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A B S T R A C T   

Background: Deep grey matter (dGM) structures, particularly the thalamus, are clinically relevant in multiple 
sclerosis (MS). However, segmentation of dGM in MS is challenging; labeled MS-specific reference sets are 
needed for objective evaluation and training of new methods. 
Objectives: This study aimed to (i) create a standardized protocol for manual delineations of dGM; (ii) evaluate 
the reliability of the protocol with multiple raters; and (iii) evaluate the accuracy of a fast-semi-automated 
segmentation approach (FASTSURF). 
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Methods: A standardized manual segmentation protocol for caudate nucleus, putamen, and thalamus was created, 
and applied by three raters on multi-center 3D T1-weighted MRI scans of 23 MS patients and 12 controls. Intra- 
and inter-rater agreement was assessed through intra-class correlation coefficient (ICC); spatial overlap through 
Jaccard Index (JI) and generalized conformity index (CIgen). From sparse delineations, FASTSURF reconstructed 
full segmentations; accuracy was assessed both volumetrically and spatially. 
Results: All structures showed excellent agreement on expert manual outlines: intra-rater JI > 0.83; inter-rater 
ICC ≥ 0.76 and CIgen ≥ 0.74. FASTSURF reproduced manual references excellently, with ICC ≥ 0.97 and JI 
≥ 0.92. 
Conclusions: The manual dGM segmentation protocol showed excellent reproducibility within and between 
raters. Moreover, combined with FASTSURF a reliable reference set of dGM segmentations can be produced with 
lower workload.   

1. Introduction 

Patients with multiple sclerosis (MS) exhibit damage of the grey 
matter (GM), including focal lesions and atrophy. (Du Toit et al., 2008; 
Bagnato et al., 2006; Geurts et al., 2005) GM atrophy can be quantified 
from structural brain magnetic resonance images (MRI) and has become 
an important and clinically relevant imaging outcome measure of MS. In 
particular, atrophy of deep GM (dGM) structures such as the caudate 
nucleus, putamen and thalamus has become of interest in MS, as it has 
been shown to correlate with important clinical outcome such as 
cognition. (Schoonheim et al., 2015; Bishop et al., 2017; Bermel et al., 
2003; Houtchens et al., 2007; Pagani et al., 2005) Atrophy measures of 
the dGM may serve as potential imaging biomarkers in MS. However, 
the applicability for everyday clinical use is limited, in part because 
there is a so far unmet need for reliable automated segmentation 
methods. (Wattjes et al., 2015; Sastre-Garriga et al., 2020) 

Current state-of-the-art and frequently used automated segmentation 
methods suffer from substantial limitations with respect to both repro
ducibility and accuracy, which is partly due to the presence of MS 
pathological changes. (Popescu et al., 2014, 2016; Gelineau-Morel et al., 
2012; Meijerman et al., 2018; Amiri et al., 2018; de Sitter et al., 2020) 
Specifically, there are various confounds that can affect the measure
ment of dGM atrophy: image registration and segmentation can be 
negatively affected by the presence of white matter lesions, (Gelineau- 
Morel et al., 2012; de Sitter et al., 2020) generalized or local atrophy, or 
subtle tissue contrast changes (Amiri et al., 2018; Westlye et al., 2009). 
To achieve accurate automated dGM segmentation in the presence of MS 
abnormalities, it is important that new methods are validated against 
expert reference outlines of dGM in representative MS samples. There
fore, we developed a standardized protocol for manually delineating the 
caudate, putamen and thalamus on 3D T1-weighted MRI and evaluated 
its quality in terms of reliability within and amongst multiple expert 
raters, using a multi-center MS imaging dataset. 

To validate the automated methods for measuring dGM atrophy, a 
more complete analysis in a larger multi-center set of image volumes is 
required. Since manual outlining is difficult, labor-intensive and time- 
consuming, (Grimaud et al., 1996; Paty et al., 1986; Fischl et al., 
2002) we endeavored to reduce the workload by reconstructing full 
semi-automated segmentations from sparse delineations as input. Spe
cifically, we investigated the performance of a recently developed semi- 
automated technique called ‘FAst Segmentation Through SURface 
Fairing’ (FASTSURF), (Bartel et al., 2019) which was demonstrated as a 
proof-of-concept for the hippocampus in Alzheimer patients by Bartel 
et al. (2019). Since this technique exhibited excellent accuracy for 
hippocampus, we hypothesized that FASTSURF can also be used to 
generate accurate reference segmentations of various other brain 
structures, with substantially lower workload than full manual tracings. 
This may provide an important impetus towards improved segmentation 
of dGM. In future work, when this protocol is applied, such segmenta
tions can be used to train or optimize automated methods such that these 
will segment the structures of interest well in MS cases. 

To summarize, in this study we aimed first, to develop a standardized 

protocol for manually tracing the caudate, putamen and thalamus. 
Secondly, the reliability of the protocol was investigated with multiple 
expert readers, on multi-center MS images. Thirdly, we evaluated the 
accuracy of FASTSURF to reconstruct full segmentations of the dGM in 
which sparse delineations served as input. 

2. Materials and methods 

2.1. Dataset and MRI acquisition 

Brain MRI scans of 12 healthy controls (HCs) (8 females) and 23 MS 
patients (12 females) from nine centers were retrospectively included, 
which were all acquired as part of two previously described MAGNIMS 
studies (www.magnims.eu). (Rocca et al., 2014; Ropele et al., 2014) The 
sample used for this study was selected to ensure that: many different 
MR scanners were included, most of the patients had progressive MS 
disease course types, and that the distributions of sex and age were 
closely matched to the overall dataset. The HCs were matched with the 
MS patients on scanner type, sex and age. Demographics of the subjects 
are shown in Table 1. Table 2 shows the number of subjects per center 
(MR scanner). All local institutional review boards approved the original 
study and written informed consent had been obtained from all partic
ipants. MR imaging was performed on 3.0 Tesla whole-body MR sys
tems, and near-isotropic, ~1mm (Geurts et al., 2005) voxel size, 3D T1- 
weighted datasets were included. Details on image acquisition param
eters used in each center are listed in Table 2. 

2.2. Manual segmentation protocol 

The segmentation protocol (see Supplementary File S1 for the full 
protocol) was specifically developed for manually tracing dGM 

Table 1 
Demographics of healthy controls and MS patients.  

Set Type Na Age in 
yearsb 

Disease 
types 

DD in 
yearsb 

EDSSc 

Total HC 12 
(8) 

38.4 ±
7.8    

Patient 23 
(12) 

42.9 ±
9.9 

11 RR, 5 SP, 
7 PP 

11.6 ±
6.9 

2.5 
(2.5) 

Training HC 5 (5) 34.7 ±
8.0    

Patient 12 
(6) 

44.4 ±
11.9 

7 RR, 2 SP, 3 
PP 

12.1 ±
8.3 

2.0 
(2.5) 

Test HC 7 (3) 41.1 ±
7.1    

Patient 11 
(6) 

41.3 ±
7.4 

4 RR, 3 SP, 4 
PP 

11.1 ±
5.59 

3.5 
(2.5) 

aNumber of subjects (Number of females). 
bMean ± standard deviation. 
cMedian (range). 
Abbreviations: HC = healthy control, DD = disease duration, EDSS = expanded 
disability status scale, RR = relapsing-remitting, SP = secondary-progressive, 
PP = primary-progressive. 
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structures on 3D T1-weighted MRI scans of MS patients, by neurologists 
and neuroradiologists with broad experience in the field of MS and MRI, 
supervised by neuroradiologists (F.B. with>30 years of experience and 
M.P.W. with>20 years of experience). Together, we reviewed the 
literature and studied images of histopathological specimens, MRI, 
(stereotactic) anatomy and computational 3D reconstructions; most of 
which are also listed in the protocol as recommended study material for 
the readers, since they help to understand the 3D anatomical position/ 
location and shape of the structure of interest in the human brain. 
Anatomical definitions were specified for each structure, supported in 
the protocol with example images from our own dataset. Alongside the 
anatomical landmarks, strict guidelines on how to recognize the outer
most edges of the structures on orthogonal planes were described. 
Certain decisions on whether to include the geniculate bodies as part of 
the thalamus and how to distinguish the caudate and the putamen from 
the nucleus accumbens were based on a mixture of literature studies, 
expert opinion and practical reasoning. 

Practically, the segmentation procedure consisted of two phases. 
First, demarcating the edges of the dGM structures on orthogonal slices, 
and second, tracing and fill the inside of the path defined by the reader in 
the axial plane, respecting the boundaries previously defined and the 
anatomical definitions that were specified for each structure. 

2.3. Manual tracing 

Manual outlining was performed within the online framework of the 
SPINE virtual laboratory (https://spinevirtuallab.org/), developed by 
the Center for Neurological Imaging (CNI) at Brigham and Women’s 
Hospital. This web-based program allows visualization of MR images in 
axial, coronal, and sagittal orientations to facilitate 3D anatomical 
interpretation. The voxel-wise labeling process was completely manual. 
It involved no thresholding, seed-growing, shape fitting or other auto
mated interference. Following the segmentation protocol described 
above and presented in Supplementary File S1, three expert readers 
manually delineated the caudate nucleus, putamen and thalamus as a 
whole on axial slices, in a slice-by-slice manner, for all 35 images. The 
readers were a trained neurologist (J.B.), neuroscientist (J.S.) and 
neurologist (S.R.), blinded to the subject characteristics. To assess the 
intra-rater variability, a random subset of dGM structures for 3 subjects 
(1 HC and 2 MS patient) were delineated a second time by all 3 raters in 
a separate session more than three months later. To assess the validity of 
FASTSURF, another subset of six subjects (2 HC and 4 MS patients) were 
delineated in a separate session by one reader (J.B.), which included 
only 10 predefined axial slices per structure. 

2.4. Reconstructions from sparse delineations: FASTSURF method 

To allow construction of reference segmentations with reduced 
workload, the possibility of reconstructing full segmentations from 
sparse delineations was investigated. For this purpose, the semi- 
automated segmentation method FASTSURF was used, which is based 

on mesh processing procedures using a surface fairing technique that has 
been described in detail previously. (Bartel et al., 2019) Briefly, to 
reduce the delineation time for manual observers, only a few contours 
have to be outlined, at regular slice intervals. First, these sparse contours 
are interpolated so that each contour has the same number of points. A 
closed mesh is then constructed by placing intermediate contours be
tween the known contours. Vertex positions for the intermediate con
tours are obtained by solving the following bi-Laplacian system of 
equations for the unknown x, y and z-coordinates of the vertices of the 
intermediate contours: 
∑

m
Ln,m

2xm =
∑

m
Ln,m

2ym =
∑

m
Ln,m

2zm = 0 

in which the Laplacian filter Ln,m represents the connectivity graph 
with n and m being the mesh vertices. Solving these equations leads to a 
smooth surface mesh passing through the delineated points with mini
mum curvature. 

Originally FASTSURF was designed for the hippocampus. In the 
present study, we quantitatively investigated this application for seg
mentation of the thalamus, caudate nucleus and putamen. First, similar 
to the approach of Bartel et al. (2019), sparse contours were extracted 
from fully manually segmented structures. The segmented structures 
were converted to meshes using the marching cubes algorithm and 
sparse contours were extracted at regular intervals, which served as 
input for FASTSURF (From now on: ‘FASTSURF with sparse contours’). 

Second, in a small subset of six images, one of the raters manually 
traced 10 predefined contours for each structure de novo, i.e., without 
creating outlines of the structures on the intermediate slices. These 10 de 
novo contours were used as input for FASTSURF (From now on: ‘FAST
SURF with de novo contours’). This allowed us to evaluate whether the 
protocol can be combined with FASTSURF to reconstruct full segmen
tations of the dGM using only 10 de novo delineations as input. 

Extra information on sparse contour simulation and training of 
FASTSURF can be found in the supplementary data (File S2 and 
Table S1-S4). 

2.5. Quantitative performance analysis 

In Fig. 1 an overview of the study design is shown. The two main 
quantitative performance metrics are; (i) intra- and inter-rater agree
ment of manual outlines of 3 raters on 35 images (ii) accuracy of 
FASTSURF in terms of volumetric and spatial agreement. In the next 
subparagraphs more details are described on the experiment and the 
statistical analyses. 

2.6. Intra- and inter-rater agreement of manual tracings 

The manual outlines of the three raters were evaluated on both intra- 
rater and inter-rater reliability. 

Table 2 
An overview of the acquisition parameters for each center.  

Institute Na Scanner manufacturer, scanner type TR 
(ms) 

TE 
(ms) 

TI 
(ms) 

FA 
(◦) 

Acquisition (Voxel size (mm3) 

A 13 GE, Signa HDxt 7.8 3 450 12 256x256x188 (0.976x0.976x1) 
B 2 Siemens, Trio 2300 2.98 900 9 232x256x176 (1x1x1) 
C 2 Siemens, Trio 1570 2.70 900 9 160x256x256 (1x1x1) 
D 1 Philips, Achieva 6.9 2.78 831 9 160x240x240 (1x1x1) 
E 5 Siemens, Trio 1900 2,1 900 9 224x256x176 (1x1x1) 
F 2 Siemens, Trio 2200 2,94 900 10 256x192x192 (1x1x1) 
G 5 Philips, Achieva 8,3 3,72 1000 8 256x256x192 (1x1x1) 
H 2 GE, Signa HDxt 5,5 1,76 450 10 256x256x188 (1x1x1) 
I 1 Philips, Achieva 8,3 3,72 1000 8 256x256x192 (1x1x1) 

aNumber of subjects per institute. Abbreviations: TR = repetition time, TE = echo time, TI = inversion time, FA = flip angle. 
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Intra-rater agreement was assessed spatially with the Jaccard Index 
(JI); JI = Vi∩j

Vi∪j 
between the first and second manual tracing of the 

structures. Vi∩j is volume of intersection of outline i and j and Vi∪j is 
volume of union of outline i and j. 
Inter-rater spatial agreement was assessed spatially with the gener
alized conformity index (CIgen), (Kouwenhoven et al., 2009) which 
is essentially a generalization of the Jaccard index for multiple raters; 
a full definition and explanation is provided in the supplementary 
File S3. Volumetrically, a two-way mixed effects model for intraclass 
correlation coefficients (ICC) using an absolute agreement definition 
was measured between the three raters (Shrout and Joseph, 1979). 

2.7. Fastsurf 

The performance of FASTSURF for dGM structures was evaluated in 
four ways; a) optimization of FASTSURF parameters; b) optimized 
FASTSURF with sparse delineations from full segmentations as input; c) 
optimized FASTSURF with 10 de novo contours as input; and d) agree
ment between the expert manual labels and ‘FASTSURF with sparse 
contours’ and ‘FASTSURF with de novo contours’ using Bland-Altman 
plots. 

For optimization of FASTSURF parameters, the dataset was divided 
into a training set (N = 17) and a test set (N = 18). In both groups, the 
different centers and numbers of patients and controls were equally 
distributed (see Table 2). The training set was used to find the 
optimal settings for the parameters of FASTSURF and the test set was 
used to study the performance of optimized FASTSURF compared to 
the manual outlines. 
The optimal settings obtained from the training set were applied in 
the test sets of each rater’s segmentations separately. Optimal set
tings can be found in Supplementary Table 5; for contours the 
optimal setting was 10. The spatial agreement between the resulting 
three datasets of ‘FASTSURF with sparse contours’ were evaluated 
with CIgen. The results were compared to the inter-rater agreement 
of the expert manual outlines. 

Additionally, the segmentations of all 3 raters were pooled as one 
dataset, which served to compare ‘FASTSURF with sparse contours’ to 
the manual references on both volumetric as spatial agreement. Volu
metrically, the agreement was quantified with the ICC for absolute 
agreement; (Koch, 1982) spatial agreement was assessed through the JI 
and Dice Similarity Coefficient (DSC) between ‘FASTSURF with sparse 

contours’ and manual references. With DSC = 2TP/(2TP + FP + FN), 
with TP, FP and FN, respectively True Positive, False Positive and False 
Negative. 

‘FASTSURF with de novo contours’ was validated on six images 
containing only 10 contours of each structure as input by one rater 
(J.B.). The segmentations that were obtained through ‘FASTSURF 
with de novo contours’ were compared to the manual reference on 
spatially agreement (JI and DSC), and compared with the agreement 
between ‘FASTSURF with sparse contours’ and manual reference. 
To evaluate the agreement between the fused manual labels and 
‘FASTSURF with sparse contours’ and ‘FASTSURF with de novo 
contours’, Bland-Altman plots were created in which the difference 
of two paired measurements [(A-B)] was plotted against the average 
of the two measurements [(A + B)/2], (Giavarina, 2015; Altman, 
1983) with separate colors for MS and controls to visually inspect 
whether there are disease specific effects. We ran a paired sample t- 
test (two-sided) to examine whether the mean of the difference 
equals 0. 

2.8. Interpretation of statistical results 

JI, DSC and CIgen range between 0 and 1, where perfect overlap 
yields a JI, DSC or CIgen value of 1, and no overlap yields a JI, DSC or 
CIgen value of 0. A JI or CIgen > 0.7 and a DSC > 0.8 is regarded as 
excellent. (Bartko, 1991) 

ICC also ranges between 0 and 1. We used Altman’s criteria to 
interpret the ICCs: <0.40 was considered as poor reliability, 0.40 to 0.74 
was considered fair to good, and ≥ 0.75 was considered excellent. 
(Cicchetti, 1994) 

3. Results 

Fig. 2 shows example images of dGM delineations for each rater 
separately and their overlap. Fig. 3 shows the tracings of one rater and 
the reconstructed FASTSURF segmentations for the caudate, putamen 
and thalamus. 

3.1. Intra- and inter-rater agreement of manual tracings 

The intra-rater agreement on spatial overlap was excellent with a 
mean (across raters) JI of 0.83 ± 0.11, 0.86 ± 0.05 and 0.86 ± 0.10 for 
the caudate nucleus, putamen and thalamus, respectively. 

Fig. 1. Overview of study design. A flowchart of the study design divided in two boxes; 1) manual segmentation protocol and 2) quantitative performance metrics. 
The manual segmentation protocol was used to create three datasets; quantitative performance metrics were used to assess spatial (JI, DSC and CIgen) and volumetric 
agreement (ICC). Abbreviations: CIgen = generalized conformity index; ICC = intraclass correlations; DSC = Dice Similarity Coefficient, JI = Jaccard index; N =
number of subjects. 
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The inter-rater agreement on spatial overlap was excellent; with both 
left and right hemisphere pooled together, the average CIgen for the 
caudate nucleus, putamen and thalamus were 0.74 ± 0.05, 0.74 ± 0.06 
and 0.75 ± 0.06 respectively. The volumetric agreement between the 
raters was also excellent with an ICC of 0.76 for the caudate, 0.79 for the 
putamen and 0.79 for the thalamus (left and right hemisphere pooled 
together). Table 3 provides average CIgen and ICC values for all struc
tures, both for each hemisphere separately and averaged. 

3.2. Fastsurf 

3.2.1. Parameter optimization for FASTSURF 
The results of the parameter optimization for the FASTSURF soft

ware, carried out on the test set (N = 17) are shown in the supple
mentary Tables S1-S5. The parameters that were optimized were: the 
orientation of outlining planes, the number of the outlined contours, the 

number of intermediate contours added by FASTSURF between two 
outlined contours and the number of points used for each contour. 

3.2.2. Agreement of ‘FASTSURF with sparse contours’ 
In the test set (N = 18), the performance of optimized FASTSURF was 

quantitatively evaluated. In Table S6 the CIgen values for ‘FASTSURF 
with sparse contours’ are provided for all structures bilaterally, as well 
as averaged across hemispheres. Inter-rater agreement on spatial over
lap for ‘FASTSURF with sparse contours’ was almost identical to the 
agreement between expert manual references. 

The volumetric and spatial agreement of ‘FASTSURF with sparse 
contours’ with manual reference segmentations was excellent (Table 4), 
with total bilateral volume ICCs for absolute agreement of 0.979 for the 
caudate nucleus, 0.999 for the putamen and 0.999 for the thalamus and 
mean JI of 0.92 ± 0.02, 0.95 ± 0.01, 0.96 ± 0.02, respectively. 

Fig. 2. Overview of manual delineations of the 3 raters and their overlap. From left to right: Axial 3D T1-weighted MRI slice with segmentations, 2D view of 
manual reference of rater 1 to 3 and 2D view of overlap of raters with green, blue and red one rater, purple and pink two and orange three raters. (For interpretation 
of the references to colour in this figure legend, the reader is referred to the web version of this article.) Abbreviations: CN = caudate nucleus; TH = thalamus; PU 
= putamen. 

Fig. 3. Overview of manual delineation of one rater and FASTSURF segmentations. (a) the tracings of one rater; (b) the extracted contours from full seg
mentations which were used for ‘FASTSURF with sparse contours’; (c) the reconstructed FASTSURF segmentations for the caudate, putamen and thalamus; (d) an 
intersection of ‘FASTSURF with sparse contours’ and the manual references in 3D; and (e) the overlap of c and d. 

Table 3 
Inter-rater agreement between the three raters; the generalized conformity 
index (CIgen) and intra-class correlations (ICC) between raters, separated for 
structure and hemisphere.  

Structure Hemipshere CIgena ICC 

Caudate Both  0.738 ± 0.049 0.762 
Left  0.733 ± 0.054 0.771 
Right  0.753 ± 0.042 0.766 

Putamen Both  0.736 ± 0.059 0.794 
Left  0.728 ± 0.061 0.769 
Right  0.753 ± 0.049 0.833 

Thalamus Both  0.746 ± 0.058 0.785 
Left  0.762 ± 0.039 0.815 
Right  0.741 ± 0.072 0.762 

Abbreviations: CIgen = generalized conformity index, ICC = intra-class 
correlations. 

a Mean ± standard deviation. 

Table 4 
ICC, Jaccard Index and Dice Similarity Coefficient between manual references 
and ‘FASTSURF with sparse contours’ and manuala references.  

Structure Hemispheres ICC Jaccard 
Indexa 

Dice Similarity Coefficient 
a 

Caudate Both  0.979 0.918 ± 0.023 0.924 ± 0.026  
Left  0.984 0.920 ± 0.021 0.925 ± 0.028  
Right  0.973 0.914 ± 0.024 0.923 ± 0.025 

Putamen Both  0.999 0.952 ± 0.013 0.960 ± 0.019  
Left  0.999 0.951 ± 0.012 0.958 ± 0.020  
Right  0.999 0.954 ± 0.013 0.961 ± 0.017 

Thalamus Both  0.999 0.962 ± 0.021 0.967 ± 0.030  
Left  0.999 0.960 ± 0.023 0.965 ± 0.030  
Right  0.999 0.964 ± 0.019 0.970 ± 0.030 

aMean ± standard deviation. 
Abbreviations: ICC = the intraclass correlation coefficient (two-way mixed 
model with absolute agreement). 
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3.2.3. Agreement of ‘FASTSURF with de novo contours’ 
The average volumes of the reconstructed dGM using ‘FASTSURF 

with de novo contours’ are displayed in Table 5, alongside the average 
volumes of the manual reference tracings and segmentations from 
‘FASTSURF with sparse contours’ for the same six subjects. Furthermore, 
the JI between FASTSURF results and the manual references are shown. 
The average JI between ‘FASTSURF with de novo contours’ and the 
manual segmentations were in the same range as the overlap between 
‘FASTSURF with sparse contours’ and the manual references. 

3.2.4. Bland-Altman plots and analysis 
Fig. 4, and Table 6 show the results of the Bland-Altman scatter plots 

and analysis of the combined (left + right) dGM volume measurements: 
FASTSURF minus the combined expert manual labels; with separate la
bels for MS patients and controls. For all structures, FASTSURF obtained 
smaller volumes (mL) than the manual output [mean difference (SD): 
caudate: − 0.20 (0.26); putamen: − 0.06 (0.12); thalamus: − 0.14 (0.10), 
all p-values < 0.001]. Visual inspection of the data revealed the same 
effects in the MS patients and controls. Because of the small number of 
subjects (N = 6) in ‘FASTSURF with the novo contours’ we were unable 
to perform similar analysis (For scatter plot see supplementary figure 1). 

4. Discussion 

In this study we presented a novel protocol with stringent guidelines 
for manually tracing the caudate nucleus, putamen and thalamus on 3D 
T1-weighted MR images, which exhibited excellent reliability in a multi- 
center dataset of MS patients. Moreover, we provided evidence that 
FASTSURF can be used to generate equally accurate dGM reference 
segmentations as high quality manual tracings of experienced raters. 

The high levels of agreement between the experts’ manual outlines of 
the dGM structures (JI ~ 0.75, ICC ~ 0.78) indicate that our segmen
tation protocol can be used to create dGM reference datasets with suf
ficient levels of accuracy, even in multi-center settings. (Cicchetti, 1994; 
Bocchetta et al., 2015) Also, our data revealed that the described method 
can be used on conventional as well as more advanced 3D T1 images. In 
addition, this study demonstrated that FASTSURF can be used to 
generate accurate dGM measurements with de novo partial contours as 
input. This will ultimately reduce the workload and timely effort to 
create sufficient reference datasets for training and validation purposes 
of algorithms for measuring dGM atrophy in MS. 

The output obtained through ‘FASTSURF with sparse contours’ as 
well as the segmentations from ‘FASTSURF with de novo contours’ 
showed high levels of agreement with the manual references, both 
volumetrically and spatially, indicating that semi-automation will not 
compromise the quality of the data. However, the Bland-Altman plots 
revealed that overall the volumes of FASTSURF were slightly lower than 
the manual annotations. This probably resulted from the location of the 
10 predefined contours, which were distributed equally over the width 

of the structures. Therefore it could be that the widest part of the 
structure was not taken into account. Nevertheless, future studies should 
help to improve FASTSURF to ensure greater accuracy. 

Visually, the Bland-Altman plots did not reveal clear disease specific 
effects on the agreement in MS patient versus controls. In future studies, 
more images with de novo partial contours obtained by multiple raters 
should be generated to further validate the accuracy of FASTSURF in this 
manner. Lastly, while FASTSURF was originally developed for the hip
pocampus in Alzheimer’s patients, (Bartel et al., 2019) our results 
conclusively demonstrated that this method is also accurate for cross- 
sectional segmentation of the dGM in MS patients. Future studies 
should investigate whether this technique is suitable for longitudinal 
observations as well. 

Although the dGM manual segmentation protocol showed good 
reproducibility within and among raters, certain guidelines might be 
debated. Considering the thalamus, it was decided that the geniculate 
bodies should be included, as they form part of extensions of the 
structure itself. Hence, the thalamus comprises mixed WM-GM voxel 
intensities, which makes it rather difficult to separate different thalamic 
subparts from the background, especially in the presence of atrophy. 
(Houtchens et al., 2007; Fischl et al., 2002; Derakhshan et al., 2010) 
Therefore, in order to minimize error and reduce variability, we decided 
to delineate all dGM structures as a whole. Although for the thalamus it 
is clear that specific nuclei are more sensitive to the MS disease process, 
which was a limitation of this study. Furthermore, the nucleus accum
bens is difficult to distinguish from adjacent structures due to close 
proximity to the caudate nucleus and putamen. Therefore, we used well- 
defined anatomical landmarks to identify the anterior and posterior 
limits of the nucleus accumbens in the coronal plane, and the bottom of 
the lateral ventricles as the inferior border of the caudate. (Lucas-Neto 
et al., 2013) 

Interestingly, our data revealed slightly worse estimations of the 
caudate nucleus compared to the putamen and thalamus, both manually 
as well as with FASTSURF. This finding probably results from the 
different shapes of the structures. The tail of the caudate is substantially 
more elongated and curved compared to the other structures, and 
therefore difficult to trace unambiguously. Most importantly, our 
consistent approach allowed the readers to reproduce references with 
great accuracy. Incorporating features from advanced imaging tech
niques such as diffusion tensor imaging (DTI) or quantitative suscepti
bility mapping (QSM) would probably lead to more refined estimations 
of these boundaries. (Glaister et al., 2017; Daniel, 2017) However, the 
guidelines presented here were strictly based on 3D T1-weighted MRI, 
considering that this is the standard imaging contrast in clinical practice 
for these purposes. While this work focused on standard 3D T1-weighted 
imaging sequences that are readily available in a clinical setting, there 
have also been developments on other MR imaging techniques, such as 
MPRAGE with additional suppression of WM or GM, or susceptibility- 
based contrasts. (Tanner et al., 2012; Kecskemeti et al., 2016) While 

Table 5 
Average volumes (mL) of manual reference, FASTSURF with sparse contours and FASTSURF with de novo contours. And the average Jaccard Index (JI) and Dice 
Similarity Coefficient (DSC) between manual reference and FASTSURF with sparse contours and with de novo contours. a.  

N = 6  Manual FASTSURF with sparse contours FASTSURF with de novo contours 
Structure Hemispheres Volume Volume Jaccard Index Dice Similarity Coefficient Volume Jaccard Index Dice Similarity Coefficient 

Caudate Both 4.64 ± 0.68 4.39 ± 0.51 0.823 ± 0.042 0.900 ± 0.011 4.38 ± 0.64 0.798 ± 0.042 0.923 ± 0.030  
Left 4.66 ± 0.73 4.45 ± 0.55 0.822 ± 0.045 0.901 ± 0.011 4.43 ± 0.75 0.797 ± 0.043 0.923 ± 0.035  
Right 4.62 ± 0.69 4.34 ± 0.52 0.823 ± 0.042 0.900 ± 0.011 4.33 ± 0.58 0.800 ± 0.041 0.922 ± 0.027 

Putamen Both 5.44 ± 1.09 5.38 ± 1.01 0.884 ± 0.035 0.943 ± 0.008 5.41 ± 1.07 0.880 ± 0.039 0.947 ± 0.022  
Left 5.54 ± 1.23 5.42 ± 1.08 0.883 ± 0.042 0.944 ± 0.009 5.36 ± 0.81 0.883 ± 0.040 0.944 ± 0.030  
Right 5.35 ± 1.05 5.33 ± 1.02 0.886 ± 0.030 0.943 ± 0.007 5.46 ± 1.17 0.877 ± 0.038 0.950 ± 0.022 

Thalamus Both 6.83 ± 0.83 6.70 ± 0.79 0.893 ± 0.032 0.938 ± 0.015 6.74 ± 0.79 0.887 ± 0.035 0.953 ± 0.35  
Left 6.83 ± 0.84 6.75 ± 0.80 0.885 ± 0.037 0.927 ± 0.012 6.78 ± 0.77 0.877 ± 0.032 0.948 ± 0.037  
Right 6.83 ± 0.90 6.64 ± 0.85 0.892 ± 0.033 0.947 ± 0.012 6.69 ± 088 0.901 ± 0.036 0.958 ± 0.035 

a mean ± standard deviation. 
Abbreviations: mL = milliliter, N = number of subjects. 
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those techniques may not be ready yet for widespread clinical applica
tion, they could inform expert raters on the boundaries of the dGM 
structures, which could help training of improved automated methods, 
regardless of whether they are applied with or without direct input from 
these methods. 

A possible limitation of this study was that we did not compare 
FASTSURF with other existing automated segmentation techniques 
However, two other studies that were recently published by our group 
already evaluated existing automated segmentations methods against 
manual references, using (partly) the same dataset (de Sitter et al., 2020; 
Burggraaff et al., 2020). Moreover, since this comparison would reveal 
any systematic difference between methods, e.g. with respect to 
anatomical definitions of the structures of interest, we argued that this 
would not be relevant for the value of creating accurate reference seg
mentations. Therefore, to maintain the focus of present work, we did not 
perform such statistical analysis. Another limitation of our study was 
that no statistical analysis was performed between ‘FASTSURF with de 
novo contours’ and manual annotations due to the limited sample size 
(N = 6). In future work, more manual delineations from trained expert 
raters should be included. 

To conclude, we suggest that high-quality dGM segmentations can be 
created based on the proposed manual delineation protocol. Together 
with the standardized manual delineation protocol, FASTSURF can 
serve as an adequate tool to create accurate reference segmentations 
with considerably less effort than full manual outlines. This opens up 
possibilities for improving, training and developing algorithms for 
measuring dGM atrophy in MS and other neurodegenerative diseases. 
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