
DATA RESOURCES

The development of artificial intelligence software to 
improve the outcomes of breast screening relies on the 

availability of well-curated image databases (1). The OP-
TIMAM Mammography Image Database (OMI-DB) 
(2,3) was created to provide a centralized, fully annotated 
dataset for research. The initial reason for creating the 
database was for the Cancer Research United Kingdom–
funded projects OPTIMAM (2008–2013) and OPTI-
MAM2 (2013–2018), which evaluated how various fac-
tors affect breast cancer detection on mammograms. The 
images are derived from screening centers in the United 
Kingdom and combined with systematically collected 
data on the current screening episode, as well as previ-
ous and subsequent episodes. In the United Kingdom, 
the National Health Service Breast Screening Programme 
(NHSBSP) invites women to attend breast screening ev-
ery 3 years between the ages of 50 and 70 years. A screen-
ing episode is one attendance at screening by a woman 
and includes any immediate workup imaging (assessment) 
if she was recalled for further investigation of a suspicious 
region on the screening mammograms. Any pathologic 
finding is also included, and the episode ends with histo-
logic diagnosis or treatment for all lesions. At some screen-
ing centers younger and older women are also invited 
for screening as part of the national age trial (4). Some 
women in high-risk groups receive annual invitations to 
screening. Our objective was to collect mammograms for 
women with screen-detected cancers as well as representa-
tive samples of normal and benign screening cases.

Materials and Methods

Content of OMI-DB
“For processing” and “for presentation” screening mam-
mograms and prior mammograms have been collected 
for all screen-detected and interval cancers from Jarvis 
Breast Screening Centre in Guildford, St George’s Hospi-
tal in South West London, and Addenbrooke’s Hospital 

in Cambridge since 2011. All mammography images and 
data associated with initial screening attendance, further 
assessment, and surgical outcomes were collected as a 
screening episode. In addition to continuous collection 
of cancers, images and clinical data were collected for all 
women screened during 2014, and for a random selection 
of 25% of all women screened in 2012, 2013, and 2015 
at two of the three sites. The total number of all types of 
images in the database is 3 072 878. Collection into the 
database is ongoing, and each case is updated with new 
information and further screening episodes. All data in 
this Data Resource article relate to May 2020. Data from 
a total of 172 282 women were included within the data-
base at this time.

Image Database: Image Collection and Design
The processes and systems required for image collection 
are complex. A key provision is to ensure that all poten-
tially identifiable information is removed from the im-
ages and data at the point of collection and is inacces-
sible to researchers. Figure 1 shows a simplified view of 
two types of collection: automated remote site and stand 
alone. A full description can be found in Appendix E1 
(supplement). To identify women’s data for collection, 
the National Breast Screening System (NBSS) is queried 
using search criteria such as study-date range or outcome 
classification (normal or malignant). Images and clinical 
data for the women’s screening and assessment episodes 
are then retrieved. For the images currently in OMI-DB, 
this process is fully automated using a physical or virtual 
server. In addition, tools have been developed and tested 
for small-scale collection sites where setting up a server is 
problematic. In this stand-alone system, an image collec-
tion tool is downloaded by a staff member and pointed 
at a manually prepared folder containing images for col-
lection, and the NBSS queried for clinical data for those 
women. Further processing and storage of images and 
data follows the automated collection procedure. Imag-
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evaluating algorithms, is collected in OMI-DB. Experienced 
(UK accredited) mammography readers at their own site (radiol-
ogists and advanced practice radiographers) annotate the images 
with reference to records made at the time of initial mammogra-
phy interpretation and at further (assessment) workup (magnifi-
cation views, US, and biopsy). This information is used to define 
rectangular regions of interest indicating the location and area of 
lesions and other attributes, such as radiologic appearance and 
conspicuity. To be accredited, readers must have screening and 
workup experience reading a minimum of 5000 cases per year. 
These local annotations are preferred to external review without 
access to the local information. Of the 7661 screen-detected can-
cers from episodes with digital images, 5097 have been marked 
(67% of cancers). Web-enabled, remotely accessible software 
allows radiologists to view cases, annotate clinical features, and 
participate in observer studies (5).

Data Sharing
The project has approval from an ethical research commit-
tee specializing in research databases organized by the NHS 
Health Research Authority. A formal local agreement to con-
tribute cases is also gained at each site. The funder, Cancer 
Research UK, retains the intellectual property of the database 
and implements sharing agreements with approved academic 
and commercial research groups. The sharing of images and 
metadata with external parties involves additional processes 
such as regeneration of pseudonyms and recording cases 
that have been shared with each third party. A download-
coordinating tool facilitates secure transfer and regularly syn-
chronizes the metadata defined by the access list. The tool 
is supplied with documentation providing an overview of 
the database structure and tables describing the relational 
schema. Researchers are encouraged to use our open-source 
Python package that parses the shared OMI-DB to provide a 

ing and screening data are pseudonymized and records inserted 
into lookup tables at the collection site. Images, metadata, and 
screening data are uploaded to the cloud for storage. Activity 
relating to the collection of data and images is logged at the 
collection site.

The OMI-DB comprises several relational databases and 
cloud storage systems (3). Figure 2 shows a simplified schema of 
the data model. The associated data comprise radiologic, clinical, 
and pathologic information extracted from NBSS.  When load-
ing images into the database, relevant Digital Imaging and Com-
munications in Medicine tags are extracted to create a searchable 
index. Information on screening history, previous occurrences of 
cancer, biopsy results, and surgical procedures are collected from 
NBSS. The exact radiologic locations of lesions are not stored in 
NBSS. However, such information, important for training and 

Abbreviations
NBSS = National Breast Screening System, NHSBSP = National 
Health Service Breast Screening Programme, OMI-DB = OPTI-
MAM Mammography Image Database

Summary
The OPTIMAM Mammography Image Database is a sharable re-
source with processed and unprocessed mammography images from 
United Kingdom breast screening centers, with annotated cancers 
and clinical details.

Key Points
 n The database includes serial screening mammograms that were col-

lected over a 10-year period with data from 172 282 women as of 
May 2020.

 n The database includes data on all breast cancers in a screened 
population including interval cancers.

 n This resource has been widely used to develop and evaluate artifi-
cial intelligence algorithms for breast cancer detection.

Figure 1: Simplified representation of processes for collecting and annotating imaging, clinical, and ground truth data used to populate the OPTIMAM Mammography 
Image Database. NBSS = National Breast Screening System, PACS = picture archiving and communication system.

http://radiology-ai.rsna.org
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detailed application programming interface and tools to 
facilitate metadata extraction and filtering. For access to 
the data and images from OMI-DB, contact the Cancer 
Research UK’s Commercial Partnerships team or apply 
on the OMI-DB website (6).

Resulting Dataset and Applications

Patient Characteristics and Database Overview
Table 1 shows the invasive status and grade for screen-
detected and interval cancers in general population 
screening, for which OMI-DB contains the associated 
digital images. Twenty-seven screen-detected cancers and 
14 interval cancers were excluded from the tables due 
to missing, or inconsistent, information. The number of 
women with one, two, or three or more screening epi-
sodes with digital images in OMI-DB is shown in Figure 
3. Note that OMI-DB also contains clinical information 
for earlier analog imaging episodes but no images.

OMI-DB contains screening images for 172 282 
women attending breast screening (including 4518 
women who also have tomosynthesis assessment images) 
and screening images for 364 women with higher-risk 

Figure 2: Schema shows simplified data model for radiologic (blue), clinical and pathologic (green), and ground truth (orange) information stored in the OPTIMAM 
Mammography Image Database. FK = foreign key.

Table 1: Status and Grade of Screen-detected and Interval 
Cancers in OMI-DB

Invasive Status/Grade
No. of Screen-detected 
Cancers

No. of Interval 
Cancers

Invasive
 Grade 1 1222 71
 Grade 2 2818 367
 Grade 3 977 247
 Not assessable 24 7
 No grade 487 177
In situ
 Low grade 166 9
 Intermediate grade 589 20
 High grade 931 36
 Not assessable 0 0
 No grade 420 18
  Total 7634 952

Note.—For details of the classification procedures and source code 
used to generate the count data, visit https://bitbucket.org/scicomcore/
omidb-2020. OMI-DB = OPTIMAM Mammography Image Database.

http://radiology-ai.rsna.org
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Discussion
The set-up of an annotated mammographic image database 
with sharing protocols has been time-consuming and chal-
lenging. Any collection process should ideally be automatic, 

screening episodes. The number of episodes in OMI-DB 
for each age group is shown in Table 2. As the collection 
has progressed, modalities, such as tomosynthesis and 
MRI, have been added.

Use of Database
The database has been used in projects at the Royal Sur-
rey NHS Foundation Trust (7–10). This includes vir-
tual clinical trials investigating the effect of factors such 
as detector type, dose, and image processing on breast 
cancer detection (9,10) and evaluating the cancer char-
acteristics and breast density of women in the NHSBSP 
(8,11).

The database has been shared since 2014, and publica-
tions by users must acknowledge its use. Cancer Research 
UK staff require users to report on their project’s progress 
even if not published. Data and images from OMI-DB 
have been shared with more than 30 academic and com-
mercial groups for various research aims, but mainly to 
develop machine learning artificial intelligence techniques 
(12–16). Images and data have also been used to evaluate sev-
eral artificial intelligence algorithms at different stages of de-
velopment from prototypes to commercial products (12–15).

Table 2: Number of Episodes for Routine Screening and for 
the Higher Risk Group in OMI-DB

Age Group (y) Routine Screening by Age Higher Risk

30–34 0 3
35–39 0 8
40–44 2 226
45–49 19 545 219
50–54 90 699 193
55–59 88 923 126
60–64 80 067 83
65–69 72 774 74
70–74 21 068 37
75–79 18 11
80–84 1 3
 Total 373 097 983

Figure 3: Number of women with one, two, or three or more screening episodes with images in OPTIMAM Mammography Image Data-
base, for, A, women with normal breasts, B, women with interval cancers, C,  women with benign lesions, and, D, women with screen-detected 
cancers. For cases of nonnormal breasts, episodes beyond the most recent abnormal episode were excluded.

http://radiology-ai.rsna.org
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which holds both processed and unprocessed mammography 
images with annotated cancers and clinical details.
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