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Radiographic bone age assessment is an important com-
ponent of the diagnostic workup for a variety of pe-

diatric endocrine, metabolic, and growth disorders (1,2). 
While several methods of bone age assessment exist, the 
most widely used is direct visual comparison of an indi-
vidual patient’s left hand and wrist radiograph with the 
Greulich and Pyle (GP) Radiographic Atlas of Skeletal De-
velopment of the Hand and Wrist (3–5). In a 2016 survey of 
pediatric radiologists, more than 97% used the GP atlas 
(3). Despite its broad acceptance in clinical practice, the 
GP method is subject to human factor limitations of in-
ter- and intraobserver variability (4–8). The Tanner-White-
house method of bone age assessment is a more reliable 
alternative to GP; however, it is relatively labor intensive 
and time-consuming (4).

There has been growing interest in the development 
of automated methods for bone age assessment to im-
prove on the efficiency, accuracy, and reliability of human 

interpretations. Recent approaches have used deep learn-
ing and convolutional neural networks, which learn imag-
ing features relevant to particular tasks from large datasets, 
without programming explicit rules or extracting specific 
features (shape, texture, etc) (9–17). Interestingly, several 
recent studies of automated bone age assessment report 
methods that draw from ground truth (known as super-
vised machine learning) established through reference to GP, 
with many using extracted bone ages from clinical reports 
(11,15). For example, the Radiological Society of North 
America (RSNA) Pediatric Bone Age Challenge used a 
training dataset of more than 12 000 hand and wrist radio-
graphs obtained clinically for bone age assessment where 
bone age determined by GP was extracted from clinical 
reports (16). Inherent to these prior methods is the reliance 
on GP as both the training and evaluation standards.

Therefore, two questions arise regarding how to best 
optimize training for automated bone age assessment 
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Purpose: To develop a deep learning approach to bone age assessment based on a training set of developmentally normal pediatric hand 
radiographs and to compare this approach with automated and manual bone age assessment methods based on Greulich and Pyle 
(GP).

Methods: In this retrospective study, a convolutional neural network (trauma hand radiograph–trained deep learning bone age assess-
ment method [TDL-BAAM]) was trained on 15 129 frontal view pediatric trauma hand radiographs obtained between December 14, 
2009, and May 31, 2017, from Children’s Hospital of New York, to predict chronological age. A total of 214 trauma hand radiographs 
from Hasbro Children’s Hospital were used as an independent test set. The test set was rated by the TDL-BAAM model as well as a 
GP-based deep learning model (GPDL-BAAM) and two pediatric radiologists (radiologists 1 and 2) using the GP method. All ratings 
were compared with chronological age using mean absolute error (MAE), and standard concordance analyses were performed.

Results: The MAE of the TDL-BAAM model was 11.1 months, compared with 12.9 months for GPDL-BAAM (P = .0005), 14.6 
months for radiologist 1 (P , .0001), and 16.0 for radiologist 2 (P , .0001). For TDL-BAAM, 95.3% of predictions were within 24 
months of chronological age compared with 91.6% for GPDL-BAAM (P = .096), 86.0% for radiologist 1 (P , .0001), and 84.6% 
for radiologist 2 (P , .0001). Concordance was high between all methods and chronological age (intraclass coefficient  0.93). Deep 
learning models demonstrated a systematic bias with a tendency to overpredict age for younger children versus radiologists who showed 
a consistent mean bias.

Conclusion: A deep learning model trained on pediatric trauma hand radiographs is on par with automated and manual GP-based 
methods for bone age assessment and provides a foundation for developing population-specific deep learning algorithms for bone age 
assessment in modern pediatric populations.
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center), we obtained 16 810 frontal view pediatric hand ra-
diographs (from approximately 10 000 pediatric patients) ob-
tained for trauma between December 14, 2009, and May 31, 
2017. Of the radiographs, 41% were multiple radiographs in 
the same patient, either the same hand at a different timepoint 
or the contralateral hand at the same timepoint. Images were 
included only if a pediatric radiologist (R.S.A., with 6 years of 
experience) determined them to be satisfactory for bone age 
evaluation, excluding those with congenital anomalies, com-
promised image quality, and poor patient positioning. Ten 
percent of the data (n = 1681) were used as a holdout test set. 
The remaining data (n = 15 129), which we define to be the 
training set, were divided into four training (90%) and valida-
tion (10%) folds to train a fourfold ensemble. We also trained 
a RetinaNet object detection model (18) on 12 595 pediatric 
hand radiographs from the RSNA Pediatric Bone Age Machine 
Learning Challenge (16), which was used to crop and stan-
dardize images.

In addition, to demonstrate generalizability beyond the train-
ing data population, we obtained an independent test set from 
Hasbro Children’s Hospital (HCH) in Providence, RI (a level 
1 pediatric trauma center) of 214 frontal view pediatric trauma 
hand radiographs from 213 patients, randomly selected from 
1626 studies across 1481 patients that occurred between March 
31, 2015, and July 3, 2018. Images were included only if a pedi-
atric radiologist (R.S.A.) determined them to be satisfactory for 
bone age evaluation. Two board-certified pediatric radiologists 
(R.S.A. and D.W.S., each with 6 years of experience) indepen-
dently assessed bone age using the GP method. The pediatric 
radiologists were blinded to the chronological age of the patients 
at the time of interpretation. In addition, bone age was assessed 
by a DL-BAAM trained on hand radiographs from the RSNA 
Pediatric Bone Age Machine Learning Challenge (which was a 
GP-based DL-BAAM [GPDL-BAAM]). Therefore, a balanced 
block design was used to evaluate bone age estimation for each 
DL-BAAM and radiologist (ie, all cases were read by the TDL-
BAAM, GPDL-BAAM, and radiologists).

Bone Age Assessment Model Training
Models were trained using the PyTorch 1.4 deep learning 
toolkit (https://pytorch.org) (19) in the Python programming 
language, version 3.7 (Python Software Foundation, Wilm-
ington, Del;  https://www.python.org/ ). Each DL-BAAM was 
an ensemble of four convolutional neural networks. We 
trained a DenseNet121 (20) ensemble based on solutions 
from the RSNA Pediatric Bone Age Machine Learning Chal-
lenge. Both the TDL-BAAM and GPDL-BAAM were devel-
oped using the same methods. Briefly, for each of the two 
DL-BAAMs, two of four neural networks were trained using 
square patches cropped from the original image, whereas the 
other two neural networks were trained on whole images. In 
all four neural networks, the output of a sex-embedding layer 
was concatenated to the final feature vector to predict the 
scalar bone age. A simple average of the individual model pre-
dictions was used as the final prediction. To combat bias to-
ward age groups with more training data, we conducted two 
additional experiments using a balanced loss function which 

algorithms: (a) Should ground truth be determined from a pe-
diatric sample clinically requiring a bone age examination for 
underlying systemic abnormalities, and (b) should ground truth 
be established from a skeletal age assigned by human interpreta-
tion using the GP atlas? Our study proposes an alternative ap-
proach to methods used in prior studies by training on data from 
normal pediatric hand radiographs and using chronological age 
as ground truth, as opposed to human interpretation using pre-
viously described methods such as GP.

The purpose of our study was to develop a GP-indepen-
dent deep learning model for automated bone age assessment 
(DL-BAAM) by training the algorithm to assess chronological 
age using bone morphology from a training set of more than 
10 000 pediatric trauma hand radiographs in a large academic 
children’s hospital with a diverse population. This trauma hand 
radiograph–trained DL-BAAM (TDL-BAAM) learns bone age 
patterns corresponding to a relatively healthy and diverse pop-
ulation in hopes to be generalizable to other populations and 
to provide a potential example of how to approach the estab-
lishment of a population-specific TDL-BAAM. We tested our 
TDL-BAAM on trauma hand radiographs in a geographically 
and demographically distinct population and compared the per-
formance to both automated and manual bone age assessment 
by the GP method.

Materials and Methods

Study Design and Datasets
This was a retrospective study comparing several methods 
for bone age assessment. Approval from the institutional re-
view boards of both participating institutions was obtained 
prior to the study. From the Children’s Hospital of New York 
(CHONY) in New York City, NY (a level 1 pediatric trauma 

Abbreviations
CHONY = Children’s Hospital of New York, DL-BAAM = deep 
learning bone age assessment method, GP = Greulich and Pyle, 
GPDL-BAAM = GP-based DL-BAAM, HCH = Hasbro Children’s 
Hospital, MAE = mean absolute error, TDL-BAAM = trauma hand 
radiograph–trained DL-BAAM

Summary
A deep learning model, trained to predict chronological age on a 
large dataset of pediatric trauma hand radiographs, performed as well 
as pediatric radiologists and other deep learning models using the 
Greulich and Pyle method for pediatric bone age assessment.

Key Points
 n A convolutional neural network trained to predict chronologi-

cal age based on normal hand radiographs was on par with deep 
learning algorithms using Greulich and Pyle and pediatric radiol-
ogy interpretation using Greulich and Pyle.

 n Deep learning–based bone age assessment was more prone to 
systematic biases, with a tendency to overpredict age for younger 
children.

 n This work provides a foundation for developing population-spe-
cific deep learning algorithms for bone age assessment in modern 
pediatric populations, in contrast to the Greulich and Pyle method 
created on a limited pediatric sample in the 1950s.

http://radiology-ai.rsna.org
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Figure 1: Distribution of chronological age in Children’s Hospital of New York (CHONY) training set (top), CHONY test 
set (middle), and Hasbro Children’s Hospital (HCH) (bottom).

The evaluation of bone age 
prediction is best described 
as evaluation of bone mor-
phology. Although the TDL-
BAAM training used chrono-
logical age as the ground truth 
on the trauma hand radio-
graphs, the relationship be-
tween bone morphology and 
chronological age is stochas-
tic. Given this background, 
we conducted standard con-
cordance analyses to quantify 
the relationships among both 
DL-BAAMs, radiologists, and 
chronological age, using intra-
class correlation coefficients 
with random effects, Bland-
Altman analysis, and Dem-
ing regression (Appendix E2 
[supplement]). To compare 
prediction values among all 
methods, we performed gen-
eralized mixed modeling with 
sandwich estimation where 
observations were nested 
within patients. Concordance 
measures were performed us-
ing mrc, methods, and blandr 
packages in R (R Foundation 
for Statistical Computing, 

Vienna, Austria; https://www.R-
project.org), and generalized 

mixed modeling was performed using SAS Software 9.4 (SAS 
Institute, Cary, NC) (G.L.B, 8 years of experience).

Results

Dataset Characteristics
The CHONY training set consisted of radiographs from 7633 
(50.5%) male patients and 7496 (49.5%) female patients, 
with an age range of 0–18 years and mean age of 11.0 years. 
The CHONY test set comprised 848 (50.4%) males and 833 
(49.6%) females, with an age range of 0–18 years and mean 
age of 10.9 years. The HCH test set comprised 100 (46.7%) 
males and 114 (53.3%) females with an age range of 1–18 
years and mean age of 11.7 years. The distributions of ages for 
these datasets are shown in Figure 1. 

At the time of this study, demographic information, includ-
ing race and ethnicity, were not consistently available in the 
electronic medical record at CHONY. Similarly, race and eth-
nicity were not easily accessible at HCH, as this information is 
not directly linked to the imaging study. We extrapolated the 
diversity of our populations from the populations of the sur-
rounding neighborhoods by using data from the 2010 census. 
For CHONY, the demographic breakdown of the surrounding 

weights the loss contribution of a sample by the inverse of 
its age group frequency in the training data and a balanced 
sampling technique which constructs the training set for each 
epoch by sampling an equal number of cases from each age 
group. Full technical details are available in Appendix E1 
(supplement). All source code and models are publicly avail-
able at https://github.com/i-pan/boneage.

Statistical Analysis
The CHONY test set was used to compare TDL-BAAM and 
GPDL-BAAM. A more comprehensive analysis was performed 
on the independent test set from HCH, which was used to 
evaluate and compare performance of the TDL-BAAM with 
the GPDL-BAAM and two pediatric radiologists (R.S.A. and 
D.W.S.). Performance for each rater was evaluated using the 
mean absolute error (MAE) and the percentages of bone age 
predictions within 12, 18, and 24 months of chronological age. 
Statistical significance, defined as P less than .05, was deter-
mined using nonparametric permutation tests and the boot-
strap method conducted via simulation in Python 3.7. The 
McNemar test was used to determine the statistical significance 
for percentages of bone age predictions within 12, 18, and 24 
months (I.P., 3 years of experience).

http://radiology-ai.rsna.org
https://www.R-project.org
https://www.R-project.org
https://github.com/i-pan/boneage
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Washington Heights neighborhood was 70.6% 
Hispanic (of any race), 17.7% non-Hispanic 
White, 7.6% non-Hispanic Black, and 2.6% 
Asian (21). For HCH, the demographic break-
down of Providence County was 73.4% White, 
8.5% Black, 3.7% Asian, with 18.8% Hispanic 
(22).

Metrics Evaluation
For CHONY, the MAEs of the TDL-BAAM and 
GPDL-BAAM were 7.4 and 12.9 (P , .0001) 
months, respectively. The percentages of bone 

Table 1: Intraclass Correlation Coefficients between Models and 
Readers

Rater TDL-BAAM GPDL-BAAM RAD1 RAD2

CA 0.96942 0.95910 0.94554 0.93977
TDL-BAAM 0.98816 0.97577 0.96510
GPDL-BAAM 0.98147 0.97281
RAD1 0.98488

Note.— Intraclass correlation coefficient values among chronological age (CA), 
trauma hand radiograph–trained deep learning algorithm (TDL-BAAM), 
Greulich and Pyle–based deep learning algorithm (GPDL-BAAM), radiologist 1 
(RAD1), and radiologist 2 (RAD2).

Figure 2: Deming regression comparisons among chronological 
age (CA), trauma hand radiograph–trained deep learning algorithm 
(TDL-BAAM), Greulich and Pyle–based deep learning algorithm (GPDL-
BAAM), radiologist 1 (RAD1), and radiologist 2 (RAD2). Perfect concor-
dance is represented by a 45-degree line (black line), and the observed 
concordance is represented by the Deming regression slope (red line)

http://radiology-ai.rsna.org
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appears good upon visual in-
spection, though evidence ex-
ists for systematic differences 
among raters and chronological 
age, which is indicated in Table 
2. Both the TDL-BAAM and 
GPDL-BAAM predicted higher 
bone age than chronological age 
for earlier years, as evidenced 
by the slopes deviating from 1. 
The radiologists achieved better 
concordance with chronologi-
cal age: For radiologist 1, the 
intercept was slightly higher, 
while the slope was concor-
dant with chronological age. 
Conversely, the intercept for 
radiologist 2 was concordant 
with chronological age, but the 
slope was slightly higher. Note 
that chronological age is not a 
true predictor of bone age (ie, 
chronological age can only be 
used to evaluate if a child’s bone 
morphology is within a normal 
range), thus these relationships 
are not directly interpretable.

The TDL-BAAM and 
GPDL-BAAM demonstrate 
good concordance with each 
other, though the GPDL-
BAAM tended to produce 

higher predictions than the TDL-BAAM. Evidence of good con-
cordance was demonstrated between the two radiologists, with 
the slope encompassing 1. Larger differences existed between the 
radiologists and the TDL-BAAM and GPDL-BAAM. For both 
radiologists and both DL-BAAMs, the TDL-BAAM predictions 
were systematically higher than what the radiologists predicted 
for younger ages (approximately 3 to 100 months). For older 
ages (approximately 101 to 200 months), the two DL-BAAM 
predictions were systematically lower than those of the radiolo-
gists. Despite consistent systematic differences, all of these differ-
ences are relatively small, as indicated in Figure 2.

Bland-Altman Analysis
As seen in Table 3 and Figure 3, both DL-BAAMs and both 
radiologists predicted higher bone age than chronological age. 
Differences between DL-BAAM predictions and chronological 
age decreased as age increased. Conversely, a systematic trend 
failed to be observed between radiologists and chronological 
age, though a mean bias was present: The predictions of radi-
ologists 1 and 2 were 11 and 10 months higher, respectively, 
than chronological age.

The concordance between the two DL-BAAMs was excellent, 
despite being trained on separate datasets. Concordance between 
radiologists was also excellent: Radiologist 1’s bone age prediction 
was, on average, 1.4 months higher than radiologist 2’s prediction. 

age predictions within 12 months for TDL-BAAM and GPDL-
BAAM were 80.7% and 55.5% (P , .0001), within 18 months 
were 93.1% and 73.4% (P , .0001), and within 24 months 
were 98.3% and 86.4% (P , .0001), respectively.

For HCH, the MAEs of the TDL-BAAM, GPDL-BAAM, 
radiologist 1, and radiologist 2 were 11.1, 12.9 (P = .0005), 
14.6 (P , .0001), and 16.0 (P , .0001) months, respectively. 
The percentages of bone age predictions within 12 months were 
73.4%, 66.4% (P = .023), 67.8% (P = .048), and 60.7% (P = 
.0001), respectively; within 18 months were 86.9%, 79.9% (P = 
.020), 70.1% (P , .0001), and 65.0% (P , .0001); and within 
24 months were 95.3%, 91.6% (P = .096), 86.0% (P , .0001), 
and 84.6% (P , .0001).

Intraclass Correlation Coefficients
As indicated in Table 1, concordance was high among the 
TDL-BAAM, GPDL-BAAM, radiologists, and chronological 
age (all intraclass correlation coefficients  0.93). These analy-
ses indicate that 2%–7% of the variability of bone age predic-
tion is due to differences between raters, which are visualized 
using the Deming regressions and Bland-Altman analyses.

Deming Regression
As indicated in Figure 2, concordance among the TDL-
BAAM, GPDL-BAAM, radiologists, and chronological age 

Table 2: Deming Regression Results for Relationships among DL-BAAMs, Radiolo-
gists, and Chronological Age

Parameter TDL-BAAM GPDL-BAAM RAD1 RAD2

CA
 Intercept 10.988

(7.890, 14.086)
14.919
(10.607, 19.23)

7.270
(2.723, 11.817)

3.561*
(21.736, 8.859)

 Slope 0.966
(0.941, 0.991)

0.944
(0.914, 0.975)

1.026*
(0.994, 1.057)

1.042
(1.008, 1.076)

TDL-BAAM
 Intercept 4.071

(1.090, 7.053)
24.300
(28.296, 20.304)

28.221
(213.635, 22.807)

 Slope 0.978
(0.960, 0.997)

1.061
(1.038, 1.084)

1.078
(1.049, 1.108)

GPDL-BAAM
 Intercept 28.664

(212.438, 24.891)
212.637
(217.978, 27.296)

 Slope 1.084
(1.062, 1.107)

1.102
(1.073, 1.130)

RAD1
 Intercept 23.707

(27.274, 20.139)
 Slope 1.015*

(0.995, 1.035)

Note.—Deming regression results (slopes, intercepts, and confidence intervals) among chronologi-
cal age (CA), trauma hand radiograph–trained deep learning algorithm (TDL-BAAM), Greulich 
and Pyle–based deep learning algorithm (GPDL-BAAM), radiologist 1 (RAD1), and radiologist 2 
(RAD2).
Data in parentheses are 95% confidence intervals.
*Evidence of concordance does not deviate statistically (contained within confidence limits).

http://radiology-ai.rsna.org
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Systematic trend differences were found between the DL-BAAMs 
and radiologists. Radiologists’ bone age predictions were lower 
than the DL-BAAMs’ predictions for younger children; however, 
as chronological age increased, radiologists’ bone age predictions 
were higher than the DL-BAAMs’ predictions (Fig 3).

Differences among Raters
Figure 4 and Table 4 illustrate the mean differences among all 
DL-BAAMs and radiologists. For assessment of male bone age, 
we did not observe differences between readers. For assessment 
of female bone age, differences were observed between the two 
DL-BAAMs and two radiologists: Radiologists’ predictions 
were on average higher than DL-BAAM predictions by 5–7 
months.

Balancing Experiments
Our two experiments were performed in an attempt to cor-
rect systematic bias potentially due to an imbalanced training 
set, using a balanced loss function and balanced sampling, and 
showed similar results to those in the unbalanced setting. Bal-
ancing techniques resulted in small, systematic differences in 
model predictions between balanced and unbalanced models 
(Bland-Altman: slope =−0.01, P = .04 [vs balanced loss]; slope 
= 0.01, P , .01 [vs balanced sampling] for TDL-BAAM and 
slope = −0.02, P , .01 [vs balanced loss]; slope = −0.02, P 
, .01 [vs balanced sampling] for GPDL-BAAM). However, 
these differences did not result in any statistically significant 
changes in concordance of the DL-BAAMs with chronologi-
cal age, and systematic biases persisted when comparing deep 
learning models, chronological age, and radiologists. Com-
plete results are presented in Tables E1–E3 and Figures E1–E4 
(supplement).

Discussion
In this study, we developed a deep learning model for bone 
age assessment by training a convolutional neural network to 
predict bone age based on morphology using pediatric hand 
radiographs acquired for traumatic indications, knowing only 
the children’s sex and chronological age without radiologist 
clinical interpretation. We then compared the concordance of 
our TDL-BAAM with GPDL-BAAM along with two pediatric 
radiologists who used the standard GP method.

Prior studies evaluating automated bone age assessment used 
reference standards determined by the GP method, either ac-
crued from clinical reports, interpretations from independent 
reviewers, or both (13,17,23). Our study differs from prior 
studies in that our assessment method, TDL-BAAM, was devel-
oped independent of any reference to GP, utilizing normal bone 
morphology based on pediatric trauma hand radiographs. We 
then compared this method with GP-based methods. The GP 
atlas was developed in the 1950s on a relatively homogeneous 
cohort of White children in Cleveland, Ohio. The generaliz-
ability to other populations remains indeterminate, with several 
studies suggesting suboptimal accuracy in children with differ-
ent demographic characteristics (24–27). The current United 
States pediatric population differs substantially given variations 

in ethnicity, geography, and other environmental factors such as 
socioeconomic status and nutrition. Our study attempted to in-
corporate this variation within the modern pediatric population 
by developing a deep learning model for bone age assessment 
utilizing chronological age, rather than GP-assigned bone ages, 
as a training standard to predict bone age. To the knowledge of 
the authors, this is the first deep learning model for bone age as-
sessment of its kind to be described in the literature.

We found good concordance among chronological age and 
all DL-BAAMs and radiologists. We did observe that the TDL-
BAAM and GPDL-BAAM were more prone to systematic bi-
ases than radiologists: The DL-BAAMs tended to overpredict 
age for younger children, and this tendency decreased for older 
children. Meanwhile, radiologists predicted with a consistent 
mean bias regardless of age. The DL-BAAMs are sensitive to the 
distribution of the training set, which typically is predominantly 
composed of children in the peripubertal period of development, 

Table 3: Bland-Altman Results for Relationships among 
DL-BAAMs, Radiologists, and Chronological Age

Parameter TDL-BAAM
GPDL-
BAAM RAD1 RAD2

CA
 Intercept 211.12 215.21 27.25 23.63
 Slope 0.03 0.06 20.02 20.04
 P value .02 , .01 .19 .06
 Mean 26.21 27.13 210.86 29.42
 SD 12.47 14.28 15.88 18.03
TDL-BAAM
 Intercept 24.1 4.09 7.74
 Slope 0.02 20.06 20.07
 P value .04 , .01 ,.01
 Mean 20.93 24.66 23.22
 SD 8.35 11.64 14.81
GPDL-

BAAM
 Intercept 8.23 11.87
 Slope 20.08 20.1
 P value , .01 , .01
 Mean 23.73 22.29
 SD 10.19 13.05
RAD1
 Intercept 3.66
 Slope 20.01
 P value .21
 Mean 1.44
 SD 10.15

Note.—Bland-Altman results (slopes, intercepts, P values, 
means, and standard deviation [SD]) among chronological age 
(CA), trauma hand radiograph–trained deep learning algorithm 
(TDL-BAAM), Greulich and Pyle–based deep learning algo-
rithm (GPDL-BAAM), radiologist 1 (RAD1), and radiologist 2 
(RAD2).

http://radiology-ai.rsna.org
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intraclass correlation coefficients), we also found evidence for 
some systematic differences between the DL-BAAMs and ra-
diologists. For example, both DL-BAAMs’ predictions were 
higher than both radiologists’ predictions for younger children; 
in older children, this trend was reversed, with the DL-BAAMs’ 
predictions being lower than the radiologists’. Concordance 
between DL-BAAMs was high, and concordance between ra-
diologists was high for all age groups. Thus, there appear to be 
systematic differences, though relatively small, in predictions 
from DL-BAAMs and radiologists.

A limitation of our study was the small cohort of patients 
that the TDL-BAAM was tested on. This may have contributed 
to the results not being substantially different than the GPDL-
BAAM or radiologists in evaluating trauma radiographs in this 
cohort. Although our results illustrated interesting systematic 
differences, future work developing and testing the TDL-BAAM 
on a larger sample of trauma radiographs across an equal number 

Figure 3: Bland-Altman comparisons among chronological age (CA), 
trauma hand radiograph–trained deep learning algorithm (TDL-BAAM), 
Greulich and Pyle–based deep learning algorithm (GPDL-BAAM), radi-
ologist 1 (RAD1), and radiologist 2 (RAD2). The center dashed line rep-
resents the observed mean difference. The top and bottom dashed lines 
denote 1.96 standard deviations above and below the mean difference. 
The dotted line represents 95% confidence intervals for these three values. 
A black line at 0 is the reference representing no bias (mean or slope) exists. 
The blue line represents the estimated bias from 0 with respect to age with 
95% confidence intervals (gray shaded area).

with smaller cohorts of patients in the younger and older age 
groups, a challenge seen also in prior studies (17). Some authors 
have even chosen to exclude younger age groups from their anal-
ysis (13). One of the main indications for bone age evaluation 
in children is delayed or precocious puberty, a diagnosis typi-
cally made in the peripubertal period (1,2); therefore, there is a 
paucity of data in the extreme age ranges of less than 5 years and 
greater than 14 years.

Similar to previous studies, we used independent inter-
pretations by experienced pediatric radiologists as a reference 
standard to compare against the DL-BAAMs. The pediatric 
radiologists were blinded to the chronological age during the 
interpretation and used the GP method to assign bone ages. 
Prior studies have reported MAEs to compare automated tools 
in predicting bone age to radiologists (17,23). Of note, the 
MAEs we report are substantially higher than those of prior 
studies using GP bone ages as ground truth. We believe this is 
attributed to greater variability in bone morphology within a 
given chronological age group than within a given GP bone age 
group; for example, 12-year-old children have greater variabil-
ity in bone morphology than children with GP bone ages of 
12 years. This increased variability directly increases the MAE. 
In addition to MAE, we evaluated bone age predictions using 
standard concordance measures typically used when compar-
ing radiologists to each other (ie, Bland-Altman and Dem-
ing regression), as reported in some prior studies (11). While 
we found evidence for good concordance in general (ie, high 
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of age ranges can help further investigate our results. 
Another limitation was that our study trained and 
tested the TDL-BAAM on a sample of pediatric hand 
radiographs that were obtained for trauma in the emer-
gent setting, and not for true bone age evaluation. This 
cohort was assumed to be clinically normal in compar-
ison to the typical population of children who receive 
bone age evaluation. We assumed all patients in both 
training and test sets to be developmentally normal; 
however, this assumption is difficult to confirm, and it 
is likely some patients have abnormal studies. Never-
theless, a small proportion of abnormal studies would 
not be expected to have a large influence on the final 
model. In addition, abnormalities unrelated to skel-
etal development (fractures, bone lesions, etc) would 
be marginalized by the model as noise, and therefore 
should not have an effect on the overall model. Our 
study provides a foundation for developing deep learn-
ing–based approaches to bone age assessment that are 
more representative of today’s pediatric population 
and can be tailored to specific populations; however, 
further work is needed to investigate the use of the 
TDL-BAAM in a larger, contemporary patient popu-
lation and with more patient-specific demographic 
information.

The results of our study show that our TDL-BAAM 
method has the potential to predict a child’s bone age; 
this prediction could easily be used, post hoc, to then 
compare with a child’s chronological age to determine 
if their bone morphology falls outside the normal 
range. One potential application of this tool in clini-
cal practice is the ability to flag abnormal cases for re-
view by radiologists. The implications of this change 
in methods may lend this tool to streamline clinical 
workflow and to be used as a quality assurance method.

Author contributions: Guarantors of integrity of entire study, I.P., 
C.R., R.S.A.; study concepts/study design or data acquisition or data 
analysis/interpretation, all authors; manuscript drafting or manuscript 
revision for important intellectual content, all authors; approval of fi-
nal version of submitted manuscript, all authors; agrees to ensure any 
questions related to the work are appropriately resolved, all authors; lit-
erature research, I.P., D.W.S., R.S.A.; clinical studies, I.P., S.M., D.M., 
C.R., D.W.S., R.S.A.; statistical analysis, I.P., G.L.B., D.M.; and man-
uscript editing, I.P., G.L.B., S.M., D.M., D.W.S., R.S.A.

Disclosures of Conflicts of Interest: I.P. Activities related to the 
present article: disclosed no relevant relationships. Activities not re-
lated to the present article: disclosed no relevant relationships. Other 
relationships: author is a consultant for MD.ai. G.L.B. disclosed no 
relevant relationships. S.M. disclosed no relevant relationships. D.M. 
disclosed no relevant relationships. C.R. disclosed no relevant relation-
ships. D.W.S. disclosed no relevant relationships. R.S.A. disclosed no 
relevant relationships.

References
 1. Martin DD, Wit JM, Hochberg Z, et al. The use of bone age in clinical 

practice - part 1. Horm Res Paediatr 2011;76(1):1–9.
 2. Martin DD, Wit JM, Hochberg Z, et al. The use of bone age in clinical 

practice - part 2. Horm Res Paediatr 2011;76(1):10–16.
 3. Breen MA, Tsai A, Stamm A, Kleinman PK. Bone age assessment practices in 

infants and older children among Society for Pediatric Radiology members. 
Pediatr Radiol 2016;46(9):1269–1274.

Table 4: Interrater Comparisons

Sex Reader 1 Reader 2
Difference 
(mo)

Adjusted  
P Value

Female
TDL-BAAM GPDL-BAAM 0.3 .99
RAD1 RAD2 1.0 .99
TDL-BAAM* RAD1 26.2 , .0001
TDL-BAAM* RAD2 25.2 .005
GPDL-BAAM* RAD1 26.5 , .0001
GPDL-BAAM* RAD2 25.4 , .0001

Male
TDL-BAAM GPDL-BAAM 22.3 .495
RAD1 RAD2 1.9 .99
TDL-BAAM RAD1 22.9 .99
TDL-BAAM RAD2 21.0 .99
GPDL-BAAM RAD1 20.6 .99
GPDL-BAAM RAD2 3.7 .149

Note.—Predicted age differences among the trauma hand radiograph–
trained deep learning algorithm (TDL-BAAM), Greulich and Pyle–based 
deep learning algorithm (GPDL-BAAM), radiologist 1 (RAD1), and 
radiologist 2 (RAD2), with Bonferroni-adjusted P values.
*Difference is statistically significant at a .05 level.

Figure 4: Predicted bone age in months (y-axis) by chronological age (CA), trauma hand 
radiograph–trained deep learning algorithm (TDL-BAAM), Greulich and Pyle–based deep 
learning algorithm (GPDL-BAAM), radiologist 1 (RAD1), and radiologist 2 (RAD2) between 
male and female patients with 95% confidence intervals.

 4. Bull RK, Edwards PD, Kemp PM, Fry S, Hughes IA. Bone age assessment: a 
large scale comparison of the Greulich and Pyle, and Tanner and Whitehouse 
(TW2) methods. Arch Dis Child 1999;81(2):172–173.

 5. Greulich W, Pyle S. Radiographic Atlas of Skeletal Development of the Hand 
and Wrist. Stanford, Calif: Stanford University Press, 1999.

 6. Berst MJ, Dolan L, Bogdanowicz MM, Stevens MA, Chow S, Brandser EA. 
Effect of knowledge of chronologic age on the variability of pediatric bone 
age determined using the Greulich and Pyle standards. AJR Am J Roentgenol 
2001;176(2):507–510.

 7. Thodberg HH, Sävendahl L. Validation and reference values of automated bone 
age determination for four ethnicities. Acad Radiol 2010;17(11):1425–1432.

http://radiology-ai.rsna.org


Radiology: Artificial Intelligence Volume 2: Number 4—2020 n radiology-ai.rsna.org 9

Pan et al

 8. Johnson GF, Dorst JP, Kuhn JP, Roche AF, Dávila GH. Reliability of 
skeletal age assessments. Am J Roentgenol Radium Ther Nucl Med 1973; 
118(2):320–327.

 9. Tong C, Liang B, Li J, Zheng Z. A Deep Automated Skeletal Bone Age As-
sessment Model with Heterogeneous Features Learning. J Med Syst 2018; 
42(12):249.

 10. Dallora AL, Anderberg P, Kvist O, Mendes E, Diaz Ruiz S, Sanmartin Berglund 
J. Bone age assessment with various machine learning techniques: A systematic 
literature review and meta-analysis. PLoS One 2019;14(7):e0220242.

 11. Kim JR, Shim WH, Yoon HM, et al. Computerized Bone Age Estimation 
Using Deep Learning Based Program: Evaluation of the Accuracy and Ef-
ficiency. AJR Am J Roentgenol 2017;209(6):1374–1380.

 12. Spampinato C, Palazzo S, Giordano D, Aldinucci M, Leonardi R. Deep 
learning for automated skeletal bone age assessment in X-ray images. Med 
Image Anal 2017;36:41–51.

 13. Lee H, Tajmir S, Lee J, et al. Fully Automated Deep Learning System for 
Bone Age Assessment. J Digit Imaging 2017;30(4):427–441.

 14. Thodberg HH, Kreiborg S, Juul A, Pedersen KD. The BoneXpert method 
for automated determination of skeletal maturity. IEEE Trans Med Imaging 
2009;28(1):52–66.

 15. Mutasa S, Chang PD, Ruzal-Shapiro C, Ayyala R. MABAL: a Novel Deep-
Learning Architecture for Machine-Assisted Bone Age Labeling. J Digit 
Imaging 2018;31(4):513–519.

 16. Halabi SS, Prevedello LM, Kalpathy-Cramer J, et al. The RSNA Pediatric 
Bone Age Machine Learning Challenge. Radiology 2019;290(2):498–503.

 17. Larson DB, Chen MC, Lungren MP, Halabi SS, Stence NV, Langlotz CP. 
Performance of a deep-learning neural network model in assessing skeletal 
maturity on pediatric hand radiographs. Radiology 2018;287(1):313–322.

 18. Lin T, Goyal P, Girshick R, He K, Dollár P. Focal Loss for Dense Object 
Detection. arXiv: 1708.02002 [preprint]. https://arxiv.org/abs/1708.02002. 
Posted August 7, 2017. Accessed November 1, 2019.

 19. Paszke A, Gross S, Chintala S, et al. Automatic Differentiation in PyTorch. 
In: NIPS Autodiff Workshop, 2017.

 20. Huang G, Liu Z, van der Maaten L, Weinberger KQ. Densely Connected 
Convolutional Networks. arXiv: 1608.06993 [preprint]. https://arxiv.org/
abs/1608.06993. Posted August 25, 2016. Accessed November 1, 2019.

 21. Table PL-P3A NTA: Total Population by Mutually Exclusive Race and 
Hispanic Origin, New York Neighborhood Tabulation Areas, 2010. City of 
New York Web site. https://www1.nyc.gov/assets/planning/download/pdf/
data-maps/nyc-population/census2010/t_pl_p3a_nta.pdf. Published March 
29, 2011. Accessed February 1, 2019.

 22. Rhode Island Race & Ethnic Origin Demographics by County, 2000-2010. 
Rhode Island Department of Labor and Training Web site. https://dlt.ri.gov/
documents/pdf/lmi/ethnic.pdf. Accessed February 1, 2019.

 23. Tajmir SH, Lee H, Shailam R, et al. Artificial intelligence-assisted interpre-
tation of bone age radiographs improves accuracy and decreases variability. 
Skeletal Radiol 2019;48(2):275–283.

 24. Tsehay B, Afework M, Mesifin M. Assessment of Reliability of Greulich and 
Pyle (GP) Method for Determination of Age of Children at Debre Markos Re-
ferral Hospital, East Gojjam Zone. Ethiop J Health Sci 2017;27(6):631–640.

 25. Mohammed RB, Rao DS, Goud AS, Sailaja S, Thetay AAR, Gopalakrish-
nan M. Is Greulich and Pyle standards of skeletal maturation applicable 
for age estimation in South Indian Andhra children? J Pharm Bioallied Sci 
2015;7(3):218–225.

 26. Alshamrani K, Messina F, Offiah AC. Is the Greulich and Pyle atlas ap-
plicable to all ethnicities? A systematic review and meta-analysis. Eur Radiol 
2019;29(6):2910–2923.

 27. Zhang A, Sayre JW, Vachon L, Liu BJ, Huang HK. Racial differences in 
growth patterns of children assessed on the basis of bone age. Radiology 
2009;250(1):228–235.

http://radiology-ai.rsna.org
https://arxiv.org/abs/1708.02002
https://arxiv.org/abs/1608.06993
https://arxiv.org/abs/1608.06993
https://www1.nyc.gov/assets/planning/download/pdf/data-maps/nyc-population/census2010/t_pl_p3a_nta.pdf
https://www1.nyc.gov/assets/planning/download/pdf/data-maps/nyc-population/census2010/t_pl_p3a_nta.pdf
https://dlt.ri.gov/documents/pdf/lmi/ethnic.pdf

