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In recent years, there have been numerous efforts to 
quantify subvisual structural features present in medical 

images generated by CT, MRI, PET, and other types of 
digital imaging. The hope is that quantitative information 
obtained from subvisual features will extend diagnostic 
utility beyond the capabilities of traditional visual inspec-
tion. Using terminology similar to that used in genomics 
and other “-omics,” this group of approaches is termed ra-
diomics, and the derived features themselves are known as 
radiomic features (RFs).

There are many types of RFs. RF extraction methods 
include categories of statistical, filtering, and morphologic 
features. Many statistical representations of pixel intensity 
changes across objects of interest exist and are said to be 
measures of texture. The Image Biomarker Standardization 
Initiative has defined many such features to help develop 
reproducible classifiers (1). Additional feature variations 
have been described through the application of math-
ematical filters, such as the wavelet distribution or fractal 
dimensions, or various mathematical transforms.

All told, there are hundreds of computational features 
that can be applied to analyze the ultrastructure of imaged 
objects. There is no way a priori to know which feature or 
features might work best to differentiate actionable com-
ponents associated with a particular disorder or clinical 
question, so methods have been developed to help make 
this selection. This process of identifying the best RFs 
to apply to specific problems is complicated by the fact 
that RFs that might be consistent biomarkers may be ren-
dered inconsistent by differences in primary signal qual-
ity, signal-to-noise ratios, resolution, artifacts, and other 
machine attributes in different scanners or in the same 
scanner over time. This may cause the RFs derived from 

these instruments to vary, and this can lead to inaccurate 
portrayal of important biologic features. Accordingly, it has 
been difficult to use radiomics in the conduct of multi-
institutional studies or even in the conduct of longitudinal 
studies in the same facility. Efforts to control this underly-
ing technical variability include the application of a series 
of strict quality control measures (2), including phantom 
studies (3). Strict quality control potentially limits the con-
tributions of underlying technical variations. Quantitative 
artifacts in image acquisition and processing documented 
by imaging phantoms can be used to adjust for machine-
related discrepancies.

Some investigators have used machine learning ap-
proaches to minimize manufacturer-based RF variabilities. 
The article by Marcadent et al in this issue of Radiology: 
Artificial Intelligence proposes a way to harmonize RFs in 
digital chest radiographs derived from disparate manufac-
turers using generative adversarial networks (GANs) (4). 
GANs are a relatively new convolutional neural network 
(CNN) architecture; there are numerous GAN models. 
Marcadent et al propose a cycle GAN–based approach to 
image translation between different radiographic acquisi-
tion systems (4). Cycle GANs work in the absence of a 
detailed paired image to achieve image-to-image transla-
tion (5). In this case, a cycle GAN has two linked CNNs, 
a generator and a discriminator, where the goal of the gen-
erator is to create more realistic “fakes” and the role of the 
discriminator is to get better at being able to identify the 
fake from real.

Marcadent et al (4) used the two linked CNNs to oper-
ate in coordinated cycles such that the feature sets of the 
original image from the CNN generator are learned by 
the discriminator and the data of both the generator and 
discriminator CNN can be blended. This type of feature 
blending can be easily appreciated by visual inspection of 
cycle GAN–produced photographs of different animals 
seeming to become a new blended animal (eg, zebras to 
horses) (5). Marcadent et al applied this approach to the 
digital chest radiographs acquired from two different man-
ufacturers (4). In this approach, “fake” images are gener-
ated using images from manufacturer A (“source” domain) 
that mimic the texture of images from manufacturer B 
(“target” domain). They showed that they could create da-
tasets that were no longer distinguishable digitally and that 
yielded digital radiographs that were not distinguishable 
by radiologists even though those radiologists were able to 
tell the manufacturers apart before the cycle GAN opera-
tion. They also showed that after the cycle GAN operation 
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their method retained the ability to properly classify abnormal 
findings on the original chest radiographs. In their study, the 
abnormality was the presence of congestive heart failure. Thus, 
they concluded that the application of cycle GANs might be a 
method to significantly reduce the impact of variabilities in ma-
chine signal as a source of inaccuracies in multimanufacturer, 
multisite, and sequential radiomics.

Others also have addressed the issue of radiomic generaliz-
ability. Dercle et al used machine learning–based feature reduc-
tion and ranking along with strong quality control to discover 
reproducible RFs derived from abdominal CT images that were 
acquired in multiple centers in patients who had colorectal can-
cer with liver metastases (6). Their chosen RFs were able to be 
applied to accurately classify patients who would have longer 
overall survival and which patients were more likely to respond 
to certain types of chemotherapy. Ohrlac et al used a postrecon-
struction Bayesian maximum likelihood transformation process 
(COMBAT) to harmonize the RFs of independently acquired 
PET/CT data and verified the success of this method in a study 
of data acquired from CT phantoms (7,8). Choe et al used deep 
learning–based image kernel conversion to improve the repro-
ducibility of 21% of more than 700 RFs that they were using in 
chest CT studies of pulmonary nodules and masses (9). These 
CT scans were acquired over a period of months using the same 
CT scanner.

Whether RFs are rendered generalizable by using machine 
learning to select the most valuable variables, by Bayesian trans-
formation, kernel conversion, cycle GANS, or some other 
method, in a semantic sense all might be described as methods 
of RF “harmonization.” Time will tell which of these methods or 
other new approaches prove the most sustainable and useful. An-
other possibility is that differing RF harmonization approaches 
will be found to be most successful in differing types of imaging 
data to which their approach is particularly well suited. Whether 
the expertise to apply any of these approaches will be widespread 
or will be available only in select specialized radiomics processing 
centers remains to be seen.

The cycle GANs approach advocated by Marcadent et al 
(4) needs independent verification and that verification needs 
to include studies in CT, which is the modality in which ra-
diomics measurement currently is most frequently applied. 
Their study suggests that cycle GANs might allow radiomics 
from independently acquired chest radiographs to have clinical 
value. Whether or not that proves to be true, chest radiography 
in the current study has served as a suitable model in which to 
explore the utility of blending cycle GAN features to promote 
radiomics generalizability.
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