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Delays in neurologic diagnosis can lead to poor out-
comes (1–3). Imaging studies of patients with neu-

rologic symptoms are crucial to accurate diagnoses (4,5), 
and subspecialty interpretations are known to improve 
accuracy of neuroradiology diagnoses (6). However, 
subspecialists often are unavailable outside of large aca-
demic centers. Computational methods for quantitative 
image analysis and other forms of artificial intelligence 
(AI) have considerable potential for augmenting radiolo-
gists’ ability to make earlier diagnoses, particularly given 
minimal overlap between computer errors and human 

cognitive biases (5,7–9). However, substantial challenges 
have limited progress in translating AI tools into daily 
clinical practice. These challenges include a vast spectrum 
of common and rare pathologic conditions encountered 
in clinical practice (10), integration of relevant clinical 
information, highly heterogeneous clinical imaging data, 
scanner variability, and long processing time for tradi-
tional image processing methods.

To begin to address these challenges, we sought to 
develop a hybrid approach that mirrors the fundamen-
tal perceptual and cognitive steps involved in generating 
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Purpose:  To develop and validate a system that could perform automated diagnosis of common and rare neurologic diseases involving 
deep gray matter on clinical brain MRI studies.

Materials and Methods:  In this retrospective study, multimodal brain MRI scans from 212 patients (mean age, 55 years 6 17 [standard 
deviation]; 113 women) with 35 neurologic diseases and normal brain MRI scans obtained between January 2008 and January 2018 
were included (110 patients in the training set, 102 patients in the test set). MRI scans from 178 patients (mean age, 48 years 6 17; 
106 women) were used to supplement training of the neural networks. Three-dimensional convolutional neural networks and atlas-
based image processing were used for extraction of 11 imaging features. Expert-derived Bayesian networks incorporating domain 
knowledge were used for differential diagnosis generation. The performance of the artificial intelligence (AI) system was assessed by 
comparing diagnostic accuracy with that of radiologists of varying levels of specialization by using the generalized estimating equation 
with robust variance estimator for the top three differential diagnoses (T3DDx) and the correct top diagnosis (TDx), as well as with 
receiver operating characteristic analyses.

Results:  In the held-out test set, the imaging pipeline detected 11 key features on brain MRI scans with 89% accuracy (sensitivity, 
81%; specificity, 95%) relative to academic neuroradiologists. The Bayesian network, integrating imaging features with clinical infor-
mation, had an accuracy of 85% for T3DDx and 64% for TDx, which was better than that of radiology residents (n = 4; 56% for 
T3DDx, 36% for TDx; P , .001 for both) and general radiologists (n = 2; 53% for T3DDx, 31% for TDx; P , .001 for both). The 
accuracy of the Bayesian network was better than that of neuroradiology fellows (n = 2) for T3DDx (72%; P = .003) but not for TDx 
(59%; P = .19) and was not different from that of academic neuroradiologists (n = 2; 84% T3DDx, 65% TDx; P  .09 for both).

Conclusion:  A hybrid AI system was developed that simultaneously provides a quantitative assessment of disease burden, explainable 
intermediate imaging features, and a probabilistic differential diagnosis that performed at the level of academic neuroradiologists. This 
type of approach has the potential to improve clinical decision making for common and rare diseases.

Supplemental material is available for this article.
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neurologic diagnosis requires integration of multiple imaging 
and clinical variables (17). We aimed to validate this AI system 
by comparing its performance to radiologists with different lev-
els of specialization in a held-out test sample, hypothesizing that 
such a hybrid system could perform as well as academic neurora-
diologists for diseases involving deep gray matter.

Materials and Methods

Study Design and Patient Data
As part of a retrospective, institutional review board–approved, 
Health Insurance Portability and Accountability Act–compli-
ant study, multimodal brain MRI scans from 212 patients 
(mean age, 55 years 6 17 [standard deviation]; 113 women) 
were included after assessment of inclusion and exclusion cri-
teria with a waiver for written consent (Table 1, Fig 1, Ap-
pendix E1 [supplement]). The patients included represented 
35 different diagnostic entities involving deep gray matter 
as well as normal brain MRI findings (Table 1, Fig 2). Data 
from an additional 178 patients with lesions of various causes 
(mean age, 48 years 6 17; 106 women) from a related study 
of different diseases (18) were used to supplement training of 
the CNNs. In addition, a portion of the MRI data overlapped 
with those in the study by Duong et al (19), which details the 
development of the three-dimensional CNN. Images were ac-
quired between January 2008 and January 2018 from the pic-
ture archiving and communication system (Sectra, Linköping, 
Sweden) at our tertiary care center. Four clinical characteristics 
were extracted from each patient’s chart: age, sex, symptom 
chronicity, and immune status (Appendix E8 [supplement]).

The 212 deep gray matter patient cases were separated into 
training (n = 110) and test (n = 102) sets by randomly selecting 
two or three cases from each disease entity for inclusion in the 
test sample; the remaining cases served as the training sample, 
even if this procedure resulted in zero examples of that disease 
in the training sample (training cases varied from zero to eight 
across diagnoses) (Table 1). The diseases were classified as “com-
mon,” “moderately rare,” or “rare” with regard to the relative 
frequency at which they were diagnosed on brain MRI scans at 
a tertiary care center, based on the consensus of two academic 
neuroradiologists (I.M.N. and S.M., with 7 and 12 years of post-
fellowship academic neuroradiology experience, respectively) 
(Appendix E1 [supplement]).

Imaging Data
Six core clinical MRI modalities were included in the image 
analysis pipeline when available: T1-weighted, T2-weighted 
fluid-attenuated inversion recovery (FLAIR), gradient-re-
called echo (a T2*-weighted sequence), diffusion-weighted 
(high b value of approximately 1000 sec/mm2), apparent 
diffusion coefficient, and T1-weighted postcontrast imaging 
(Appendix E2 [supplement]). The 212 MRI studies used in 
total were obtained from 16 unique scanner models and four 
manufacturers; 97% of the data were acquired from either 
Siemens (Erlangen, Germany) or GE Healthcare (Milwau-
kee, Wis) scanners (Tables 2, 3; Appendix E2 [supplement]).

image-based differential diagnoses (5). The first part of our 
system combines advanced atlas-based neuroimaging methods 
with convolutional neural networks (CNNs) to detect, localize, 
and quantitatively characterize signal and spatial abnormalities 
within the brain. CNNs are a class of deep learning algorithms 
that are well-suited for image-based problems and show substan-
tial promise in addressing issues related to heterogeneous clini-
cal data and long processing times (11,12). These image-derived 
intermediate features become inputs to the second part of our 
system, an expert-derived Bayesian network, which probabilisti-
cally models conditional independence (13–16). The Bayesian 
network allows for experts’ explicit knowledge of an array of pos-
sible diseases to be incorporated into the system to perform the 
cognitive task of generating a differential diagnosis given a set 
of imaging and clinical variables, without requiring training ex-
amples for each disease.

Given the vast spectrum of diagnostic possibilities that could 
be present on brain MRI scans, as a proof of concept we chose to 
focus on 35 diagnostic entities that may involve deep gray mat-
ter structures, including the caudate nucleus, putamen, globus 
pallidus, and thalamus. These entities reflect a wide variety of 
infectious-inflammatory, neoplastic, toxic-metabolic, and vascu-
lar etiologies, including common and rare pathologies. Accurate 

Abbreviations
AI = artificial intelligence, AUC = area under the receiver operating 
characteristic curve, CI = confidence interval, CNN = convolu-
tional neural network, FLAIR = fluid-attenuated inversion recovery, 
OR = odds ratio, TDx = top diagnosis, T3DDx = top three dif-
ferential diagnoses 

Summary
A hybrid artificial intelligence system incorporating deep learning, 
atlas-based image processing, and Bayesian inference performed 
automated diagnosis of 35 common and rare neurologic diseases 
involving deep gray matter as well as normal brain MRI scans, and 
the performance of the system was compared with radiologists of 
different training levels in a held-out test sample.

Key Points
	n A custom advanced image processing pipeline incorporating deep 

learning and atlas-based imaging methods was able to detect 11 
key features on brain MRI scans (total, n = 212; test set, n = 102) 
with 89% accuracy (sensitivity, 81%; specificity, 95%) relative to 
academic neuroradiologists.

	n An expert-derived Bayesian system incorporated the 11 imaging 
features with four clinical features to generate a probabilistic differ-
ential diagnosis of 35 common and rare neuroradiologic diagnoses 
involving deep gray matter as well as normal findings.

	n Within the test set, the integrated artificial intelligence (AI) system 
generated the correct diagnosis within the top three differential 
diagnoses (T3DDx) in 85% of cases and the correct diagnosis as 
the top diagnosis (TDx) in 64% of the cases; the performance of 
the system was not different from that of academic neuroradiolo-
gists (84% for T3DDx, 65% for TDx; P  .09 for both), but was 
better than that of radiology residents (56% for T3DDx, 36% for 
TDx; P , .001 for both), general radiologists (53% for T3DDx, 
31% for TDx; P , .001 for both), and neuroradiology fellows for 
T3DDx (72%, P = .003) but not for TDx (59%, P = .19).

	n Imaging features accounted for 43.1% of the T3DDx accuracy of 
the AI system, whereas clinical features accounted for 20.6%.

http://radiology-ai.rsna.org
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well as parcellation into eight deep gray matter structures 
(Fig 3, A; Appendix E3 [supplement]).

Abnormal Signal Intensity Detection
For the detection of abnormal signal intensity on FLAIR, gradi-
ent-recalled echo, and T1-weighted images, we developed custom 
three-dimensional U-Net CNNs (22–24) for each sequence that 
were trained on radiologists’ (J.D.R. and A.M.R., both neuroradi-
ology fellows) voxel-wise hand segmentations of abnormal signal 
intensity of training cases (Fig 3, B and C), as described in Du-

Atlas-based Image Segmentation Pipeline
We developed an image processing pipeline that performed 
segmentation of brain tissues and deep gray matter struc-
tures (right and left caudate, putamen, globus pallidus, 
thalamus) on T1-weighted images. After preprocessing, 
the Advanced Normalization Tools pipeline (version 2.1; 
https://github.com/ANTsX/ANTs) (20,21) was applied to T1-
weighted images for brain extraction, registration to a stan-
dard common template, and segmentation of cerebrospinal 
fluid, white matter, and cortical and deep gray matter as 

Table 1: Diagnostic Entities Included in the Study

Disease Prevalence Training Set Test Set Age (y)* Sex

Central nervous system lymphoma Common 8 3 73 6 11 6 W, 5 M
Hemorrhage: chronic Common 3 3 58 6 11 3 W, 3 M
Glioma: high grade Common 8 3 52 6 20 1 W, 10 M
Infarct: acute Common 7 3 54 6 25 7 W, 3 M
Infarct: chronic Common 5 3 46 6 17 5 W, 3 M
Infarct: subacute Common 7 3 58 6 13 5 W, 5 M
Glioma: low grade Common 4 3 60 6 9 5 W, 2 M
Manganese deposition Common 6 3 67 6 18 6 W, 3 M
Metastasis Common 8 3 58 6 15 7 W, 4 M
Abscess Common 0 2 46 6 4 1 W, 1 M
Hypoxic-ischemic encephalopathy: acute Moderately rare 5 3 48 6 17 2 W, 6 M
Hypoxic-ischemic encephalopathy: subacute Moderately rare 0 3 52 6 8 1 W, 2 M
Calcium deposition (Fahr disease) Moderately rare 4 3 45 6 17 4 W, 3 M
Creutzfeldt-Jakob disease Moderately rare 8 3 53 6 16 6 W, 5 M
Hemorrhage: acute Moderately rare 5 3 55 6 23 1 W, 7 M
Hemorrhage: subacute Moderately rare 4 3 57 6 6 3 W, 4 M
Toxoplasmosis Moderately rare 8 3 49 6 49 5 W, 6 M
Wernicke encephalopathy Moderately rare 5 3 39 6 9 6 W, 2 M
Hypoxic-ischemic encephalopathy: chronic Moderately rare 0 2 70 6 22 0 W, 2 M
Artery of Percheron infarct Rare 0 2 51 6 35 1 W, 1 M
Bilateral thalamic glioma Rare 0 2 52 6 3 1 W, 1 M
Carbon monoxide: acute Rare 0 2 60 6 1 0 W, 2 M
Carbon monoxide: chronic Rare 0 2 59 6 1 2 W, 0 M
Carbon monoxide: subacute Rare 1 3 45 6 25 1 W, 3 M
Cryptococcosis Rare 0 2 54 6 10 1 W, 1 M
Deep vein thrombosis: acute Rare 0 2 65 6 9 2 W, 0 M
Deep vein thrombosis: chronic Rare 0 3 55 6 1 3 W, 0 M
Deep vein thrombosis: subacute Rare 0 3 50 6 23 2 W, 1 M
Encephalitis Rare 1 3 52 6 16 2 W, 2 M
Neuro-Behçet disease Rare 0 2 24 6 1 1 W, 1 M
Neurofibromatosis type 1 Rare 0 2 61 6 4 1 W, 1 M
Neurosarcoidosis Rare 3 3 39 6 10 5 W, 1 M
Nonketotic hyperglycemia Rare 0 2 55 6 4 2 W, 0 M
Seizure Rare 0 2 36 6 11 1 W, 1 M
Wilson disease Rare 0 2 27 6 7 2 W, 0 M
Normal Common 10 10 48 6 15 11 W, 9 M
  Total … 110 102 54 6 16 112 W, 100 M

Note.—The numbers of patients in the training and test samples for each of the 35 diagnostic entities and normal MRI scans are displayed 
with the relative frequency in which they are diagnosed on brain MRI scans at a tertiary care center, as well as the age and sex of the pa-
tients. M = men, W = women.
* Ages are averages 6 standard deviations.

http://radiology-ai.rsna.org
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gists (A.K., J.M.E.) (both of whom routinely read brain MRI scans, 
one with fellowship training in neuroradiology, with 20 and 21 
years of posttraining experience, respectively), and two academic 
neuroradiology attending physicians (I.M.N., S.M.) reviewed the 
102 test cases anonymized on our picture archiving and commu-
nication system with the same clinical information and provided 
their ranked top three differential diagnoses (T3DDx) from the 
36 possible diagnostic entities (Appendix E11 [supplement]).

Statistical Analyses for Comparison of Performance
Comparison between the performance of the AI system and 
different groups of radiologists for T3DDx and top diagnosis 

ong et al (19) and in Appendixes E4 and E6 
(supplement). For the detection of abnormal 
enhancement and restricted diffusion, we 
developed custom image processing pipe-
lines, whereby voxel-wise information from 
multiple images was incorporated to detect 
abnormal enhancement (T1-weighted im-
ages, T1-weighted postcontrast images, 
and a subtraction of the T1-weighted im-
age from the T1-weighted postcontrast 
image) and restricted diffusion (diffusion-
weighted images and apparent diffusion 
coefficient maps) (Fig 3, D; Appendix E5 
[supplement]). The performance of these 
automated methods for detecting the pres-
ence of abnormal signal in the test cases was 
evaluated by comparing them with the refer-
ence standard consensus of three radiologists 
(I.M.N., S.M., and J.D.R.; Appendix E10 
[supplement]). The prevalence of each of 
these features for each disease is displayed in 
Table E1 (supplement).

Bayesian Network Analysis
The 11 imaging features—five extracted 
signal intensity features (T1, FLAIR, en-
hancement, restricted diffusion, and sus-
ceptibility [from gradient-recalled echo]), 
four anatomic subregions (whether ab-
normal signal intensity was present within 
the segmented four deep gray regions after 
thresholding) (Appendixes E6, E7 [supple-
ment]), and two spatial pattern features 
(bilateral and symmetric) derived from 
the lesion masks (Appendix E7 [supple-
ment])—were combined with four clinical 
features (age, sex, symptom chronicity, and 
immune status) (Appendix E8 [supple-
ment]) and passed into an expert-derived 
naive Bayes inference model encompassing 
the 36 possible diagnostic entities (35 deep 
gray matter diseases and normal) (Fig 4). 
The probabilities in the Bayesian network 
were determined by consensus of four radi-
ologists (I.M.N., S.M., J.D.R., and E.J.B., 
a neuroradiology fellow) and the literature where available (Ap-
pendix E9 [supplement], with probabilities shown in Table E2 
[supplement]). For each test case, the Bayesian network gener-
ated a probability for each of the diagnostic entities in a ranked 
differential diagnosis.

Clinical Validation
To clinically validate the performance of the AI system, four radi-
ology residents (two 2nd-year radiology residents and two board-
eligible 4th-year radiology residents), two neuroradiology fellows 
(each with 9 months of fellowship training), two general radiolo-

Figure 1:  Flowchart for case selection. After selecting 348 patients with the diseases included in the study 
from mPower (Nuance Communications, Burlington, Mass) searches, chart reviews were performed to confirm 
the diagnoses. The first diagnostic MRI scan was chosen, and then the final cases were selected by excluding 
cases with inadequate imaging (eg, missing sequences or excessive motion), multiple diagnoses, or imaging 
findings outside deep gray matter. The final sample (n = 212) was then randomized into training cases (n = 110) 
and test cases (n = 102) by randomly selecting two to three cases of each diagnostic entity and 10 normal cases 
to the test cases. The remainder of the cases became training cases. FLAIR = fluid-attenuated inversion recovery, 
IRB = institutional review board.

http://radiology-ai.rsna.org
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Analysis of Confusion Matrices
Confusion matrices were generated for each group of radiolo-
gists by combining all the reads of that group into a matrix of 
predicted TDx versus true TDx. Correlations between the top 
diagnoses of the AI system, individual neuroradiology fellows, 
and individual academic neuroradiologists were performed 
using two-dimensional t tests of correlations. The statistical 
comparison between these correlations was performed with the 
Fisher r-to-z transformation.

Importance of Different Features to Bayesian Network 
Performance
To evaluate the relative importance of the different imaging 
and clinical features for generating a correct TDx or T3DDx, 
individual features and groups of features were removed before 
analysis of the test cases with the Bayesian network.

Results

Patient Demographics
The training and testing set split resulted in 110 training cases 
and 102 test cases (Table 1) across 35 different diagnoses (Fig 2). 

(TDx) across all diseases and within disease prevalence cate-
gories was performed using a generalized estimating equation 
with robust variance estimator by pooling observations across 
radiologist groups, expressed as odds ratios (ORs) of accuracy 
(eg, an OR of 0.50 would suggest that a particular radiologist 
group was half as likely as the AI algorithm to provide the cor-
rect diagnosis). Receiver operating characteristic curves were 
constructed to serve as summary measures of performance 
across TDx, top two differential diagnoses, and T3DDx by 
using the position of the differential diagnosis to create an 
ordinal scale of confidence intervals (CIs), with area under 
the receiver operating characteristic curve (AUC) and 95% 
CIs calculated by bootstrapping and significance compared 
using the DeLong test (25) (Appendix E12 [supplement]). 
The x2 test was used for comparing the fraction of cases an-
swered correctly according to disease prevalence within each 
radiologist group. Statistical analyses were performed using 
MATLAB (version r2019a; Mathworks, Natick, Mass), with 
the exception of the generalized estimating equation, which 
was implemented with Stata (version 13.1; Stata, College Sta-
tion, Tex). A statistically significant difference was defined as 
P , .05, and all reported P values represent nondirectional, 
two-tailed tests.

Figure 2:  Examples of the 36 diagnostic entities included the study. All MRI scans are axial T2-weighted fluid-attenuated inversion recovery images except for manga-
nese deposition and nonketotic hyperglycemia scans, which are T1-weighted images. CNS = central nervous system, DVT = deep vein thrombosis, HIE = hypoxic-ischemic 
encephalopathy.

http://radiology-ai.rsna.org
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There were no significant differences between the training and 
test sets with regard to age (P = .09, two-tailed t test) or sex (P 
= .65, x2 test). The number of training cases varied from zero to 
eight across diagnostic entities.

Performance for Detecting Abnormal Signal Intensity, 
Anatomic Subregion, and Spatial Pattern Features
The performance metrics for the 11 imaging features in the test 
cases relative to attending reference standard (Appendix E10 
[supplement]) are shown in Table 4. The U-Nets were 81%, 
89%, and 96% accurate for detecting the presence of abnormal 
signal intensity on T1-weighted, FLAIR, and gradient-recalled 
echo images, respectively. Detection of abnormal enhance-
ment and restricted diffusion were 89% and 84% accurate, 
respectively. Accuracies for detecting abnormal signal intensity 
within the different deep gray subregions varied between 85% 
and 92%, and accuracies for the bilateral and symmetric spatial 
features were 88% and 90%, respectively. The average speci-
ficities (range, 90%–100%) were higher than their sensitivities 
(range, 56%–90%) (Table 4).

Diagnostic Performance of Integrated AI System and 
Radiologists
Given that there were 36 diagnostic possibilities, random 
chance performance for selecting the correct diagnosis within 
the T3DDx was 8.3% (three of 36) and for selecting the cor-
rect diagnosis within the TDx was 2.8% (one of 36). The AI 

Table 3: Summary of Acquisition Parameters

Parameter Minimum Median Maximum

T1-weighted MRI TE (msec) 2.4 10 61
T1-weighted MRI TR (msec) 156 500 2700
T1-weighted MRI typical voxel sizes (mm) … 0.43 3 0.43 3 5 0.97 3 0.97 3 1
T1-weighted MRI typical matrix sizes … 512 3 512 3 34 192 3 256 3 192
FLAIR MRI TE (msec) 85 136 150
FLAIR MRI TR (msec) 5000 9000 12000
FLAIR MRI voxel sizes (mm) … 0.43 3 0.43 3 5 0.94 3 0.94 3 3 
FLAIR MRI matrix sizes … 224 3 256 3 35 192 3 256 3 192
T1-weighted postcontrast MRI TE (msec) 1.3 17 61
T1-weighted postcontrast MRI TR (msec) 150 500 2200
T1-weighted postcontrast MRI typical voxel sizes (mm) … 0.43 3 0.43 3 5 0.86 3 0.86 3 5
T1-weighted postcontrast MRI typical matrix sizes … 416 3 512 3 32 224 3 256 3 32
GRE MRI TE (msec) 13 26 40
GRE MRI TR (msec) 457 800 5500
GRE MRI typical voxel sizes (mm) … 0.43 3 0.43 3 6 0.86 3 0.86 3 5 
GRE MRI typical matrix sizes … 416 3 512 3 23 208 3 256 3 30
DWI MRI TE (msec) 74 91 123
DWI MRI TR (msec) 3100 6700 10000
DWI MRI typical voxel sizes (mm) … 1.17 3 1.17 3 5 1.8 3 1.8 3 5 
DWI MRI matrix typical sizes … 256 3 256 3 32 128 3 128 3 32
DWI MRI Typical b values (sec/mm2) 0, 500 0, 500, 1000 0, 1000, 1000

Note.—DWI = diffusion-weighted imaging, FLAIR = T2-weighted fluid-attenuated inversion recovery, GRE = gradient-recalled echo, 
TE = echo time, TR = repetition time.

Table 2: Clinical MRI Scanners Used

Manufacturer and Model No. of Patients

All models
  Total at 1.5 T 174 (82.1)
  Total at 3 T 38 (17.9)
GE Healthcare (Milwaukee, Wis) 54 (25.5)
  Discovery MR750w (3 T) 4 (1.9)
  Genesis Signa (1.5 T) 14 (6.6)
  Optima MR450w (1.5 T) 11 (5.2)
  Signa Excite (1.5 T) 15 (7.1)
  Signa HDxt (1.5 T) 10 (4.7)
Philips Intera (Best, the Netherlands) 2 (0.9)
Siemens (Erlangen, Germany) 153 (72.2)
  Aera (1.5 T) 15 (7.1)
  Avanto (1.5 T) 34 (16.0)
  Espree (1.5 T) 56 (26.4)
  Essenza (1.5 T) 4 (1.9)
  Skyra (3 T) 4 (1.9)
  Symphony (3 T) 3 (1.4)
  Symphony TIM (3 T) 5 (2.4)
  Trio TIM (3 T) 22 (10.4)
  Verio (3 T) 8 (3.8)
Toshiba Titan (Tokyo, Japan) 3 (1.4)

Note.—Numbers in parentheses are percentages. 

http://radiology-ai.rsna.org
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Figure 3:  Workflow of the im-
age processing pipeline. A, Atlas-
based neuroimaging processing 
pipeline for tissue segmentation 
and deep gray matter parcella-
tion. T1-weighted (T1W) axial 
(upper row) and coronal (lower 
row) MRI scans were up-sampled 
and skull-stripped (second column) 
before tissue segmentation with the 
Advanced Normalization Tools 
(ANTs) pipeline (third column) and 
parcellation of deep gray matter 
structures (fourth column). B, Dia-
grammatic overview of the custom 
three-dimensional U-Net architec-
ture for abnormal signal detection. 
C, Examples of U-Net–based 
segmentations for T1-weighted 
(T1, first row), T2-weighted fluid-
attenuated inversion recovery 
(FLAIR, second row), and gradient-
recalled echo (GRE, third row) MRI 
scans of test case. D, Example of 
T1-weighted (T1), T1-weighted 
postcontrast (T1-post), and a sub-
traction of the T1-weighted image 
from the T1-weighted postcontrast 
image with detected areas of ab-
normal enhancement (green) and 
high b value diffusion-weighted 
(DW) and apparent diffusion coef-
ficient (ADC) images with detected 
areas of restricted diffusion (green). 
E, Example of correctly diagnosed 
central nervous system (CNS) 
lymphoma processed through the 
full pipeline with signal, anatomic 
subregion, and spatial features 
(derived from abnormal signal seg-
mentations overlaid on tissue seg-
mentation maps) combined with 
clinical features into a Bayesian 
inference system to derive a proba-
bilistic differential diagnosis.

http://radiology-ai.rsna.org
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Figure 4:  Naive expert-trained deep gray Bayesian network overview. Key image signal, spatial pattern, and anatomic subregion 
features are probabilistically combined with four clinical features to calculate a probability of each diagnostic state. ADC = apparent 
diffusion coefficient, Dec = decreased, Enhance = enhancement, FLAIR = fluid-attenuated inversion recovery, GRE = gradient-recalled 
echo, Inc = increased, Restrict = restricted diffusion, Suscept = susceptibility, T1 = T1-weighted, T1-post = T1-weighted postcontrast.

Table 4: Performance Metrics for the 11 Imaging Features in the Test Cases Relative to Attend-
ing Reference Standard

Feature Sensitivity (%) Specificity (%) NPV (%) PPV (%) Accuracy (%)

T1-weighted signal 56 99 76 98 81
FLAIR signal 88 95 67 99 89
Susceptibility (GRE) 90 100 94 100 96
Enhancement 76 96 89 89 89
Restricted diffusion 70 95 91 81 84
    All signal features 76 97 83 93 88
Caudate 88 98 86 98 92
Putamen 90 93 87 95 91
Globus pallidus 78 100 70 100 85
Thalamus 85 91 82 92 87
    All subregion features 85 95 80 95 89
Bilateral 88 90 82 93 88
Symmetry 86 92 92 87 90
    All spatial features 87 91 89 91 89
        Average all features 81 95 83 93 89

Note.—The sensitivity, specificity, negative predictive value (NPV), positive predictive value (PPV), and ac-
curacy are shown for each of the five signal, four anatomic subregion, and two spatial features in the 102 test 
cases. The results are relative to the reference standard consensus of three radiologists evaluating these features 
for each MRI study. FLAIR = fluid-attenuated inversion recovery, GRE = gradient-recalled echo.
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Figure 5:  Comparison of radiologist performance to that of an artificial intelligence (AI) system. A, B, Jitter plots for the accuracy of the AI system for including, A, the 
correct top three differential diagnoses (T3DDx) and, B, correct top diagnosis (TDx) relative to the different groups of radiologists (radiology residents, general radiologists 
[General Rad], neuroradiology fellows [Neurorad fellows], and academic neuroradiologists [Academic Neurorads]). C, Nonparametric receiver operating characteristic 
(ROC) curves for the AI system (blue) compared with groups of radiologists based on their TDx, top two differential diagnoses, and T3DDx for each patient. D, E, Jitter plots for 
the accuracy of the AI system and radiologists for the, D, T3DDx and, E, exact correct TDx as a function of disease prevalence: common (black circle), moderately rare (gray 
square) and rare (white triangle). Solid lines denote the mean, and error bars represent standard error of measurement.

system determined the correct diagnosis within the T3DDx in 
85% (87 of 102) of test cases (Fig 5, A) and the correct TDx 
in 64% (65 of 102) of test cases (Fig 5, B). The AI system was 
found to perform better than radiology residents (n = 4; 408 
observations) for T3DDx (56% [227 of 408]; OR, 0.21; 95% 
CI: 0.12, 0.36; P , .001) and TDx (36% [145 of 408]; OR, 
0.30; 95% CI: 0.20, 0.45; P , .001). The AI system was also 

better than general radiologists (n = 2; 204 observations) for 
both T3DDx (53% [108 of 204]; OR, 0.17; 95% CI: 0.09, 
0.31; P , .001) and TDx (31% [64 of 204]; OR, 0.25; 95% 
CI: 0.16, 0.41; P , .001). Neuroradiology fellows (n = 2; 204 
observations) performed worse than the AI system for T3DDx 
(72% [147 of 204]; OR, 0.38; 95% CI: 0.20, 0.71; P = .003), 
but were not significantly different from the AI system for TDx 
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(59% [121 of 204]; OR, 0.74; 95% CI: 0.46, 1.16; P = .19). 
The AI system was not different from academic neuroradiolo-
gists (n = 2; 204 observations) for T3DDx (84% [172 of 204]; 
OR, 0.73; 95% CI: 0.38, 1.41; P = .35) or TDx (65% [133 
of 204]; OR, 1.02; 95% CI: 0.65, 1.61; P = .09). The per-
formance of each of the radiologist groups for each of the 36 
diagnostic entities is displayed in Table E3 (supplement).

Evaluation of the receiver operating characteristic across the 
TDx, top two differential diagnoses, and T3DDx (Fig 5, C) re-
vealed an AUC of 0.90 (95% CI: 0.86, 0.94) for the AI system, 
which was not different from that of academic neuroradiologists 
(AUC, 0.90; 95% CI: 0.87, 0.93; P = .86), but was better than 
that of radiology residents (AUC, 0.74; 95% CI: 0.71, 0.76; P 
, .001), general radiology attending physicians (AUC, 0.72; 
95% CI: 0.69, 0.76; P , .001), and neuroradiology fellows 
(AUC, 0.83; 95% CI: 0.79, 0.86; P = .04).

Performance Relative to Disease Prevalence
Next, we sought to assess how performance varied as a func-
tion of disease prevalence (Fig 5, D and E). For T3DDx, all 
radiologists performed better on common disease compared 
with rare diseases (Fig 5, D): The percentage correct was 77% 
(114 of 148) versus 32% (51 of 160), respectively, for radiol-
ogy residents (45% absolute difference, P , .001, x2 = 62), 
65% (48 of 74) versus 36% (29 of 80) for general radiologists 
(29% absolute difference, P , .001, x2 = 12), 86% (64 of 74) 

versus 61% (49 of 80) for neuroradiology fellows (25% abso-
lute difference, P , .001, x2 = 13), and 97% (72 of 74) versus 
71% (57 of 80) for academic neuroradiologists (26% absolute 
difference, P , .001, x2 = 19). For the AI system, there was 
no difference between common and rare diseases for T3DDx 
(percentage correct: 92% [34 of 37] vs 78% [31 of 40], 14% 
absolute difference, P = .08, x2 = 3).

When comparing the AI system with radiologist groups for 
T3DDx, the system was found to perform better than residents 
and general radiologists in the diagnosis of rare diseases (resi-
dents: OR, 0.28, 95% CI: 0.13, 0.57, P , .001; general radi-
ologists: OR, 0.28, 95% CI: 0.13, 0.57, P , .001), as well as 
in the diagnosis of common diseases (residents: OR, 0.09, 95% 
CI: 0.13, 0.68, P = .02; general radiologists: OR, 0.04, 95% CI: 
0.005, 0.33, P = .003).

Similarity of Performance between AI System and 
Radiologists
Confusion matrices were generated for the AI system and for 
each radiologist by comparing true and predicted diagnoses 
for the TDx (Fig 6). To evaluate the similarity between the AI 
system and different specialization levels of radiologists, we 
compared the correlations between the confusion matrices of 
individual academic neuroradiologists, neuroradiology fellows, 
and the AI system. The average of pairwise two-dimensional 
correlations among academic neuroradiologists and neuroradi-

Figure 6:  Confusion matrices for the artificial intelligence system and radiologists. Confusion matrices for different radiologist specialization levels were 
generated for the top diagnosis, averaged across individuals within each group. True disease labels are shown along the x-axis and predicted diagnoses on 
the y-axis. The color of each cell represents the fraction of cases within a column where the top predicted diagnosis matched the true diagnosis. Artery of Perch 
= artery of Percheron, Bilat thal glioma = bilateral thalamic glioma, Carbon Mon Acute = carbon monoxide: acute, Carbon Mon Chronic = carbon monoxide: 
chronic, Carbon Mon Subacute = carbon monoxide: subacute, CNS = central nervous system, Creutzfeld Jacob = Creutzfeldt-Jakob disease, DVT = deep 
vein thrombosis, Hemorrhage Chron = hemorrhage: chronic, Hemorrhage Subac = hemorrhage: subacute, High GR = high grade, HIE = hypoxic-ischemic 
encephalopathy, Infarct Chron = infarct: chronic, Low GR = low grade, Neuro Behcets = neuro Behçet disease, Neurofibromat 1 = neurofibroma type 1, 
Neurorad fellows = neuroradiology fellows, Neurosarcoid = neurosarcoidosis, Nonketot hypergly = nonketotic hyperglycemia, Wernickes = Wernicke en-
cephalopathy, Wilsons = Wilson disease.
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ology fellows (average r = 0.67) was not different than the cor-
relation between the two academic neuroradiologists (r = 0.71, 
P = .17) or between the two neuroradiology fellows (r = 0.67, 
P = .99). However, the correlation between the two academic 
neuroradiologists’ confusion matrices was higher than the 
average correlation between the AI system and the academic 
neuroradiologists (average r = 0.61, P , .001). Similarly, the 
correlation between the two neuroradiology fellows’ confusion 
matrices was higher than the average correlation between the 
AI system and the neuroradiology fellows (average r = 0.57, 
P = .003). These results demonstrate that the neuroradiology 
fellows and academic neuroradiologists were more similar to 
each other in the diagnoses that they predicted correctly and 
incorrectly as compared with the AI system.

Importance of Different Features to Bayesian Network 
Performance
Removing all clinical features resulted in a 21.6% decrease 
in performance for TDx and a 20.6% decrease for T3DDx 
(Table 5). Chronicity was the most important clinical feature 
and most important single feature overall, which resulted in 
a 12.8% decrease in performance for TDx and an 11.8% de-
crease for T3DDx when removed. Removing all signal features 
resulted in a 22.6% decrease in performance for TDx and a 
16.7% decrease for T3DDx, with T1-weighted being the most 

important signal feature, with a 7.9% and 3.9% decrease in 
performance when removed for TDx and T3DDx, respectively. 
Performance decreased by 10.8% when either all anatomic 
subregions or all spatial features were removed for TDx, but it 
decreased by only 3.9% when these were removed for T3DDx. 
Removing all imaging features (signal, anatomic subregion, 
and spatial) resulted in a 43.1% decrease in performance for 
T3DDx and a 45.1% decrease for TDx.

We also calculated the performance of the Bayesian network 
using attending reference standard features, which resulted in a 
94% accuracy for T3DDx (96 of 102 test cases) and 75% ac-
curacy for TDx (76 of 102 test cases).

Discussion
We developed an AI diagnostic system that models the per-
ceptual and cognitive tasks of radiologists by combining data-
driven and knowledge-driven analytic methods. The system 
was able to differentiate among 36 diagnostic entities involving 
deep gray matter and normal findings on clinical brain MRI 
studies with an AUC of 0.90 (85% accuracy for T3DDx and 
64% accuracy for TDx). The diagnostic system performed 
significantly better than general radiologists and radiology 
residents and was similar to that of subspecialty academic neu-
roradiologists. The system achieved human expert level perfor-
mance in a highly heterogeneous imaging dataset, representing 
a broad spectrum of common and rare diseases of neoplastic, 
infectious, metabolic, and inflammatory etiologies.

The first component of the system extracted 11 key features 
through a customized atlas-based neuroimaging pipeline for 
anatomic parcellation and CNNs for abnormal signal segmenta-
tion. We adapted a three-dimensional U-Net architecture, given 
the ability of this architecture to perform similar types of seg-
mentation tasks on heterogeneous biomedical imaging data with 
as little as a few hundred training exemplars (19). The second 
critical step of our approach was to use Bayesian networks to 
encode expert knowledge of a large array of diseases and perform 
the cognitive task of integrating relevant imaging features and 
pertinent clinical information to derive a probabilistic differen-
tial diagnosis. Although end-to-end deep learning approaches 
could one day perhaps perform the same task of distinguishing 
hundreds of different entities, data-driven approaches such as 
deep learning require thousands of examples for each entity be-
ing classified, making such a task improbable for rare diseases 
that lack even moderately large sample sizes. Thus, most prior 
applications of AI in medical imaging have focused on a handful 
of common diagnostic entities, such as five types of liver lesions 
(26) or five types of intracranial hemorrhage (27). In contrast, by 
incorporating experts’ domain knowledge about these different 
diseases, this hybrid system can achieve expert-level performance 
on novel data despite having few, or even zero, training examples 
of specific rare diseases. This is possible given that training is 
directly performed on intermediate imaging features that change 
in restricted ways across all diseases. This variability is captured 
in the training set even without inclusion of rare diseases. The 
Bayesian network merges these imaging features to the final dif-
ferential diagnosis based on expert knowledge of rare diseases 

Table 5: Performance Decline from Removing Different 
Network Features

Feature Removed T3DDx TDx

Age 22.9 25.9
Sex 23.9 24.9
Chronicity 211.8 212.8
Immunocompromised 22.9 23.0
    All clinical features 220.6 221.6
T1-weighted signal 23.9 27.9
T2-weighted FLAIR signal 21.0 22.0
Susceptibility 22.9 26.9
Diffusion 22.9 24.9
Enhancement 22.0 23.9
    All signal features 216.7 222.6
Caudate 22.0 0.0
Putamen 22.9 23.9
Globus pallidus 23.9 23.9
Thalamus 22.0 23.0
    All subregion features 23.9 210.8
Bilateral 21.0 29.8
Symmetric 22.9 26.9
    All spatial features 23.9 210.8
        All imaging features 243.1 245.1

Note.—Data are the percentage decline and reflect how much 
performance decreased in the artificial intelligence system after 
removing that feature or set of features for correct top diagnosis 
(TDx) and correct top three differential diagnoses (T3DDx). 
FLAIR = fluid-attenuated inversion recovery.
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contained in the probabilities of the network. In addition, this 
feature engineering approach allows for an iterative process of 
adding relevant features and interrogating the importance of 
each feature, including relevant clinical features. Interestingly, 
we found that inputting attending reference standard features 
into the Bayesian network led to even better performance (94% 
accuracy for T3DDx and 75% accuracy for TDx), highlighting 
that improvements to the image processing pipeline could boost 
performance. Finally, the feature states of the Bayesian network 
provide directly interpretable or “explainable” intermediate fea-
tures, which mitigates concerns about the “black box” nature of 
AI methods that go directly from images to diagnoses.

There are a number of limitations of the automated diagnos-
tic system presented herein, which can currently be considered a 
proof of concept for expert-level performance, tested retrospec-
tively on a preselected subset of diseases encountered on brain 
MRI studies. For such a system to be useful in the general neu-
roradiology workflow, it would need to be expanded to cover the 
majority of all possible diseases. We also plan to expand the sys-
tem to cover imaging manifestations of the spectrum of diseases 
across the entire brain. Alternatively, the current system could 
be used after it was determined that there were abnormalities in 
deep gray matter. To further improve such a system, it may also 
be necessary to add additional predefined intermediate features, 
including number and size of lesions as well as subtle texture fea-
tures present in the data but not easily discernible by the human 
visual system. In this study, common diseases were represented 
similarly to rare diseases to evaluate performance across a range 
of diagnostic entities. Incorporating prior probabilities based 
on local disease prevalence might be necessary for a system to 
be deployed prospectively with high accuracy. Collecting larger 
training samples and further updating the Bayesian probabilities 
using a data-driven approach also has the potential to improve 
performance. Another limitation of the current system is the in-
ability to distinguish multiple simultaneous diagnostic entities, 
as we excluded cases with multiple different disease processes. 
It should also be noted that some of the same neuroradiologists 
who developed the Bayesian network vetted the final diagnoses 
for the test cases, which could have biased the performance of 
the AI system toward that of the academic neuroradiologists. 
Ideally, the findings should be replicated in an additional in-
dependent dataset by independent academic neuroradiologists. 
Finally, although the study represented patients from a single 
health care system, the wide variety of scanners and acquisition 
parameters in our study suggests that this approach may be in-
sensitive to such variation. Augmenting the model with multi-
institutional data and scanner types may further improve the 
diagnostic performance.

There are multiple clinical applications for this line of re-
search. As the volume and complexity of medical imaging 
continues to increase (28), there is a need for tools that can 
improve both diagnostic accuracy and workflow efficiency. 
The addition of quantitative methods and computer algo-
rithms may decrease the incidence of perceptual and cogni-
tive errors due to uniquely human biases (5). Our data sup-
port the concept that cognitive biases can result in different 
types of errors generated by humans compared with the AI 

system. This suggests that results from the AI system may be 
synergistic with radiologists’ expertise, augmenting radiolo-
gists’ overall performance. Hence, it will be important to test 
whether radiologists’ accuracy can, in fact, be improved by 
using such a system. In particular, we found that the AI sys-
tem performed particularly well for rare diseases, suggesting 
that this type of system could also provide clinical decision 
support to consider alternate rare diagnoses. Clinical deci-
sion support may enable earlier diagnosis and treatment for 
rare entities, which can be missed in general practices where 
neuroradiology or neurology subspecialists are not available, 
and such support may be particularly useful in developing 
countries where there is a large shortage of subspecialty radi-
ologists (29). Future improvements to this diagnostic system 
should enhance the accuracy, precision, and overall utility of 
a system that can be used for clinical decision support in the 
evaluation of an individual patient’s brain MRI.
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