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Breast density is an important risk factor for breast can-
cer (1–3). Additionally, areas of higher density can mask 

findings within mammograms, leading to lower sensitiv-
ity (4). Many states have passed breast density notification 
laws requiring clinics to inform women of their breast 
density (5). Radiologists typically assess breast density 
by using the Breast Imaging Reporting and Data System 
(BI-RADS) lexicon, which divides breast density into four 
categories: A, almost entirely fatty; B, scattered areas of 
fibroglandular density; C, heterogeneously dense; and D, 
extremely dense (examples are presented in Fig E1 [supple-
ment]) (6). Unfortunately, radiologists exhibit intra- and 
interreader variability in the assessment of BI-RADS breast 
density, which can result in differences in clinical care and 
estimated risk (7–9).

Deep learning (DL) has previously been used to assess 
BI-RADS breast density for film (10) and full-field digi-
tal mammographic (FFDM) images (11–16), with some 
models demonstrating closer agreement with consensus 
estimates than individual radiologists (14). To realize the 

promise of the use of these DL models in clinical prac-
tice, two key challenges must be met. First, because digital 
breast tomosynthesis (DBT) is increasingly used in breast 
cancer screening (17) due to improved reader performance 
(18–20), DL models should be compatible with DBT ex-
aminations. To aid in radiologist interpretation of breast 
cancer and breast density, DBT examinations contain two-
dimensional images in addition to three-dimensional im-
ages. These two-dimensional images may be either FFDM 
images or synthetic two-dimensional mammographic 
(SM) images derived from the three-dimensional images. 
Figure E2 (supplement) shows the differences in image 
characteristics between FFDM and SM images. The rela-
tively recent adoption of DBT at many institutions means 
that the datasets available for training DL models are of-
ten fairly limited for DBT examinations compared with 
FFDM examinations. Second, DL models must offer con-
sistent performance across sites, where differences in imag-
ing technology, patient demographics, or assessment prac-
tices could impact model performance. To be practical, this 

This copy is for personal use only. To order printed copies, contact reprints@rsna.org

Purpose: To develop a Breast Imaging Reporting and Data System (BI-RADS) breast density deep learning (DL) model in a multisite 
setting for synthetic two-dimensional mammographic (SM) images derived from digital breast tomosynthesis examinations by using 
full-field digital mammographic (FFDM) images and limited SM data.

Materials and Methods: A DL model was trained to predict BI-RADS breast density by using FFDM images acquired from 2008 to 2017 
(site 1: 57 492 patients, 187 627 examinations, 750 752 images) for this retrospective study. The FFDM model was evaluated by using 
SM datasets from two institutions (site 1: 3842 patients, 3866 examinations, 14 472 images, acquired from 2016 to 2017; site 2: 7557 
patients, 16 283 examinations, 63 973 images, 2015 to 2019). Each of the three datasets were then split into training, validation, and 
test. Adaptation methods were investigated to improve performance on the SM datasets, and the effect of dataset size on each adapta-
tion method was considered. Statistical significance was assessed by using CIs, which were estimated by bootstrapping.

Results: Without adaptation, the model demonstrated substantial agreement with the original reporting radiologists for all three datas-
ets (site 1 FFDM: linearly weighted Cohen k [kw] = 0.75 [95% CI: 0.74, 0.76]; site 1 SM: kw = 0.71 [95% CI: 0.64, 0.78]; site 2 SM: 
kw = 0.72 [95% CI: 0.70, 0.75]). With adaptation, performance improved for site 2 (site 1: kw = 0.72 [95% CI: 0.66, 0.79], 0.71 vs 
0.72, P = .80; site 2: kw = 0.79 [95% CI: 0.76, 0.81], 0.72 vs 0.79, P , .001) by using only 500 SM images from that site.

Conclusion: A BI-RADS breast density DL model demonstrated strong performance on FFDM and SM images from two institutions 
without training on SM images and improved by using few SM images.

Supplemental material is available for this article.

Published under a CC BY 4.0 license.

A Multisite Study of a Breast Density Deep Learning 
Model for Full-Field Digital Mammography and Synthetic 
Mammography
Thomas P. Matthews, PhD • Sadanand Singh, PhD • Brent Mombourquette, MS • Jason Su, MS • Meet P. Shah, MS •  
Stefano Pedemonte, PhD • Aaron Long, MS • David Maffit, MS • Jenny Gurney, MS • Rodrigo Morales Hoil, BS •  
Nikita Ghare, MS • Douglas Smith, PhD • Stephen M. Moore, MS • Susan C. Marks, MD • Richard L. Wahl, MD

From Whiterabbit AI, Inc, 3930 Freedom Circle, Suite 101, Santa Clara, CA 95054 (T.P.M., S.S., B.M., J.S., M.P.S., S.P., A.L., R.M.H., N.G., D.S.); Mallinckrodt Institute 
of Radiology, Washington University School of Medicine, St Louis, Mo (D.M., J.G., S.M.M., R.L.W.); and Peninsula Diagnostic Imaging, San Mateo, Calif (S.C.M.). Re-
ceived February 5, 2020; revision requested March 20; revision received August 10; accepted August 28. Address correspondence to T.P.M. (e-mail: thomas@whiterabbit.ai).

Study supported in part by Whiterabbit. Washington University has equity interests in Whiterabbit and may receive royalty income and milestone payments from a “Collabora-
tion and License Agreement” with Whiterabbit to develop a technology evaluated in this research.

Conflicts of interest are listed at the end of this article.

Radiology: Artificial Intelligence 2021; 3(1):e200015 • https://doi.org/10.1148/ryai.2020200015 • Content codes:  

mailto:reprints%40rsna.org?subject=
mailto:thomas@whiterabbit.ai


2 radiology-ai.rsna.org n Radiology: Artificial Intelligence Volume 3: Number 1—2021

Deep Learning Model for Full-Field Digital Mammography and Synthetic Mammography

United States, and site 2, an outpatient radiology clinic located 
in Northern California. For site 1, FFDM and SM datasets 
were collected, whereas for site 2, only a SM dataset was col-
lected. The site 1 FFDM dataset consisted of 187 627 exami-
nations acquired from 2008 to 2017, the site 1 SM dataset 
consisted of 3866 examinations acquired from 2016 to 2017, 
and the site 2 SM dataset consisted of 16 283 examinations 
acquired from 2015 to 2019. The FFDM images were acquired 
on Selenia and Selenia Dimensions imaging systems (Hologic), 
whereas the SM images were acquired on Selenia Dimension 
imaging systems (C-View; Hologic). The two sites serve dif-
ferent patient populations. The patient cohort from site 1 was 
59% White, non-Hispanic (34 192 of 58 397), 23% Black, 
non-Hispanic (13 201 of 58 397), 3% Asian (1630 of 58 397), 
and 1% Hispanic (757 of 58 397); the patient cohort from  
site 2 was 58% White, non-Hispanic (4350 of 7557), 1% 
Black, non-Hispanic (110 of 7557), 21% Asian (1594 of 
7557), and 7% Hispanic (522 of 7557). The distribution of 
ages is similar for the two sites (site 1, 55 years 6 16 [standard 
deviation]; site 2, 56 years 6 11).

The examinations were interpreted by one of 11 radiolo-
gists (breast imaging experience ranging from 2 to 30 years) for  
site 1 and by one of nine radiologists (experience ranging from 
10 to 41 years) for site 2. The BI-RADS breast density assess-
ments of the radiologists were obtained from each site’s mam-
mography reporting software (site 1: Magview 7.1, Magview; 
site 2: MRS 7.2.0, MRS Systems). Patients were randomly 
selected for training, validation, and testing at ratios of 80%, 
10%, and 10%, respectively. Because the split was performed 
at the patient level, the images for a given patient (in particu-
lar, all FFDM and SM images for site 1) appear in only one of 
these sets. All examinations with a BI-RADS breast density as-
sessment were included. No explicit filtering was performed for 
implants or prior surgery. For the FFDM validation set, only the 
first 25 000 images were used in order to accelerate the training 
process (evaluation on the validation set occurs after each train-
ing epoch). For the test sets, examinations were required to have 
exactly the four standard screening mammographic images (the 
mediolateral oblique and craniocaudal views of both breasts). 
This restriction led to the elimination of nearly all examinations 
for patients with implants because of the presence of implant-
displaced views. Following these restrictions, the distribution of 
patients was as follows: training (FFDM, 50 700 patients [88%]; 
site 1: SM, 3169 [82%] patients; site 2: SM, 6056 [80%] pa-
tients), validation (FFDM, 1832 patients [3%]; site 1: SM, 403 
patients [10%]; site 2: SM, 757 patients [10%]), and testing 
(FFDM, 4960 patients [9%]; site 1: SM, 270 patients [7%]; site 
2: SM, 744 patients [10%]). The distribution of the BI-RADS 
breast density assessments for each set are presented in Table 1 
(site 1) and Table 2 (site 2).

DL Model
The DL model and training procedure were implemented by 
using the PyTorch DL framework (version 1.0; https://pytorch.
org). The base model architecture is a preactivation ResNet-34 
(21–23), which accepts as input a single image correspond-
ing to one of the views from a mammographic examination 

should be achieved while requiring limited additional data from 
each site.

In this study, we present a BI-RADS breast density DL model 
that offers close agreement with the original reporting radiolo-
gists for both FFDM and DBT examinations at two institutions. 
A DL model was first trained to predict BI-RADS breast density 
by use of a large-scale FFDM dataset from one institution. The 
model was then evaluated on a test set of FFDM images and SM 
images generated as part of DBT examinations acquired from 
the same institution and from a separate institution. Adaptation 
techniques, requiring few SM images, were explored to improve 
performance in the two SM datasets.

Materials and Methods
This retrospective study was approved by an institutional review 
board for each of the two sites where data were collected (site 
1, internal institutional review board; and site 2, Western In-
stitutional Review Board, Puyallup, Wash). Informed consent 
was waived, and all data were handled according to the Health 
Insurance Portability and Accountability Act. This work was 
supported in part by funding from Whiterabbit. Washington 
University has equity interests in Whiterabbit and may receive 
royalty income and milestone payments from a collaboration 
and license agreement with Whiterabbit to develop a technol-
ogy evaluated in this research.

Datasets
Mammography examinations were collected from two sites: 
site 1, an academic medical center located in the Midwestern 

Abbreviations
AUC = area under the receiver operating characteristic curve, BI-
RADS = Breast Imaging Reporting and Data System, DBT = digital 
breast tomosynthesis, DL = deep learning, FFDM = full-field digi-
tal mammography, SM = synthetic two-dimensional mammography

Summary
A breast density deep learning model showed strong performance on 
digital and synthetic mammographic images from two institutions 
without training on synthetic mammographic images and improved 
with adaptation by using few synthetic mammographic images.

Key Points
 n A Breast Imaging Reporting and Data System breast density deep 

learning (DL) model achieved substantial agreement with the orig-
inal interpreting radiologists for full-field digital mammography 
(FFDM) examination data from site 1 (linearly weighted Cohen k 
[kw] = 0.75 [95% CI: 0.74, 0.76]).

 n Without modification, the DL model trained on FFDM images 
demonstrated substantial agreement with the original reporting 
radiologists for a test set of synthetic two-dimensional mam-
mographic (SM) images, which were generated as part of digital 
breast tomosynthesis examinations (site 1: kw = 0.71 [95% CI: 
0.64, 0.78]).

 n Without modification, the DL model also demonstrated close 
agreement for a test set of SM images obtained from a different in-
stitution than that of the training data (site 2: kw = 0.72 [95% CI: 
0.70, 0.75]). Adaptation techniques requiring few SM images were 
able to further improve performance (eg, site 2: kw = 0.79 [95% 
CI: 0.76, 0.81]; P , .001).
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considered the addition of a small linear layer follow-
ing the final fully connected layer where either the 4 
3 4 matrix is diagonal (vector calibration) or the 4 3 
4 matrix is allowed to vary freely (matrix calibration). 
Second, we retrained the final fully connected layer 
of the ResNet-34 model on samples from the target 
domain (fine-tuning). More information on these 
methods can be found in Appendix E2 (supplement).

To investigate the impact of the target domain 
dataset size, the adaptation techniques were repeated 
for different SM training sets across a range of sizes. 
The adaptation process was repeated 10 times for 
each dataset size with different training data to inves-
tigate the uncertainty arising from the selection of the 
training data. For each realization, the training im-
ages were randomly selected, without replacement, 
from the full training set. As a reference, a ResNet-34 
model was trained from scratch (ie, random initial-
ization) for the largest number of training samples 
for each SM dataset.

Statistical Analysis
To obtain an examination-level assessment, each image within an 
examination was processed by the DL model and the resulting 
probabilities were averaged. Several metrics were computed from 
these average probabilities for the four-class BI-RADS breast 
density task and the binary dense (BI-RADS C and D) versus 
nondense (BI-RADS A and B) task: accuracy, estimated on the 
basis of concordance with the original reporting radiologists, the 
area under the receiver operating characteristic curve (AUC), 
and Cohen k (scikit version 0.20.0; https://scikit-learn.org). CIs 
were computed by non-Studentized pivotal bootstrapping of the 
test sets for 8000 random samples (26). For the four-class prob-
lem, macroAUC, the average of the four AUC values from the 
one class versus others tasks and linearly weighted Cohen k (kw) 
are reported. For the binary density task, the predicted dense and 
nondense probabilities were computed by summing the prob-
abilities for the corresponding BI-RADS density categories. For 

and produces estimated probabilities that the image belongs to 
each of the BI-RADS breast density categories. The model was 
trained by use of the FFDM dataset following the procedure 
described in Appendix E1 (supplement).

Domain-Adaptation Methods
The goal of domain adaptation is to take a model trained on 
a dataset from one domain (source domain) and transfer its 
knowledge to a dataset in another domain (target domain), 
which is typically much smaller in size. Features learned by DL 
models in the early layers can be general (ie, domain and task 
agnostic) (24). Depending on the similarity of domains and 
tasks, even deeper features learned from one domain can be 
reused for another domain or task.

In our work, we explored approaches for adapting the DL 
model trained on FFDM images (source domain) to SM im-
ages (target domain) that reuse all the features learned from the 
FFDM domain. First, inspired by the work of Guo et al (25), we 

Table 2: Description of the Site 2 SM Training, Validation, and Test 
Datasets

Parameter Training Validation Test

No. of patients 6056 (80) 757 (10) 744 (10)
No. of examinations 13 061 1674 1548
No. of images 51 241 6540 6192
BI-RADS category
 A 7866 (15.4) 865 (13.2) 948 (15.3)
 B 20 731 (40.5) 2719 (41.6) 2612 (42.2)
 C 15 706 (30.7) 2139 (32.7) 1868 (30.2)
 D 6938 (13.5) 817 (12.5) 764 (12.3)

Note.—Data in parentheses are percentages. The BI-RADS category distribu-
tion for images is shown on bottom (A, almost entirely fatty; B, scattered areas 
of fibroglandular density; C, heterogeneously dense; and D, extremely dense). 
BI-RADS = Breast Imaging Reporting Data System, SM = synthetic two-
dimensional mammography.

Table 1: Description of the Site 1 FFDM and SM Training, Validation, and Test Datasets

Parameter

FFDM SM

Training Validation Test Training Validation Test

No. of patients 50 700 (88) 1832 (3) 4960 (9) 3169 (82) 403 (10) 270 (7)
No. of examinations 168 208 6157 13 262 3189 407 270
No. of images 672 704 25 000 53 048 11 873 1519 1080
BI-RADS category
 A 80 459 (12.0) 3465 (13.9) 4948 (9.3) 1160 (9.8) 154 (10.1) 96 (8.9)
 B 348 878 (51.9) 12 925 (51.7) 27 608 (52.0) 6121 (51.6) 771 (50.8) 536 (49.6)
 C 214 465 (31.9) 7587 (30.3) 18 360 (34.6) 3901 (32.9) 510 (33.6) 388 (35.9)
 D 28 902 (4.3) 1023 (4.1) 2132 (4.0) 691 (5.8) 84 (5.5) 60 (5.6)

Note.—Data in parentheses are percentages. The BI-RADS category distribution for images is shown on bottom (A, almost en-
tirely fatty; B, scattered areas of fibroglandular density; C, heterogeneously dense; and D, extremely dense). BI-RADS = Breast 
Imaging Reporting Data System, FFDM = full-field digital mammography, SM = synthetic two-dimensional mammography.

http://radiology-ai.rsna.org
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stitution and of the same image type (FFDM) as those used 
to train the model. The BI-RADS breast density distribution 
predicted by the DL model (A, 8.5%; B, 52.2%; C, 36.1%; D, 
3.2%) was similar to that of the original reporting radiologists 
(A, 9.3%; B, 52.0%; C, 34.6%; D, 4.0%). A more detailed 
comparison of the density distributions can be found in Ap-
pendix E3 (supplement). The DL model exhibited close agree-
ment with the radiologists for the BI-RADS breast density task 
across a variety of performance measures (Table 3), including 
accuracy (82.2% [95% CI: 81.6, 82.9]) and kw (0.75 [95% CI: 
0.74, 0.76]). A high level of agreement was also observed for 
the binary breast density task (accuracy, 91.1% [95% CI: 90.6, 

comparisons of accuracy and Cohen k before and after adapta-
tion, P values were calculated by using a two-sided z test with an 
a of .05 (SciPy version 1.1.0, https://scipy.org; statsmodels version 
0.11.1, https://www.statsmodels.org) (27).

Results

Examination-level Performance on FFDM Images
The trained model was first evaluated on a large held-out test 
set of FFDM examinations from site 1 (4960 patients, 13 262 
examinations, 53 048 images; mean age, 57 years [age range, 
23–97 years]). In this case, the images were from the same in-

Table 3: Performance of the Baseline Model on the Test Set for FFDM Examinations for both the Four-class BI-RADS 
Breast Density Task and the Binary Density Task

Parameter
Four-class  
Accuracy

Four-class  
macroAUC

Four-class  
Linear kw Binary Accuracy Binary AUC Binary k

Our model 82.2 (81.6, 82.9) 0.952 (0.949, 0.954) 0.75 (0.74, 0.76) 91.1 (90.6, 91.6) 0.971 (0.968, 
0.973)

0.81 (0.80, 0.82)

Lehman et al 
(14)

77 (76, 78) NA 0.67 (0.66, 0.68) 87 (86, 88) NA NA

Wu et al (13) 76.7 0.916 NA 86.5 NA 0.65
Volpara v1.5.0 

(28)
57 NA 0.57 (0.55, 0.59) 78 NA 0.64 (0.61, 0.66)

Quantra v2.0 
(28)

56 NA 0.46 (0.44, 0.47) 83 NA 0.59 (0.57, 0.62)

Interradiologist 
agreement (7)

67.4 NA NA 82.8 NA NA

Note.—Data in parentheses are 95% CIs. Binary density task denotes performance of dense (BI-RADS C and D) versus nondense 
(BI-RADS A and B) assessment. Results from prior studies on automated BI-RADS breast density models are shown evaluated on their 
respective test sets as points of comparison. An estimate of human performance is provided as a reference. AUC = area under the receiver 
operating characteristic curve, BI-RADS = Breast Imaging Reporting Data System, FFDM = full-field digital mammography, macroAUC = 
the average of the four AUC values from the one class versus others tasks, NA = not available.

Figure 1: Confusion matrices for the, A, Breast Imaging Reporting and Data System (BI-RADS) breast density task and the, B, binary density task (dense [BI-RADS C and 
D] vs nondense [BI-RADS A and B]) evaluated on the full-field digital mammography test set. The number of test samples (examinations) within each bin is shown in paren-
theses. DL = deep learning.

http://radiology-ai.rsna.org
https://scipy.org
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After adaptation by matrix calibration with 500 site 1 SM im-
ages, the density distribution is slightly more similar to that of the 
radiologists (A, 5.9%; B, 53.7%; C, 35.9%; D, 4.4%), whereas 
overall agreement is about the same (accuracy, 80% [95% CI: 76, 
85], P = .75; kw = 0.72 [95% CI: 0.66, 0.79], P = .80). Accuracy 
for the two dense classes is improved at the expense of the two 
nondense classes (Fig 2). A larger, although not statistically sig-
nificant, improvement is seen for the binary density task, where 
Cohen k rose from 0.75 (95% CI: 0.67, 0.83) to 0.82 (95% CI: 
0.76, 0.90 [P = .16]; accuracy, 91% [95% CI: 88, 95], P = .20).

Site 2 results.—Close agreement between the DL model and 
the original reporting radiologists was also observed for the site 
2 SM test set (744 patients, 1548 examinations, 6192 images 
[mean age, 55 years; age range, 30–92 years]) without adapta-
tion (accuracy, 76% [95% CI: 74, 78]; kw = 0.72 [95% CI: 
0.70, 0.75]; Table 4). The BI-RADS breast density distribution 
predicted by the DL model (A, 5.7%; B, 48.8%; C, 36.4%; D, 
9.1%) was similar to the distributions found in the site 1 data-
sets. The predicted density distribution does not appear to be 
skewed toward low density estimates, as seen for site 1 (Fig 3). 
Agreement for the binary density task was especially strong (ac-
curacy, 92% [95% CI: 91, 93]; k = 0.84 [95% CI: 0.81, 0.87]; 
AUC, 0.980 [95% CI: 0.976, 0.986]).

With adaptation by matrix calibration with 500 site 2 SM 
training samples, performance for the BI-RADS breast density 
task in the site 2 SM dataset substantially improved (accuracy, 
80% [95% CI: 78, 82], P , .001; kw = 0.79 [95% CI: 0.76, 
0.81], P , .001). After adaptation, the predicted BI-RADS breast 
density distribution (A, 16.9%; B, 43.3%; C, 29.4%; D, 10.4%) 
was more similar to that of the radiologists (A, 15.3%; B, 42.2%; 
C, 30.2%; D, 12.3%). Less improvement was seen for the binary 

91.6]; AUC, 0.971 [95% CI: 0.968, 0.973]; k = 0.81 [95% 
CI: 0.80, 0.82]). As demonstrated by the confusion matrices 
shown in Figure 1, the DL model is rarely off by more than 
one breast density category (eg, calls an extremely dense breast 
scattered), in total, 0.03% of examinations (four of 13 262).

To place the results in the context of previous work, the per-
formance on the FFDM test set was compared with results from 
academic centers (13,14), with commercial breast density soft-
ware (28) and with an estimate of human performance (7) (Table 
3). Although there are limitations in comparing results evaluated 
on different datasets with different readers, our DL model ap-
pears to offer competitive performance for FFDM examinations.

Examination-level Performance on SM Images

Site 1 results.—Results are first reported for the site 1 SM test 
set (270 patients; 270 examinations; 1080 images; mean age, 
55 years [age range, 28–72 years]) because this avoids any dif-
ferences that may occur between the two sites. Without ad-
aptation, the model demonstrates close agreement with the 
original reporting radiologists for the BI-RADS breast density 
task (accuracy, 79% [95% CI: 74, 84]; kw = 0.71 [95% CI: 
0.64, 0.78]; Table 4). The DL model slightly underestimates 
breast density for SM images (Fig 2), producing a BI-RADS 
breast density distribution (A, 10.4%; B, 57.8%; C, 28.9%; D, 
3.0%) with more nondense cases and fewer dense cases relative 
to the radiologists (A, 8.9%; B, 49.6%; C, 35.9%; D, 5.6%). 
A more detailed comparison of the density distributions can be 
found in Appendix E3 (supplement). Agreement for the binary 
density task is also high without adaptation (accuracy, 88% 
[95% CI: 84, 92]; k = 0.75 [95% CI: 0.67, 0.83]; AUC, 0.97 
[95% CI: 0.96, 0.99]).

Table 4: Performance of the Proposed Approaches for Adapting a DL Model Trained on One Dataset for Another with 
Only 500 SM Images

Dataset
Four-Class  
Accuracy

Four-Class  
macroAUC

Four-Class  
Linear kw

Binary  
Accuracy Binary AUC Binary k

FFDM 82.2 0.952 0.75 91.1 0.971 0.81
SM, site 1
 None 79 (74, 84) 0.94 (0.93, 0.96) 0.71 (0.64, 0.78) 88 (84, 92) 0.97 (0.96, 0.99) 0.75 (0.67, 0.83)
 Vector 81 (77, 86) 0.95 (0.94, 0.97) 0.73 (0.67, 0.80) 90 (87, 94) 0.97 (0.96, 0.99) 0.80 (0.73, 0.88)
 Matrix 80 (76, 85) 0.95 (0.94, 0.97) 0.72 (0.66, 0.79) 91 (88, 95) 0.97 (0.96, 0.99) 0.82 (0.76, 0.90)
 Fine-

tuning
81 (76, 86) 0.95 (0.94, 0.97) 0.73 (0.67, 0.80) 90 (87, 94) 0.97 (0.95, 0.99) 0.80 (0.73, 0.88)

SM, site 2
 None 76 (74, 78) 0.944 (0.938, 0.951) 0.72 (0.70, 0.75) 92 (91, 93) 0.980 (0.976, 0.986) 0.84 (0.81, 0.87)
 Vector 79 (77, 81) 0.954 (0.949, 0.961) 0.78 (0.76, 0.80) 92 (91, 93) 0.979 (0.974, 0.985) 0.83 (0.80, 0.86)
 Matrix 80 (78, 82) 0.956 (0.950, 0.963) 0.79 (0.76, 0.81) 92 (91, 94) 0.983 (0.978, 0.988) 0.84 (0.82, 0.87)
 Fine-

tuning
80 (78, 82) 0.957 (0.952, 0.964) 0.79 (0.77, 0.81) 93 (92, 94) 0.984 (0.979, 0.988) 0.85 (0.83, 0.88)

Note.—The performance of the model trained from scratch on the FFDM dataset (672 704 training samples) and evaluated on its test set 
is also shown as a reference. 95% CIs computed by bootstrapping over the test sets are given in parentheses. AUC = area under the receiver 
operating characteristic curve, DL = deep learning, FFDM = full-field digital mammography, macroAUC = the average of the four AUC 
values from the one class versus others tasks, SM = synthetic two-dimensional mammography.

http://radiology-ai.rsna.org
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breast density task (accuracy, 92% [95% CI: 91, 94], P = .69; k = 
0.84 [95% CI: 0.82, 0.87], P = .79).

Impact of dataset size on adaptation.—The preferred adaptation 
method will depend on the number of training samples avail-
able for the adaptation, with more training samples benefiting 
methods with more parameters. Figure 4 shows the impact of the 
amount of training data on the performance of the adaptation 
methods, measured by kw and macroAUC, for both the site 1 and 
site 2 SM datasets. Each adaptation method has a range of the 
number of samples at which it offers the best performance, with 
the regions ordered by the corresponding number of parameters 
for the adaptation methods (vector calibration, eight parameters; 
matrix calibration, 20 parameters; fine tuning, 2052 parameters). 
This demonstrates the trade-off between the performance of the 

adaptation method and the amount of training data that must 
be acquired. When the number of training samples is small (eg, 
,100 images), some adaptation methods negatively impact per-
formance. Even at the largest dataset sizes, the amount of training 
data was too limited for the ResNet-34 model trained from scratch 
on SM images to exceed the performance of the models adapted 
from FFDM data.

Discussion
BI-RADS breast density can be an important indicator of 
breast cancer risk and radiologist sensitivity, but intra- and in-
terreader variability may limit the effectiveness of this measure. 
DL models for estimating breast density can reduce this vari-
ability while still providing accurate assessments. However, to 
be a useful clinical tool, DL models need to demonstrate that 

Figure 2: Confusion matrices evaluated on the site 1 synthetic two-dimensional mammography (SM) test set without adaptation, for the, A, Breast Imaging Reporting and 
Data System (BI-RADS) breast density task, and the B, binary density task (dense [BI-RADS C and D] vs nondense [BI-RADS A and B]). Confusion matrices evaluated on the 
site 1 SM test set with adaptation by matrix calibration for 500 site 1 SM training samples for the, C, BI-RADS breast density task and the, D, binary density task (dense vs 
nondense). The number of test samples (examinations) within each bin is shown in parentheses. DL = deep learning.
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they can be applied to DBT examinations and generalize across 
institutions. To overcome the limited training data for DBT 
examinations, a DL model was trained on a large set of FFDM 
images. The model showed close agreement with the radiolo-
gists’ reported BI-RADS breast density for a test set of FFDM 
images (site 1: kw = 0.75 [95% CI: 0.74, 0.76]) and for two 
datasets of SM images, which are generated as part of DBT 
examinations (site 1: kw = 0.71 [95% CI: 0.64, 0.78]; site 2: 
kw = 0.72 [95% CI: 0.70, 0.75]). The strong performance on 
the SM datasets from different institutions suggests that the 
DL model may generalize to DBT examinations and multiple 
sites. Further adaptation of the model for the SM datasets led 
to no improvement for site 1 (kw = 0.72 [95% CI: 0.66, 0.79]) 
and a more substantial improvement for site 2 (kw = 0.79 [95% 
CI: 0.76, 0.81]). The investigation of the impact of dataset size 
suggests that these adaptation methods could serve as practical 

approaches for adapting DL models if a model must be up-
dated to account for site-specific differences.

When assessments of radiologists are accepted as the ground 
truth, interreader variability may limit the performance that can 
be achieved for a given dataset. For example, the performance 
obtained on the site 2 SM dataset following adaptation was 
higher than that obtained on the FFDM dataset used to train the 
model. This is likely a result of more consistency in the ground-
truth labels for the site 2 SM dataset due to over 80% of the 
examination data having been read by two readers.

Unlike previous studies, our BI-RADS breast density DL 
model was evaluated on SM images from DBT examinations 
and on data from multiple institutions. Further, when evaluated 
on the FFDM images, the model appeared to offer competitive 
performance compared with previous DL models and commer-
cial breast density software (kw = 0.75 [95% CI: 0.74, 0.76] vs 

Figure 3: Confusion matrices evaluated on the site 2 synthetic two-dimensional mammographic (SM) test set without adaptation for the, A, Breast Imaging Reporting and 
Data System (BI-RADS) breast density task and, B, the binary density task (dense [BI-RADS C and D] vs nondense [BI-RADS A and B]). Confusion matrices evaluated on the 
site 2 SM test set with adaptation by matrix calibration for 500 site 2 SM training samples for the, C, BI-RADS breast density task and the, D, binary density task (dense vs 
nondense). The number of test samples (examinations) within each bin is shown in parentheses.
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Lehman et al, 0.67 [95% CI: 0.66, 0.68]; Volpara Health, 0.57 
[95% CI: 0.55, 0.59]; and Hologic Quantra, 0.46 [95% CI: 
0.44, 0.47]) (14, 28). Estimates of the model performance ap-
pear comparable, or even superior, to previous estimates of inter-
radiologist variability for the BI-RADS breast density task (7). 
For each automated breast density method, results are reported 
on their respective test sets, which may be more or less challeng-
ing because of varying levels of interreader variability or other 
factors. Additionally, many performance metrics, such as accu-
racy and Cohen k, depend on the prevalence of the BI-RADS 
breast density categories. Whether the model is evaluated against 
the assessments of individual radiologists or a consensus of mul-
tiple radiologists may also impact the apparent performance of 
the model. The provided performance numbers from our work 
and previous work are on the basis of the assessments of indi-
vidual radiologists.

Other measures of breast density, such as volumetric breast 
density, were estimated previously by automated software for 
DBT examinations (29–31). Thresholds can be chosen to 

translate these measures to BI-RADS breast density, but this 
may result in lower levels of agreement than direct estima-
tion of BI-RADS breast density (eg, kw = 0.47) (31). Here, 
BI-RADS breast density is estimated from two-dimensional 
SM images instead of from the three-dimensional tomosynthe-
sis volumes because this simplifies transfer learning from the 
FFDM images. This is also the manner in which breast radiolo-
gists assess density for DBT examinations.

Our study had several limitations. First, the proposed domain-
adaptation approaches may be less effective when the differences 
between domains are larger. In this work, adaptation was from 
two types of mammographic images acquired using equipment 
from the same manufacturer. Second, the FFDM data from site 
1 was collected over a period covering the transition from BI-
RADS version 4 to BI-RADS version 5, during which the crite-
ria for assessing BI-RADS breast density changed. Third, the test 
set included multiple examinations of the same patient, which 
may have led to underestimation of the variance for the given 
performance measures. Fourth, the reference standard was breast 

Figure 4: Impact of the number of site-specific training samples in the target domain on the performance of the adapted model for the site 1 synthetic two-dimensional 
mammographic (SM) test set measured by, A, macroAUC, the average of the four areas under the curve (AUC) values from the one class versus others tasks and, B, linearly 
weighted Cohen k; and for the site 2 SM test set as measured by, C, macroAUC and, D, linearly weighted Cohen k. Results are shown for vector and matrix calibration 
and for retraining the last fully connected layer (fine tuning). Error bars indicate the standard error of the mean computed over 10 random realizations of the training data. 
Performance prior to adaptation (none) and training from scratch are shown as references. For the site 1 SM studies, the full-field digital mammography (FFDM) performance 
serves as an additional reference. Note that each graph is shown with its own full dynamic range to facilitate comparison of the different adaptation methods for a given 
metric and dataset.
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density assessed by the original interpreting radiologist, which 
is known to have inter- and intrareader variation. Fifth, when 
a DL model is adapted for a new institution, adjustments may 
be made for differences in image content, patient demograph-
ics, or the interpreting radiologists. This last adjustment may 
result in a degree of interreader variability between the original 
and adapted DL models, although this variability would likely 
be lower than the individual interreader variability if the model 
learned the consensus of each group of radiologists. As a result, 
the improved performance after adaptation for the site 2 SM 
dataset could have been from differences in patient demograph-
ics or radiologist assessment practices compared with the FFDM 
dataset. The weaker improvement for the site 1 SM dataset may 
have been from similarities in these same factors.

The broad use of BI-RADS breast density DL models holds 
great promise for improving clinical care. The success of the DL 
model without adaptation suggests that the features learned by 
the model are largely applicable to both FFDM images and SM 
images from DBT examinations and to different readers and in-
stitutions. A BI-RADS breast density DL model that can gener-
alize across sites and image types could lead to rapid and more 
consistent estimates of breast density for women.
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