and sequencing section of before you

begin

� Hardware - The full pipeline we present is computationally intensive, given the read alignment and

demultiplexing steps that occur in the single-cell read alignment and DropEst library

REAGENT or RESOURCE SOURCE IDENTIFIER

Biological samples

Human colonic epithelium, paired-end read files (Heiser et al., 2020) GEO: GSM4804820

Human colonic epithelium, subsampled,
paired-end read files

(Heiser et al., 2020) GEO: GSM5068493

Deposited data

Human reference genome assembly, release 85 (Yates et al., 2020) Ensembl ftp: ftp://ftp.ensembl.org/pub/release-85/fasta/
homo_sapiens/dna/Homo_sapiens.GRCh38.dna_sm.primary_
assembly.fa.gz

Human reference gene annotation file, release 85 (Yates et al., 2020) Vanderbilt http: https://www.mc.vanderbilt.edu/vumcdept/
cellbio/laulab/data/Homo_sapiens.GRCh38.85.annotated.gtf.gz

Software and algorithms

Scanpy (Wolf et al., 2018) N/A

dropkick (Heiser et al., 2020) N/A

dropEst (Petukhov et al., 2018) N/A

scRNABatchQC (Liu et al., 2019) https://github.com/liuqivandy/

STAR (Dobin et al., 2013) N/A

Go (1.15.6) N/A http://golang.org/

Singularity (3.7.0) (Kurtzer et al., 2020) https://github.com/hpcng/singularity

GATK4 (4.1.9.0) (Van der Auwera et al., 2013) https://github.com/broadinstitute/gatk

STAR (2.7.6a) (Dobin et al., 2013) https://github.com/alexdobin/STAR

BamTools (>= 2.5.0) (Barnett et al., 2011) https://github.com/pezmaster31/bamtools

Boost (>= 1.54) (Schling, 2011) https://github.com/boostorg/boost

zlib (1.2.11) N/A https://github.com/madler/zlib

bzip2 (1.0.5) N/A https://gitlab.com/federicomenaquintero/bzip2

CMake (>=3.0) N/A https://gitlab.kitware.com/cmake/cmake

gcc (>=4.8.5) N/A https://gcc.gnu.org/git/

dropEst (0.8.6) (Petukhov et al., 2018) https://github.com/kharchenkolab/dropEst

Rcpp (1.0.5) (Eddelbuettel and Francois,
2011)

https://github.com/RcppCore/Rcpp

R (>=3.5.0) (R Core Team (2020), 2020) https://www.r-project.org/

RcppEigen (0.3.3.7.0) (Bates and Eddelbuettel, 2013) https://github.com/RcppCore/RcppEigen

RInside (0.2.16) (Bates and Eddelbuettel, 2013) https://github.com/eddelbuettel/rinside

Matrix (1.2-18) (R Core Team (2020), 2020) https://github.com/cran/Matrix

scRNABatchQC (0.10.3) (Liu et al., 2019) https://github.com/liuqivandy/scRNABatchQC

Python (>=3.8.0) (van Rossum and Drake, 2009) https://www.python.org/

jupyterlab (2.3.0a1) (Kluyver et al., 2016) https://github.com/jupyterlab/jupyterlab

Jupyter (>=1.0.0) (Kluyver et al., 2016) https://github.com/jupyter

Scanpy (1.6.0) (Wolf et al., 2018) https://github.com/theislab/scanpy

AnnData (0.7.4) (Wolf et al., 2018) https://github.com/theislab/anndata

dropkick (1.2.1) (Heiser et al., 2020) https://github.com/Ken-Lau-Lab/dropkick

NetworkX (>=2.2) (Hagberg et al., 2008) https://github.com/networkx/networkx

python-igraph (>=0.7.1.post6) (Csardi and Nepusz, 2006) https://github.com/igraph/python-igraph

leidenalg (>=0.8.2) (Traag et al., 2019) https://github.com/vtraag/leidenalg

POT (>=0.6.0) (Flamary and Courty, 2017) https://github.com/PythonOT/POT

NumPy (>=1.17.4) (Harris et al., 2020) https://github.com/numpy/numpy

pandas (>=1.1.4) (Reback et al., 2020) https://github.com/pandas-dev/pandas

NVR Chen et al., 2018 https://github.com/Ken-Lau-Lab/NVR
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quantification section. We recommend running the first section of this pipeline on a high-perfor-

mance workstation or computing cluster. The heuristic droplet filtering and automated droplet

filtering with dropkick sections have lower requirements and do not need to be run on high-per-

formance machines. Note that these requirements will be dependent on the read depth and bar-

code number of the library of interest.

� Single-cell read alignment and DropEst library quantification section: High-performance worksta-

tion or cluster – Memory: 32 GB required, 64 GB recommended; Processors: 8 required, 16 rec-

ommended.

� Heuristic droplet filtering, automated droplet filtering with dropkick, and post-processing and

dimension reduction structure preservation analysis sections: Local machine – Memory: 8 GB

required, 16 GB recommended; Processors: 1 required, 4 recommended.

� Software - See the key resources table and the singularity and R environment and Python environ-

ment preparation sections of before you begin. We tested this modular pipeline on the Ubuntu

20.04 LTS Linux operating system. We recommend that users install a Debian-based distribution

of Linux, which are freely available. The single-cell read alignment and DropEst library quantifica-

tion section primarily uses a containerized installation of R in addition to command line tools, and

the heuristic droplet filtering, automated droplet filtering with dropkick, and post-processing and

dimension reduction structure preservation analysis sections use a combination of Python pack-

ages and scripts as detailed on our GitHub repository. The required R packages can be installed

without the provided Singularity container, but we highly recommend using the container as it

does not require superuser privileges.

Pause point: Throughout this protocol, each section will have multiple pause points, which

are marked by the saving of files to the respective computer’s hard disk. These outputs are

detailed in the expected outcomes section, as these outputs are heterogeneous in file format,

size, and timing.

STEP-BY-STEP METHOD DETAILS

Single-cell read alignment and dropEst library quantification

Timing: 5 h, for 120 million reads on a compute node with 12 cores and 48 GB of memory.

1.5 h for example subset dataset (GSM4804820) with the same specifications. Processing time

decreases linearly with the number of cores available.

This section encompasses the library demultiplexing, read alignment, droplet count matrix estima-

tion, and preliminary quality assessment with the DropEst library, the STAR aligner, and the scRNA-

BatchQC R package, respectively (Dobin et al., 2013; Liu et al., 2019; Petukhov et al., 2018). First,

dropTag takes paired-end, raw .fastq files and tags them in the context of unique molecular identi-

fiers (UMIs) and cellular barcodes for the demultiplexing process. This is dependent on the scRNA-

seq platform’s barcode whitelist; in this case we use the inDrop V1 and V2 barcodes. Before running

the actual alignment process, a genome index must first be generated with respect to the reference

and annotation files. STAR is a fast, scalable RNA-seq aligner which has splice awareness and takes

the multiple tagged fastq.gz files generated by dropTag and aligns them using a reference genome

index. The sorted .bam file generated by STAR alignment is used as an input to dropEst, which gen-

erates a barcode by gene count matrix, or droplet matrix, from the STAR aligned transcripts. Finally,

scRNABatchQC is used to provide summary statistics and a quality assessment of the generated

droplet matrix. This droplet matrix is further filtered in the heuristic droplet filtering and automated

droplet filtering with dropkick section variants.

Note: This protocol serves as a reference for an order-of-operations and their parameters in

our open-source pipeline; organized and executable scripts, with proper file and directory ref-

erences, are available at: https://github.com/KenLauLab/STAR_Protocol/.
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CRITICAL: The dropEst repository should be made locally available to explore its config-

urations and files by cloning from https://github.com/hms-dbmi/dropEst. This repository

is also fully available within the provided Singularity container, whose configs can be dis-

played with the following command:

Config files of interest can then be copied from the container to the local directory with the following,

where <example.xml> is the file of interest:

1. Run DropTag with the following:

The following parameter is required:

a. c, config filename: The file path to the .xml file containing estimation parameters within the

Singularity container, which includes platform-specific information. Further parameters con-

tained within this .xml file are described by Petukhov, et al. (Petukhov et al., 2018):

https://github.com/hms-dbmi/dropEst/blob/master/configs/config_desc.xml

b. <reads_R1>, <reads_R2>: These are positional arguments which should be replaced with the

paths to the fastq files representing the R1 and R2 reads respectively; set to ‘‘reads_R1.fastq’’

and ‘‘reads_R2.fastq’’ in this example. R1 corresponds to the barcode read and R2 corre-

sponds to the gene read.

Pause point: The output of step 1 is saved as multiple tagged .fastq files, further detailed in

the expected outcomes section.

2. Create a directory for operations to be performed and generate the index file:

To create a genome index, the user must provide the reference genome (.fasta file) and the corre-

sponding annotation file (.gtf) and run STAR with following parameters:

a. runMode: Mode to run, example set to ‘‘genomeGenerate’’

b. runThreadN: The number of threads to generate the index file with, this step speeds up with

higher values and is limited by the CPU used. Set to ‘‘16’’ in the example.

c. genomeDir: Path to directory where files will be stored, set in example to ‘‘STAR_index’’

d. genomeFastaFiles: Path to genome .fasta file, set in example to ‘‘primary_assembly.fa’’

e. sjdbGTFfile: Path to annotation .gtf file, set in example to ‘‘annotation.gtf’’

f. sjdbOVerhang: The number of bases to concatenate from donor and acceptor sides of splice

junctions. Set in example as ‘‘99’’.

CRITICAL: Step 2 must be re-run for different reference genome and annotation file ver-

sions, as the generated genomic index will be unique to each version.

Pause point: The output of step 2 is saved as a genomic index file, further detailed in the

expected outcomes section.
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3. Run the single-cell alignment process with STAR, using our Singularity container:

The following parameters are required:

a. genomeDir: The path to the directory containing the STAR index file. Set in example as

‘‘STAR_index’’

b. readFilesIn: The path to the tagged .fastq file(s), where multiple tagged .fastq files can be

input, set as ‘‘reads.tagged.1.fastq.gz’’ in example.

c. outSAMmultNmax:Maximum number of multiple alignments for a read that will be output to

the .sam/.bam files, example set to ‘‘1’’

d. runThreadN: Number of threads, example set to ‘‘12’’, increase value to speed up perfor-

mance.

e. readNameSeparator: Characters separating the part of the read names that will be trimmed in

output, example set to ‘‘space’’

f. outSAMunmapped: Output unmapped reads within the main ,sam file, example set to

‘‘Within’’

g. outSAMtype: Output formatting of .bam file, example set to ‘‘BAM SortedByCoordinate’’

h. outFileNamePrefix: Output file name prefix, set here as ‘‘reads’’

i. readFilesCommand: Command to decompress fastq.gz files, example set to ‘‘gunzip –c’’

CRITICAL: Ensure that there is sufficient memory overhead for this step, with a minimum

of 32 GB allotted, as spikes in memory usage may prematurely end the alignment process.

Pause point: The output of step 3 is saved as a .bam, with several attributes, further

detailed in the expected outcomes section.

4. Run DropEst, configured here for an inDrop library, with the following:

The following arguments are used in this step:

a. m, merge-barcodes: Merge linked cell tags

b. V, verbose: Output verbose logging messages

c. b, bam-output: Print tagged bam files

d. F, filtered-bam: Print tagged bam file after the merge and filtration

e. o, output-file filename: The output file name, example set to ‘‘sample_name’’

f. g, genes filename: Gene annotation file (.bed or .gtf), example set to ‘‘annotation.gtf’’

g. L: This is parameter has several options which denote the inclusion of count UMIs with reads

that correspond to specific parts of the genome. Set to ‘‘eiEIBA’’ in the example.

i. e: UMIs with exonic reads only

ii. i: UMIs with intronic reads only

iii. E: UMIs, which have both exonic and not annotated reads

iv. I: UMIs, which have both intronic and not annotated reads

v. B: UMIs, which have both exonic and intronic reads

vi. A: UMIs, which have exonic, intronic and not annotated reads
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h. c, config filename: XML file with estimation parameters, example set to ‘‘./configs/indrop/

v_1_2.xml’’, further details can be found at: https://github.com/hms-dbmi/dropEst/blob/

master/configs/config_desc.xml

i. <readsAligned.sortedByCoord.out.bam>: Positional argument for the input bam file. Set in

example as ‘‘readsAligned.sortedByCoord.out.bam’’.

CRITICAL: Like step 3, this is a memory-intensive step. Ensure that there is sufficient

memory overhead for this step, with a minimum of 32 GB allotted.

Pause point: The output of step 4 is saved as a .bam and a .rds file, both with several at-

tributes, further detailed in the expected outcomes section.

5. From the output of DropEst, generate sparse count matrices with the code as follows:

The following arguments are used in this step:

a. - -args: Path to the output .rds file, set in example as ‘‘sample_name.rds’’.

Note: The source of the invoked R script can be viewed from within singularity container using

vi. This script simply loads the .rds file, its contained data, and writes matrix files that are inter-

operable between different processing pipelines:

Pause point: The output of step 5 is saved as three files representing the droplet matrix, feature

labels, and barcode labels, which are further detailed in the expected outcomes section.

6. Finally, generate a quality assessment report:

The following arguments are used in this step:

a. - -args: Consists of two parts, positionally, the species and target .csv file. In this example, set

as ‘‘hsapiens’’ and ‘‘sample_name.rds_cm.csv’’.

Pause point: The output of step 6 is saved as an .html file, further detailed in the expected

outcomes section.

Variant 1. Heuristic droplet filtering

Timing: 15 to 30 min, depending on the size of the droplet matrix and cores available for

certain parallelized functions.

This section and its variant describe the barcode filtering of the droplet matrix, and can be used

modularly if the user has a pre-computed matrix, either from the single-cell read alignment and

DropEst library quantification section of this protocol or an external source, so long as the rows

represent cell barcodes and columns represent genes. The output for this section will be a cell ma-

trix, differing from a droplet matrix in that it only contains gene read counts from only high-quality,
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intact single cells. Primarily, this section will be performed interactively with Jupyter Notebooks

running within a Conda environment, making extensive use of the AnnData Python class and

scanpy library. First, a data-driven cutoff, by means of finding the inflection point in a cumulative

sum curve of ranked barcode counts, is generated and used to minimize information-spars barc-

odes. Second, a distribution of uniquely detected genes per droplet is automatically thresholded

through Otsu’s method, separating the remaining information-rich and information-sparse drop-

lets and generating a binary metadata label. Third, tissue-specific gene expression signatures

are visualized after DR to pinpoint cell populations of interest for downstream analysis. Fourth, un-

supervised clustering is performed to discretize the single-cell transcriptional landscape. Finally,

by heuristically integrating these metrics and expression signatures, populations of intact single-

cells and their respective high-quality transcriptomes can be selected and saved to an indepen-

dent file.

CRITICAL: This section is performed entirely within a Jupyter Notebook available through

Github at https://github.com/KenLauLab/STAR_Protocol/. To use this notebook, follow

the instructions described in the python environment preparation section of before you

begin. For further information on how to navigate Jupyter Notebooks, see its documenta-

tion page: https://jupyterlab.readthedocs.io/.

7. Prepare DropEst outputs from the single-cell read alignment and DropEst library quantification

section for analysis in an interactive Jupyter Notebook:

This step uses the arguments:

a. <dir>: The directory where the DropEst results are stored, specifically from step 5, set in

example as ‘‘dir’’

b. <filename.h5ad>: Filename for the output .h5ad file, set in example as ‘‘filename.h5ad’’

Pause point: The output of step 7 is saved as a compressed .h5ad file, further detailed in the

expected outcomes section.

Note: For the heuristic droplet filtering, automated droplet filtering with dropkick, and post-

processing and dimension reduction structure preservation analysis sections of this protocol,

adata is a common variable, which represents the AnnData object that scanpy methods oper-

ate on. adata is typically the parameter used for each function’s first positional argument.

8. Restart the notebook kernel and reload the data, from file, as an AnnData object:
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The parameters in this code are as follows:

a. <filename.h5ad>: The filename of the .h5ad file generated in step 7

b. <mitochondrial nomenclature>: The mitochondrial nomenclature of the dataset, given the gene

symbol. This will vary depending on the gene nomenclature and species. For example, humanmito-

chondrial gene symbols aredesignatedwith ‘‘MT-’’, whereasmouse symbols are precededby ‘‘mt-’’.

Note: The following steps assume that the notebook kernel activated in step 8 is not subse-

quently deactivated or restarted; thus, library import statements are not detailed further.

9. Perform the first-pass inflection point-based filtering:

Alternatively, the user can set a manual cutoff using an estimated number of encapsulated cells:

The parameter in this code is as follows:

a. <estimated number of cells encapsulated>: This number represents the estimated number of

cells encapsulated during the library generation process and is based on the flow time and rate

of the process.

CRITICAL: If the droplet matrix to be used in this step was generated through an external

pipeline, ensure that it is ordered, starting with barcodes associated with the most to the

least detected reads. Step 9 will fail if the data are not ordered as such. This ordering, how-

ever, is automatically performed in the DropEst output preparation in step 7.

10. Automatically identify cells with relatively high transcriptional diversity:

11. Normalize, log-like transform, and scale the data in preparation for dimensionality reduction:

12. Optional: Perform feature selection with highly_variable_genes or nvr after installing the

required packages. These methods can be run in a Jupyter Notebook:

Alternatively, install nvr through the command line:

Run NVR:
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Note:Only one of these feature selection methods should be used at a time. Also, ensure that

the data’s stage of normalization and transformation complies with the requirements of these

feature selection methods.

13. Perform the initial dimensionality reduction with PCA:

The parameter for running the PCA is as follows:

a. highly_variable_genes: This parameter is used to indicate whether to use feature selected

variables, set in this example as ‘‘False’’.

14. Generate aK-nearest neighborsgraph (KNN) fromthePCA-baseddistancematrix. This is runwithaK

of approximately the square root of the total number of barcodes, balancing the influence of local

and global distances:

15. Perform Leiden community detection:

The parameter for running this Leiden clustering is as follows:

a. resolution: The clustering resolution, where a higher number leads to more, smaller clusters,

and a lower number leads to fewer, larger clusters. The example is set to ‘‘1’’.

16. Project the data into 2 dimensions with UMAP:

The parameter for running this UMAP is as follows:

a. min_dist: The minimum distance allowed for each cell or data point in the 2-dimensional pro-

jection. The example is set as ‘‘0.25’’. Lower min_dist values cause the data points to be more

compact in 2D space, and vice versa for higher values.

17. Visualize factors useful in the heuristic determination of high-quality cell barcodes:

The parameter for running this UMAP is as follows:

a. color: The values stored in the AnnData object which are to be visualized in on a 2-dimen-

sional projection, in this example we visualize some ‘‘gene’’, ‘‘leiden_labels’’, ‘‘pct_counts_-

Mitochondrial’’, ‘‘pct_counts_in_top_200_genes’’, and ‘‘relative_transcript_diversity_thres-

hold’’. These factors are used in the heuristic selection of clusters.

b. use_raw: Whether to visualize normalized and scaled values or the raw count values within

the AnnData object droplet matrix. Set to ‘‘False’’ in this example.

CRITICAL: By priority, clusters of droplet barcodes should be selected based on these

criteria in step 18:

c. Marker gene expression and specificity: These genes will vary between the biological sys-

tem of interest as well as the heterogeneity of cell input. Colorectal tumors, for example,

will have a mixture of epithelial and immune cells, and markers would be used accordingly.
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d. The number of uniquely expressed genes: This is a strong predictor of encapsulated cells,

and empty droplets are unlikely to contain a biologically relevant diversity of gene tran-

scripts. This should bemaximized unless there is a particular cell type that is known to express

very few unique transcripts.

e. Mitochondrial gene count percentage: This is important because encapsulated cells

undergoing lysis will contain a high percentage of mitochondrial reads, effectively adding

noise to a droplet due to the removal of more informative genes from a limited read count

pool.

f. Ambient gene expression: This is akin to the mitochondrial gene count percentage, as the

encapsulation substrate may contain the remnants of lysed cells, often consisting of mito-

chondrial genes, but may vary per cell type. This should be minimized.

g. Total counts: As the number of transcripts detected represents the amount of raw transcrip-

tional information contained within a droplet. This should also be maximized unless there is a

particular cell type that is known to express very few unique transcripts.

18. Select and visualize the cells based off the heuristic criteria using discretized Leiden clusters:

The parameters in this case are:

a. <cluster selection>: The set of Leiden clusters to be selected and passed as a list of charac-

ters such as [‘1’,’2’, . ‘n’].

b. legend_loc: This parameter indicates where the cluster legends will be displayed, set as ‘‘on

data’’ in this example.

c. legend_fontoutline: This parameter is used to render an outline on the cluster legends for

readability, set as ‘‘True’’ in this example.

d. legend_fontsize: This parameter designates the size of the font, set to 10 in this example.

19. Ensure that the selected cells comply with the heuristic criteria by reviewing the outputs of steps

17 and 18; then save this selection to a .h5ad file.

The parameters in this case are:

a. selection: The observation attribute used to subset the data, as defined earlier, this example

is set as ‘‘Cell_Selection’’

b. <Filtered_Data.h5ad>: The filename to save the compressed .h5ad as, set in this example as

‘‘<Filtered_Data.h5ad>’’.

Pause point: The output of step 19, a filtered cell matrix, is saved as an .h5ad file, further

detailed in the expected outcomes section.

Variant 2. Automated droplet filtering with dropkick

Timing: 5 to 10 min, depending on the size of the droplet matrix.

This variant serves the same function as the heuristic droplet filtering section. For automated droplet

filtering in Python, dropkick is a machine learning tool that builds a probabilistic model of single-cell

barcode transcriptome quality and returns a score for all barcodes in the input scRNA-seq droplet

matrix (see step 7 for generating .h5ad from DropEst files) (Heiser et al., 2020). dropkick can be
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run from the command line or interactively in a Jupyter Notebook. A command line interface exists

for its two primary modules designed for QC reporting and filtering, whose usages are outlined as

follows.

20. Install dropkick through pip, or from source code at https://github.com/KenLauLab/dropkick:

21. Run the dropkick qc function to generate a quality overview report, which is saved to the current

working directory as a .png image file:

The required parameter for this function is:

a. <path/to/counts[.h5ad|.csv]>: The file path to the droplet matrix file of interest, which can be

either .h5ad or .csv file.

Note: If the input counts are in .csv format, ensure that the file is in cells by genes configuration

with labels for gene identities as column headers. The output from the step 7 can be used here

directly.

22. Run the dropkick filtering algorithm with the run function:

The required parameters for this function are:

a. <path/to/counts[.h5ad|.csv]>: The file path to the droplet matrix file of interest, which can be

either .h5ad or .csv file.

b. j: The number of jobs used to parallelize the training and cross-validation of the

dropkick model. We recommend adjusting the ‘-j‘ flag according to the number of available

CPUs. If using a machine with more than five cores, ‘-j 5‘ is optimal for the five-fold cross

validation performed by dropkick, and model training is usually completed in less than

two minutes.

Note: All available user parameters can be found by running ‘dropkick run -h‘. Default param-

eters are typically fast and robust for most datasets across encapsulation platforms, tissues,

and levels of ambient background, see the troubleshooting section for further points of

optimization.

Pause point: The output of step 22 is a .h5ad file, saved to disk, containing the input droplet

matrix with additional metadata consisting of cell quality scores and binary labels. This is

further detailed in the expected outcomes section.

23. In a Jupyter Notebook, as described in step 19, load the dropkick-generated .h5ad file with the

appropriate libraries and generate the filtered cell matrix:

The parameters in this case are:

a. selection: The observation attribute to use to subset the data, as defined earlier, this

example is set as ‘‘dropkick_label’’.
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b. <Filtered_Data.h5ad>: The filename to save the compressed .h5ad as, set in this example as

‘‘<Dropkick_Filtered_Data.h5ad>’’.

Note: It is good practice to ensure that the selected cells also comply with the heuristic cell

selection criteria as discussed in step 17. The entirety of the heuristic droplet filtering section

can also be performed with a dropkick-labeled droplet matrix (the output from step 22),

further augmenting cluster selection heuristics with learned metadata.

Pause point: The output of step 23, a filtered cell matrix, is saved as an .h5ad file, further

detailed in the expected outcomes section.

Post-processing and dimension reduction structure preservation analysis

Timing: 15–30 min depending on the complexity and heterogeneity of the data at hand.

The final phase of this pipeline is centered around generating a representative two-dimensional

projection of a filtered cell matrix to accurately visualize the global and local populational hetero-

geneity within dataset. Using scRNA-seq data to address hypotheses necessitates robust visuali-

zations to counteract stochasticity inherent to several popular non-linear dimensionality algo-

rithms. This stochasticity is often unaccounted for during downstream and may interfere with

the representation of cellular relationships along the transcriptomic landscape, warping the

perceived distances between cell types in 2D space. This section walks through the quantitative

evaluation of two popular embedding techniques, t-SNE (van der Maaten and Hinton, 2008)

and UMAP (McInnes et al., 2018), to determine the more reliable visualization strategy for a partic-

ular dataset. First, each latent space, or non-linearly projected, representation of the cell matrix is

generated. Second, after identifying putative cell types in the data, discrepancies between these

latent and native, or linearly transformed, spaces are calculated on global and local scales. Finally,

rearrangements in subpopulation adjacencies are calculated on a graphical basis, allowing for

users to choose the latent representation which minimizes discrepancies in latent-native space dis-

tances as well as in subpopulation adjacencies; both factors may greatly influence the biological

interpretation of the data.

24. Refer to the normalization, transformation, scaling, and DR guidelines in steps 11–15, as this sec-

tion uses the same processes. Ensure that the cell count matrix has been processed, up to the

Leiden clustering calculation, before proceeding.

25. Using a calculated 50-component PCA, calculate a t-SNE representation of the cell count matrix.

The parameters in this case are:

a. use_rep: The representation of the single-cell data to use to initialize t-SNE

nonlinear embedding, set as ‘‘X_pca’’, or the 50-dimensional PCA representation in this

example.

b. perplexity: This is the effective nearest neighbors that are utilized in the t-SNE embedding,

set to the square-root (rounded-down) of the total number of cells being examined.

26. Next, generate a coarse-grained similarity graph using communities detected through the Lei-

den algorithm:
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27. Project the data into 2 dimensions using UMAP, but unlike in the heuristic droplet filtering and

automated droplet filtering with dropkick section variants, initialize this projection with the

PAGA similarity values:

The parameters in this case are:

a. init_pos: The representation of the data that is used for the initialization of the UMAP visual-

ization, the example is set as ‘‘paga’’, as calculated in step 26.

28. Run the structure_preservation_sc function to calculate global latent-native space discrep-

ancies:

The parameters in this case are:

a. latent: The target latent representation of the data to be evaluated, in this example we start

with ‘‘X_tsne’’, this parameter can be replaced with ‘‘X_umap’’ to evaluate UMAP represen-

tations (Figures 6C and 6D)

b. native: The native space representation of the data to compare the latent representation

with, set as ‘‘X_pca’’ in the example due to the linear nature of its decomposition.

c. k: The k number of nearest neighbors for use in structure preservation analysis, set to the

square-root (rounded-down) of the total number of cells being examined calculated in

step 25.

29. Perform differential gene expression (DE) testing to derive transcriptional signatures from the

detected subpopulations of cells, whose local latent-native distance discrepancies should be

quantified:

The parameters in this case are:

a. groupby: The dataset labels between which to perform DE testing, in this case we use the

‘‘leiden’’ clusters.

CRITICAL: Ensure that all detected Leiden clusters can be reasonably identified through

their gene expression signatures as described in literature. Unless a particular subpopula-

tion is expected to be novel, cluster-to-cluster comparisons will not be biologically mean-

ingful unless properly annotated. Note that the annotation of gene expression signatures

is out of the scope of this protocol and will vary for each tissue of interest.

30. Subset single-cell cluster(s) of interest to perform latent-native discrepancy evaluation on a clus-

ter-by-cluster basis (defined through the detection of known marker genes and the signature

detection of step 29):

The parameters in this case are:

a. uns_keys: The distances of interest to be subset, which are stored in the unstructured (.uns)

attribute of the AnnData object. Set in the example as ‘‘X_pca_distances’’, ‘‘X_tsne_distan-

ces’’, and ‘‘X_umap_distances’’
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b. obs_col: This parameter indicates which observation attribute to use to subset the data, as

defined earlier, this example is set as ‘‘leiden’’

c. IDs:Theobservational IDs inwhich subsetsofcells, Leidencluster IDs in thisexample, are selected.

31. Perform the latent-native discrepancy calculations and visualize them using the distance_stats,

SP_plot, joint_plot_distance_correlation, and plot_cumulative_distributions functions:

The parameters in this case are:

a. pre: The calculated distances before generating the latent space representation of the data,

which is are the ‘‘X_pca’’ distances in this example.

b. post: The calculated distances after generating the latent space representation of the data,

which is are the ‘‘X_tsne’’ distances in this example. For comparisons between these latent

space representations, users can replace ‘‘tsne’’ with ‘‘umap’’ to test the latter embedding

(Figures 7A, 7B, 7F, and 7G).

c. pre_norm: A flattened vector of normalized, unique cell-cell distances before transformation, as

output by ‘‘distance_stats’’. This is calculated for the PCA representation in the example.

d. post_norm: A flattened vector of normalized, unique cell-cell distances after transformation,

as output by ‘‘distance_stats’’. This is calculated for the t-SNE representation in the example.

e. labels: The labels for the pre- and post- transformation data, set as ‘‘PCA (50)’’ and ‘‘t-SNE’’ in

this example.

f. figsize: The size of the figure, in terms of width and height. Set as ‘‘(4,4)’’ and ‘‘(3,3)’’ respec-

tively in this example.

Note: Step 32 should be repeated as necessary with each latent space representation of

interest. Here we recommend also running it with the UMAP representation calculated in

step 27.

32. Compare these distances between subpopulations of cells, being clusters c1, c2, and c3 in this

example as defined in step 30:

The parameters in this case are:

a. pre: The coordinates of each single-cell before transformation, ‘‘X_pca’’, or the 50-dimen-

sional PCA are used in this case.

b. post: The coordinates of each single-cell after transformation, ‘‘X_tsne’’, or the 50-dimensional

PCA are used in this case. For comparisons between these latent space representations, users

can replace ‘‘tsne’’ with ‘‘umap’’ to test the latter embedding (Figures 7C, 7D, 7H, and 7I).
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c. obs_col: This parameter indicates which observation attribute to highlight by color, this

example is set as ‘‘leiden’’

d. IDs:Theobservational IDs inwhich subsetsofcells, Leidencluster IDs in thisexample, are selected.

e. ax_labels: The labels for the pre- and post- transformation data, set as ‘‘PCA (50)’’ and

‘‘t-SNE’’ in this example, to be plotted as axis labels.

f. figsize: The size of the figure, in terms of width and height. Set as ‘‘(4,4)’’ and ‘‘(3,3)’’ respec-

tively in this example.

Note: Step 3.9 should also be repeated as necessary with each latent space representation of

interest. Here we recommend also running it with the UMAP representation calculated in step

27. Further, additional comparisons between other Leiden clusters should be performed to

evaluate all potential subpopulations of interest, and these clusters should incorporate signa-

tures highlighted in step 29.

33. Generate a minimum-spanning tree (MST) to investigate global subpopulation arrangements

and structure:

The parameters in this case are:

a. use_rep: The representation of the single-cell data to find centroids within, set as ‘‘X_pca’’,

‘‘X_tsne’’, and ‘‘X_umap’’ in this example.

b. obs_col: This parameter indicates which observation attribute to find centroids within, as

defined earlier, this example is set as ‘‘leiden’’

Note: Step 33 should also be repeated as necessary with each latent space representation of

interest, like in step 32.

34. Determine the edge differences from native (PCA) to latent (t-SNE and UMAP) spaces by count-

ing edge inconsistencies in a minimum spanning tree:

The parameters in this case are:

a. Latent MST: The MST calculated based on the latent representation of the data, being

‘‘X_tsne’’ and ‘‘X_umap’’ in these two calculations.

b. Native MST: The MST calculated based on the native representation of the data, being

‘‘X_pca’’ in these two calculations.

35. Plot these calculated edge differences:
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The parameters in this case are:

a. dim_name: The name of the latent representation to be plotted, being ‘‘X_tsne’’ and

‘‘X_umap’’.

b. obs_col: This parameter indicates which observation attribute to highlight by color, this

example is set as ‘‘leiden’’

c. use_rep: The representation of the single-cell data to plot, set as ‘‘X_tsne’’ and ‘‘X_umap’’ in

this example.

d. highlight_edges: Which differing edges to highlight, representing a rearrangement of

coarse cluster neighbors. ‘‘tsne_set’’ and ‘‘umap_set’’ in this example, calculated earlier.

EXPECTED OUTCOMES

These expected outcomes are also described in this pipeline’s repository, which can be found at

https://github.com/Ken-Lau-Lab/STAR_Protocol. Examples in the repository also contain proper

file and directory references for the provided files.

Note: The entirety of this pipeline and the expected outcomes detailed here are based on the

GSM5068493 dataset, with the reference genome and annotation files detailed in the key re-

sources table. The droplet and cell matrices of this dataset are also included as .h5ad files on

our GitHub repository. For the sake of saving time and computational resources users may

want to test the single-cell read alignment and DropEst library quantification section with

our reduced dataset, GSM4804820.

Single-cell read alignment and dropEst library quantification results

Step 1: The output of the DropTag step will be tagged and demultiplexed fastq.gz files that will be

aligned by STAR in subsequent steps. Note that the DropTag step can output around 20 tagged

.fastq files, depending on the read depth of the input files. These outputs are also paired with a

log, named tag_main.log, containing the number of reads processed, number of reads that passed

the minimum quality threshold, number of reads with expected structure for the library type, and

trimming statistics, given arguments specified in configs/indrop_v1_2.xml file. The subsampled da-

taset we provide will only produce 1 tagged .fastq file due to its size.

Step 2: The output genomic index file is necessary for STAR alignment and allows for the query time

of each read alignment to be minimized. Only one of these genomic indices needs to be generated

per reference and annotation pair.

Step 3: The .bam produced through STAR alignment contains several attributes which are detailed

in Table 1. Additionally, a file named ‘‘Log.final.out’’ contains useful metrics to evaluate the quality of

the mapping.

Step 4: DropEst outputs multiple files, including a sorted .bam file and a .rds file. The .bam file con-

tains read-level information, like the output of step 3, and is also outlined in Table 1. The .rds file

contains information regarding the droplet matrix itself, with corrected barcode information. Both

files are used to generate the final droplet matrix. Additionally, this step outputs a est_main.log

file, detailing the progress of dropEst, the number of reads mapped to intergenic, exonic, and in-

tronic regions, and further cell barcode and UMI merging statistics. This log also contains the

used arguments specified in .xml configuration file.

Step 5: Droplet matrix generation utilizes both the sorted .bam and .rds file of step 4. Two direc-

tories are generated, containing the respective matrices derived from the cm and cm_raw

(used for subsequent steps) fields of the .rds file. These directories contain corresponding files as

follows:
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a. Counts.mtx - This file represents the demultiplexed count matrix containing the number of times a

transcript of a gene was observed with a specific barcode (vars3 obs). As this matrix contains all

barcodesdetected in the alignment of sequenced reads, it includesbothbarcodes associatedwith

real, encapsulated cells as well as empty droplets and false positives. Thus, the number of barco-

des within this matrix is far greater than should exist per encapsulated cell.

b. Features.txt - This file contains the genes detected through the alignment process. Generally,

this number should be between 20,000 and 30,000. Depending on the reference transcrip-

tome and GTF annotation file used, these will be gene symbols, ENSEMBL IDs, and other

associated nomenclatures.

c. Barcodes.txt - This file contains the detected barcodes, generally these will be a series of

unique nucleotide strings that represent a detected barcode. This will vary depending on

the read depth of the alignment process.

Step 6: The scRNABatchQC report generates a .html report with several QC diagnostic metrics such

as number of cells per sample. The output is an HTML report with metrics and diagnostic plots eval-

uating the quality of the experiment. The report includes three parts: QC Summary, Technical View,

and Biological View. The QC summary table provides metrics including the total number of counts,

cells, and genes, percentage of mitochondrial and rRNA reads, and the number of cells removed

due to low quality. The Technical View diagnostic plots show different features, including distribu-

tions of counts, genes, mtRNA and rRNA percentages, expression cumulative plots, and variance

explained by features. The Biological View shows the highly variable genes, differentially expressed

genes according to PCA, enriched pathways according to both gene lists, PCA and t-SNE plots.

Variant 1. Heuristic droplet filtering results

Step 9: Inflection curve detection is a fast way to calculate a first pass quality cutoff for droplets and

potential cells detected. The resulting curve of a dataset containing a mixed distribution of high-

quality cells and empty droplets also contains information about the overall quality of the dataset.

Ideally, the produced inflection curve should look similar to a logarithmic function with nonzero

Table 1. Expected outputs for single-cell read alignment and DropEst library quantification

Object attribute (within .bam or .rds) Definition Step output

NH Number of reported alignments that
contain the query in the current record.

Step 3 .bam, Step 4 .bam

HI Query hit index, indicating the alignment
record is the i-th one stored in SAM.

Step 3 .bam, Step 4 .bam

AS Alignment score generated by aligner Step 3 .bam, Step 4 .bam

nM Number of mismatches per (paired)
alignment

Step 3 .bam, Step 4 .bam

GX Gene id Step 4 .bam

CR Cell barcode raw Step 4 .bam

UR UMI raw Step 4 .bam

CB Cell barcode Step 4 .bam

UB UMI Step 4 .bam

Cm Count matrix in sparse format Step 4 .rds

cm_raw Count matrix in sparse format without filtration
by minimal number of UMI and by the
required type of reads (-L option)

Step 4 .rds

saturation_info Data for estimating saturation using
preseqR package

Step 4 .rds

merge_targets Vector of corrected barcodes, named
with raw barcodes

Step 4 .rds

aligned_reads_per_cell Number of aligned reads per cell Step 4 .rds

aligned_umis_per_cell Number of aligned UMIs per cell Step 4 .rds

requested_umis_per_cb Number of UMIs per cell Step 4 .rds

requested_reads_per_cb Number of reads per cell Step 4. rds
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values. The sharpness of the angle of inflection is related to the separability of encapsulated, intact

cells and empty droplets, with a sharper angle indicating a more significant distinction between the

two (Figure 1A, robust inflection point indicated). In some cases, the overall library quality may be

low enough to affect the generation of this curve (Figure 1C, weak inflection point indicated). Addi-

tionally, in the case of lower quality libraries, the normalized transcriptional diversity curve will

contain a wider plateau when plotted by cell rank. (Figures 1B and 1D, ‘plateaus’ indicated).

Step 10: Relative transcript diversity thresholding uses the distribution of transcript diversity as both

an indicator of overall library quality and ameans to automatically label potential encapsulated cells.

Higher quality libraries, after running the relative_diversity function, will have distinct bimodal or

multimodal distributions of transcript diversity. The labeled, higher quality barcodes within the

green highlight are also labeled on a corresponding UMAP (Figures 2A and 2B, bimodal distribution

indicated with highlighted UMAP counterpart). Lower quality libraries will be unimodal, with few

barcodes labeled as high quality (Figures 2C and 2D unimodal distribution indicated with high-

lighted UMAP counterpart). In addition, the visualization of these lower quality libraries will, qualita-

tively, appear more amorphous in a UMAP visualization, with a single observable cluster.

Steps 17–19: Leiden clustering and cell determination uses a combination of unsupervised machine

learning and heuristic approaches frompublicly available, open-source software. Because of the heuristic

Figure 1. Inflection curve analysis

(A and B) Inflection curve thresholding (A) for a high quality dataset with corresponding Total Counts to N Genes By Counts ratio plot on log scales (B).

(C and D) Inflection curve thresholding (C) for a low quality dataset with corresponding Total Counts to N Genes By Counts ratio plot on log scales (D).

Red arrows indicate inflection points (A and B), and red brackets indicate the ‘plateau’ motif in the Total Counts/N Genes By Counts plot.
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selection criteria for subpopulations of high-quality cells, the quality of subpopulation selection is

augmented with prior knowledge, though this is dependent on the transcriptional nature of the cells of

interest. In this example, we examine the heterogeneity of cells found in a normal, human colonic epithe-

lium. Going in with prior knowledge of intestinal stem, transit amplifying, hematopoietic, absorptive,

secretory, tuft, enteroendocrine, and intestinal epithelial cells, we examine LGR5, PCNA, PTPRC,

KRT20, MUC2, POU2F3, CHGA, and EPCAM, respectively (Figure 3A). The expression of these marker

genes is of the highest priority in our heuristic process, followed by transcript diversity and so on. Based

on these criteria, Leiden clusters 9, 11, 16, 21, and 22 are selected (Figures 3B and 3C, selected cells indi-

cated). Theoutput fromstep 19will bea single, compressed .h5adfile comprisinga filtered cell countma-

trix with barcode and gene names annotated.

Figure 2. Relative transcript diversity distribution analysis

(Aa nd B) Relative transcript diversity histogram plot (A) for a high quality dataset with corresponding UMAP with highlighted selection (B).

(C and D) Relative transcript diversity histogram plot (C) for a low quality dataset with corresponding UMAP with highlighted selection (D).

Red arrows indicate bimodality and unimodality in (A and C), respectively, for the distributions of transcript diversity.

Figure 3. Heuristic cluster selection criteria

(A) Marker gene UMAP overlays, with scale bars denoting the normalized and transformed values.

(B) Leiden cluster labels derived through the Leiden community detection algorithm at a resolution of 2.

(C) UMAP visualization of the selected clusters, being 9, 11, 16, 21, and 22.
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Variant 2. Automated droplet filtering with dropkick results

Step 21: Automated droplet filtering with the dropkick Python package provides quality control met-

rics and cell probabilities for each barcode that can be used to subset an unfiltered counts matrix us-

ing a gene-based logistic regression model (Heiser, et al. 2020). The dropkick QC module returns a

report that quantifies ambient RNA and estimates global data quality by the profile of total counts

and genes per barcode (Figures 4A and 4B). The human colonic mucosa sample contains ambient

RNA that consists primarily of mitochondrial genes (Figure 4B) and accounts for nearly 90% of all

reads in some empty droplets (Figure 4A), indicating that cell death and lysis contributed highly to

background noise during this encapsulation.

Step 22: After training a logistic regression model using automated heuristic thresholds, the result-

ing dropkick coefficient values, and deviance scores along the path of tested lambda (regularization

strength) are shown (Figure 4C and saved as a ‘‘_coef.png’’ file) as well as final cell probabilities

Figure 4. Automated droplet filtering with dropkick

(A) Profile of total counts (black trace) and genes (green points) detected per ranked barcode for human colonic

mucosa sample. Percentage of mitochondrial (red) and ambient (blue) reads for each barcode included to denote

quality along total counts profile.

(B) Ranked gene dropout rates. Ambient genes identified by dropkick are used to calculate percent ambient counts

in A.

(C) Plot of coefficient values for 2,000 highly variable genes (top) and mean binomial deviance G SEM (bottom) for

model cross-validation along the lambda regularization path defined by dropkick. Top and bottom three coefficients

are shown, in axis order, along with total model sparsity (top). Chosen lambda value shown as dashed vertical line.

(D) Plot of percent ambient counts versus arcsinh-transformed genes detected per barcode, with histogram

distributions plotted on margins. Initial dropkick training thresholds shown as dashed vertical lines. Each point

(barcode) is colored by its final cell probability after model fitting.
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(Figure 4D also saved as a ‘‘_score.png’’ file). Further outputs from this step include a single, com-

pressed .h5ad file comprising a filtered cell count matrix with barcode and gene names annotated.

This file will retain the original input counts file name, appending ‘‘_dropkick.h5ad’’. ‘‘dropkick_-

score’’ and ‘‘dropkick_label’’ columns in the .obs dataframe of this file provide the user with cell

probabilities and default thresholded labels (dropkick_score R 0.5 indicates real cell), respectively.

Post-processing and dimension reduction structure preservation analysis results

Step 28: To examine DR structure preservation on a global scale, our filtered cell counts matrix is

normalized, transformed, and scaled prior to PCA for initial DR. We can explore our PCA outputs

for top gene loadings in the highest PCs that indicate importance for distinguishing differences in

cell populations (Figure 5A) and confirm the appropriate number of PCs for our analysis (for our hu-

man colon data: 50 PCs; Figure 5B). This PCA becomes the ‘‘native space’’ for downstream evalua-

tion of data structure preservation in our two-dimensional embeddings (Figure 5C). Embeddings

from t-SNE and UMAP display similar global structure and compare favorably to the native PCA

space (Figures 6A–6D), with global correlation values of 0.6112 and 0.6632, Earth Mover’s Distances

(EMDs) of 0.1649 and 0.1444, and K-nearest neighbor preservation values of 97.60% and 97.53% for

t-SNE and UMAP, respectively. In 7C and 7D, the differing means of the cell-to-cell distance distri-

butions are indicated. With the advantage in two out of three global metrics, UMAP outperforms t-

SNE on average across all cells in our dataset. However, we can perform more in-depth analyses on

local and organizational data structures to evaluate strengths and weaknesses of both embeddings.

Step 29: DE analysis allows us to identify cell types associated with each Leiden cluster (Figure 6E).

We can use this information to dive more deeply into local structure preservation by t-SNE and

UMAP embeddings; four clusters are highlighted in 7E, corresponding to example subpopulations

for structure preservation analysis.

Figure 5. PCA of human colonic mucosa dataset with PAGA graph

(A) Top and bottom 15 gene loadings for the first three PCs.

(B) Proportion of total explained variance for each of the top 30 PCs.

(C) First two PCs plotted with Leiden cluster overlay.

(D) PAGA graph constructed from k-nearest neighbors (kNN) in 50-component PCA space (k = 46), describing

relationships between Leiden clusters.

ll
OPEN ACCESS

22 STAR Protocols 2, 100450, June 18, 2021

Protocol



Step 30: To examine DR structure preservation for a single subpopulation, we focus on our tuft cell

cluster and calculate correlation and EMD values of 0.3014 and 0.1587 for t-SNE and 0.4025

and 0.0851 for UMAP. This indicates that UMAP does a significantly better job of preserving

cell-cell distances within the tuft cell population from their native PCA space (Figures 7A, 7B,

7F, and 7G).

Step 31: To examine DR structure preservation for multiple subpopulations, we investigate the dis-

tance distributions along the secretory epithelial cell lineage (Figures 7C, 7D, 7H, and 7I); we note

that t-SNE slightly exaggerates distances between stem cells (cluster 3) and early goblet cells

(cluster 4 and 8), as indicated by a greater shift of distances in the correlation plot above the iden-

tity line (Figures 7D and 7I). This shift is further quantified by correlation and EMD values, with a

mean increase in correlation by 0.083 and a mean decrease in EMD by 0.029 comparing UMAP

to t-SNE.

Step 35: For global subpopulation arrangement and structure analysis, we perform a coarse-grained

global analysis of cluster arrangement by building a minimum spanning tree (MST) graph between

Leiden cluster centroids in native and latent spaces. We observe five edges in the t-SNEMST that are

not present in PCA space, indicating relative cluster rearrangements. UMAP, however, displays four

of these edge permutations, suggesting that this embedding is more precise in maintaining popu-

lational organization than t-SNE (Figures 7E and 7J). These results indicate that further analyses and

visualizations should be performed with UMAP.

Figure 6. Global comparison of two-dimensional embeddings of human colonic mucosa dataset

(A) t-SNE embedding seeded with 50-component PCA, plotted with overlay of Leiden clustering.

(B) UMAP embedding seeded with 50-component PCA and initialized with PAGA coordinates, plotted with overlay of Leiden clustering.

(C) Global structural preservation correlation plot comparing t-SNE coordinates (latent space) to 50-component PCA (native space).

(D) Same as in (C), comparing UMAP coordinates (latent space) to 50-component PCA (native space). Indicated with red arrows in (C) and (D) are latent

space distance distributions which differ between t-SNE and UMAP.

(E) Top four differentially expressed genes for each Leiden cluster, with signatures for clusters 3, 4, 8, and 11 highlighted.
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LIMITATIONS

This pipeline is designed to integrate open-source software in a modular fashion, and each section

has its own limitations. Primarily, dataset-to-dataset variation may lead to differing performance.

Relatively high hardware requirements to run the single-cell read alignment and DropEst library

quantification section may prevent some users from fully utilizing this pipeline. The heuristic droplet

filtering, automated droplet filtering with dropkick, and post-processing and dimension reduction

structure preservation analysis sections involve the highest likelihood of variable parameters,

though the suggested guidelines will minimize unwanted variation. Currently, this pipeline is not im-

plemented with batch-aware functions and is unable to incorporate information across replicates

into the QC process. Further limitations include a set of assumptions each of these steps makes,

which should be satisfied regardless of dataset-to-dataset variation that may exist. In the heuristic

droplet filtering and automated droplet filtering with dropkick section variants, limitations include:

� In step 9, a distinct inflection point will only arise given some subset of more informative, informa-

tion-rich droplets. The properties of the utilized cumulative sum curve have been observed to be

dependent on the encapsulation process and read depth. If all droplets within a single sequencing

library contain a homogenous amount of information, an identifiable inflection may not be de-

tected, preventing a first pass filtering of droplets.

� For step 10, this step assumes a multimodal distribution of the number of unique genes detected

per droplet. It has been demonstrated before that single-cell libraries generated from encapsu-

lated cells, as opposed to empty droplets, present a higher diversity of detected genes (Lun

et al., 2019). This step assumes that both high and low information, with respect to read counts,

are represented in each dataset. Like step 9, if this diversity in droplet quality is not detected,

the identification of relatively high-quality cells is not possible. Though, given the Poissonian or

super-Poissonian nature of tag-based scRNA-seq cell encapsulation, it is highly unlikely a dataset

will be devoid of low-information empty droplets (Zhang et al., 2019).

Figure 7. Local and organizational structure preservation analysis for human colonic mucosa dataset

(A) t-SNE embedding highlighting tuft cell cluster.

(B) Local structure preservation correlation plot for tuft cell cluster, comparing t-SNE coordinates (latent space) to 50-component PCA (native space).

(C) t-SNE embedding highlighting secretory lineage from stem cells (cluster 3) to goblet cells (cluster 8) and mature goblet cells (clusters 4 and 12).

(D) Structure preservation correlation plot showing distances between stem and mature cell lineage clusters.

Indicated with red arrows in (B and G) and (D and I) are latent space distance distributions which differ between t-SNE and UMAP.

(E) t-SNE embedding with minimum spanning tree (MST) drawn between Leiden cluster centroids. Red edges represent those not present in native

(PCA) space.

(F–J) Same as in (A–E), for UMAP embedding.
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� For step 14, the highest priority heuristic criterion assumes that a defined set of marker genes ex-

ists for the dataset of interest, which may not be the case for all biological specimens of interest.

The likelihood of Type 2 error increases with fewer marker-defined subpopulations, as these sub-

populations may simply express fewer genes. Similarly, Type 1 errors are also possible with the

overreliance on agnostic metrics such as transcriptional diversity.

� In step 21, dropkick trains a cross-validated logistic regression model of genes associated with

subsets of high and low-quality cells. The accuracy of this model will be dependent on the repre-

sentation and detection of these bins of cells. Similarly, the default cutoff of 0.5 for binary barcode

labeling may vary depending on the properties of the cell type of interest; thus, these results

should be further validated with prior knowledge about target gene transcription.

In the post-processing and dimension reduction structure preservation analysis section, we describe

the limitations as follows:

� Steps 29 and 30, like step 14, are dependent on the detected or known heterogeneity of single cell

subpopulations within the dataset. The assumption is made that there exist multiple subpopula-

tions of cells that present detectable marker gene expression, and that these marker genes are

known. In the case that these markers are unknown, the DE testing between clusters may draw

some insight on distinct gene expression profiles. Still, statistically identified gene sets may

need validation, whether through user review or gene set enrichment analysis. The analysis of

structural preservation necessitates the capture of high-quality clusters, as identified through pre-

vious steps.

TROUBLESHOOTING

Problem 1

An error code arises that claims that the open file limit has been reached. This can arise in step 3

when setting a high –runThreadN parameter.

Potential solution

This occurs for certain steps involving parallelization due to the number of files written to the disk

which are read simultaneously and the default Linux system variable, ulimit, is set too low. This

can be amended by setting this to a higher value based on the hardware available.

Problem 2

Droplet estimation following read alignment yields fewer than expected demultiplexed droplets.

This can arise after assessing the logs alignment logs of step 3.

Potential solution

This can occur because a library of insufficient quality or sequenced at insufficient depth may have

led to a lack of detected high quality reads. The ‘‘Uniquely mapped reads %’’ from the alignment

logs indicate the mapping rate of the library. Generally, high-quality libraries should have above

80% mapping rate, lower than 50% may indicate a problem with the library preparation or sample

quality.

Problem 3

An error may arise during the Dropkick installation due to pip being unable to find a FORTRAN

compiler, during step 7.

Potential solution

For Debian-based systems, gfortran can be installed with:
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Problem 4

You are not detecting any mitochondrial reads in the droplet matrix, as indicated by the average

pct_counts_Mitochondrial being NaN or 0, which can arise during step 17.

Potential solution

This error can occur because the calculation and visualization of mitochondrial read count percent-

age per single-cell transcriptome is dependent on the nomenclature of the genes themselves.

Ensure that the gene nomenclature in the AnnData object is consistent with that used in setting

the variable annotation ‘‘Mitochondrial’’. The gene names and annotations can be checked and

set with the following two lines of code, respectively:

Problem 5

Visually, a small population of cells is highly and specifically expressing verified marker genes, but

there is no way to select this population given the Leiden cluster labels, which can arise during

step 17 or step 24.

Potential solution

This can occur due to the default Leiden clustering resolution and the simple underrepresentation of

that cell population of interest in the dataset. Computationally, these cells can be singled out by

further increasing the Leiden clustering resolution, at the cost of generatingmore clusters in general.

Experimentally, more cells may have to be encapsulated and sequenced to a higher read depth to

capture rare cells.

Problem 6

The cumulative sum curve is too shallow to visually detect a meaningful inflection point, or the auto-

matically detected inflection point is throwing out target cells; this can arise in step 9.

Potential solution

This error occurs primarily for the same reasons as step 1, Problem a. The lack of a detectable inflec-

tion curve, as provided in our expected outputs example, indicates low quality library inputs.

Alternatively, if high quality cells expressing target marker genes are suspected to be removed as

part of this inflection curve first pass, the user can manually set the initial quality cutoff with the

following code, where <user_threshold> indicates the top N droplets to retain for further quality

control:

Problem 7

dropkick is labeling cells with high and specific expression of verified marker genes as empty drop-

lets; this can arise in step 23.

Potential solution

This error can happen due to a combination of reasons detailed in step 1, Problem a, and the

dependencies on logistic regression parameters. Since the binary dropkick_label is based

on a threshold at 0.5, adjustments can be made to be more or less inclusive of droplets

based on the dropkick_score distribution. This can be done with the following code, where <user_

threshold> is a number between 0 and 1, with 0 being the least stringent and 1 being the most

permissive:

ll
OPEN ACCESS

26 STAR Protocols 2, 100450, June 18, 2021

Protocol



Further optimizations to the generation of this dropkick score can be done through adjustments to

the logistic regression parameters such as specifying more iterations, a range of alpha values, or a

longer ‘‘lambda path’’.

Problem 8

Latent and native space distances or subpopulation rearrangements are inconsistent between runs

and machines; this can arise in steps 28, 30, 31, 32, and 35.

Potential solution

Ensure that the random seeds are consistent between different runs. Three sources of random vari-

ation originate in the PYTHONHASHSEED, the numpy library seed, and the random library seed.

Still, note there may be some minor variation due to the current implementation of UMAP used in

scanpy.

Problem 9

Individual subpopulations during DR structure preservation yields lack biological heterogeneity,

thus affecting the interpretation of DE testing and cluster-based DR structure analysis; this can arise

in steps 29, 30, 32, and 35.

Potential solution

The clustering resolution of the Leiden algorithm will need to be adjusted based on the dataset

examined. A common heuristic to selecting this resolution parameter is to increase its value until

the smallest, marker-indicated subpopulation of cells is discretely identified as a cluster.

RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources and reagents should be directed to and will be ful-

filled by the lead contact, Ken Lau (ken.s.lau@vanderbilt.edu).

Materials availability

This study did not generate new unique reagents.

Data and code availability

This study did not generate any unique datasets. All code used in this protocol is available in the

following GitHub repository: https://github.com/Ken-Lau-Lab/STAR_Protocol.
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