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Breast cancer screening programs are currently imple-
mented in most developed countries and have been 

shown to increase earlier stage breast cancer detection 
leading to improved prognosis and reduced mortality 
(1). It is estimated that a small, node-negative tumor 
(less than 10 mm in size) can be successfully treated in 
about 90% of cases, whereas this value drops to about 
55% in the case of local-regional nodal involvement 
and 18% in the case of distant metastases (2).

Mammography has been the frontline screening tool 
for breast cancer for decades with more than 200 mil-
lion women being examined each year around the globe 
(3). However, limitations in sensitivity and specificity 
persist even in the face of the most recent technologic 
improvements. Up to 30% to 40% of breast cancers can 
be missed during screening and on average, only 10% of 
women recalled from screening for diagnostic workup 
are ultimately found to have cancer (4).

Traditional computer-aided detection systems were 
introduced in previous years with the intent to improve 
the performance of radiologists. In the United States, 
computer-aided detection systems are used in 83% 
of digital mammography examinations (5). However, 

literature on their efficacy is controversial. Some stud-
ies have shown improved cancer detection similar to 
that of double reading when using computer-aided 
detection systems (6–8). Others have demonstrated 
conflicting results, including a large study evaluating 
the performance of radiologists at 43 facilities over a 
4-year period, which found that the use of computer-
aided detection led to decreased accuracy in cancer 
detection as well as an increase in biopsy recommenda-
tions (9).

Given the growing interest in the use of artificial 
intelligence (AI) in medical imaging, several newer al-
gorithms based on deep learning have been developed 
and applied to digital mammography. Preliminary 
investigations have demonstrated that the use of AI 
systems as concurrent readers for interpreting mam-
mograms can improve efficiency of the radiologist in 
terms of time, sensitivity, and specificity (10–14).

Our work described a multireader, multicase clini-
cal investigation carried out to test the hypothesis that 
the use of a new AI system can improve the perfor-
mance of radiologists in breast cancer detection when 
reading digital screening mammography.
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Purpose: To evaluate the benefits of an artificial intelligence (AI)–based tool for two-dimensional mammography in the breast cancer 
detection process.

Materials and Methods: In this multireader, multicase retrospective study, 14 radiologists assessed a dataset of 240 digital mammography 
images, acquired between 2013 and 2016, using a counterbalance design in which half of the dataset was read without AI and the 
other half with the help of AI during a first session and vice versa during a second session, which was separated from the first by a 
washout period. Area under the receiver operating characteristic curve (AUC), sensitivity, specificity, and reading time were assessed as 
endpoints.

Results: The average AUC across readers was 0.769 (95% CI: 0.724, 0.814) without AI and 0.797 (95% CI: 0.754, 0.840) with AI. 
The average difference in AUC was 0.028 (95% CI: 0.002, 0.055, P = .035). Average sensitivity was increased by 0.033 when using AI 
support (P = .021). Reading time changed dependently to the AI-tool score. For low likelihood of malignancy (, 2.5%), the time was 
about the same in the first reading session and slightly decreased in the second reading session. For higher likelihood of malignancy, the 
reading time was on average increased with the use of AI.

Conclusion: This clinical investigation demonstrated that the concurrent use of this AI tool improved the diagnostic performance of ra-
diologists in the detection of breast cancer without prolonging their workflow.

Supplemental material is available for this article.
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Fourteen reader participants read cases over two reading ses-
sions separated by a washout period of 4 weeks. Cases were read 
twice using a counterbalance design in which half of the cases 
were read with AI and half without AI for the first reading ses-
sion and vice versa for the second reading session. For each read-
ing session, subgroups of cases to be read with and without AI 
contained the same distribution of true positive, false positive, 
true negative, and false negative, whereas case reading order was 
randomized separately for each reader. The design was based on 
similar studies used to test AI-based systems for breast imaging 
(11,16,17).

AI System
The AI system we used (MammoScreen V1; Therapixel, Nice, 
France) is designed to identify regions suspicious for breast 
cancer on two-dimensional digital mammograms and assess 
their likelihood of malignancy. The system takes as input the 
complete set of four views composing a mammogram (left and 
right craniocaudal and mediolateral oblique images) and out-
puts a set of image positions with a related suspicion score. The 
system uses two groups of deep convolutional neural networks 
combined together with an aggregation module. A detailed de-
scription of the system is given in Appendix E1 (supplement).

Reader Test
Fourteen radiologists were involved in the reader study, all of 
whom were certified by the American Board of Radiology and 
Mammography Quality Standards Act and Program and breast 
imaging fellowship trained. Readers’ years in practice varied 
from 0 to 25 years (median, 8.5 years). Most readers (93%) 
devoted at least 50% of their practice to breast imaging, read-
ing more than 3000 mammograms per year.

Readers evaluated the cases independently, with an individu-
ally randomized order (ie, each reader read the cases in a different 
order). They had no access to any information about the patient 
(eg, previous mammography and other imaging examinations) 
and were told that the dataset to be assessed was enriched with 
cancer cases, without specifying in which proportions. The AI 
system, as well as the readers, had access to and used both the 
craniocaudal and mediolateral oblique view. For each case, read-
ers provided a forced Breast Imaging Reporting and Data System 
(BI-RADS) score of 1 to 5 and a level of suspicion of 0 to 100 at 
the time of interpretation. Starting from a level of suspicion of 
40, cases were considered as assessed positive. Reading times per 
reader per case were recorded; the measure of the reading time 
per case went from the opening of a new case until the validation 
of the level of suspicion and forced BI-RADS attributed by the 
reader. Readers were informed of the time being recorded but 
were blinded to the measurement.

Statistical Analysis
The main goal was to demonstrate the superiority of the 
performance of the radiologists reading with the AI support 
with respect to radiologists reading unaided. The sample size 
to evaluate superiority was based on previous similar stud-
ies (11,18) and calculated using the Obuchowski-Rockette 

Materials and Methods

Study Design
The retrospective study was conducted in accordance to the 
Health Insurance Portability and Accountability Act and ap-
proved by an institutional review board. The study was a mul-
tireader, multicase study with fully crossed design. Data were 
retrospectively collected spanning a 3-year period starting from 
January 1, 2016. Only examinations from women presenting for 
screening without clinical symptoms were included. Exclusion 
criteria included current and/or recent history of breast feed-
ing, breast reduction or implant augmentation, and history of 
breast cancer. All examinations meeting the study criteria were 
classified into four categories: true positive, false negative, true 
negative, and false positive. True-positive cancer cases were veri-
fied by histopathologic evaluation, whereas false-positive cases 
were assessed either by a negative biopsy result (25%, 10 of 40) 
or a negative result at follow-up for at least 18 months (75%, 
30 of 40). True-negative cases were verified by a negative result 
at follow-up of 18 months. False-negative cases were defined as 
screening negative cases with a positive result at follow-up within 
18 months. Before being included in the final dataset, data un-
derwent a quality check performed by an experienced breast ra-
diologist not taking part in the reading sessions, with the aim 
of excluding examinations not meeting acquisition standards or 
presenting identifiable features (eg, nipple retraction, invasive 
cancer larger than approximately 2.5 cm, bilateral cancer, and 
others to minimize recall bias [15]), and confirming that, for 
false-negative examinations, malignant lesions were visible and 
identifiable in retrospect (Fig 1). The final selected dataset in-
cluded 240 patient cases (average age, 59 years; range, 37–85 
years) with 80 true-positive, 40 false-negative, 80 true-negative, 
and 40 false-positive cases. Demographic and histopathologic 
characteristics of the selected patients are summarized, respec-
tively, in Tables 1 and 2.

Abbreviations
AI = artificial intelligence, AUC = area under the ROC curve, BI-
RADS = Breast Imaging Reporting and Data System, ICC = intra-
class correlation coefficient, ROC = receiver operating characteristic

Summary
A multireader, multicase retrospective study demonstrated that the 
use of an artificial intelligence–based tool significantly improved the 
average area under the receiving operating characteristic curve across 
radiologists.

Key Points
 n The investigation has shown that the use of artificial intelligence 

(AI) can decrease the false-negative rate of radiologists without af-
fecting their specificity.

 n The results of this study suggest also that incorporating AI-based 
machines into the process of evaluation of mammograms can im-
prove the performance of radiologists.

 n An improved diagnostic performance of radiologists in the mam-
mographic detection of breast cancer is achievable without having 
an impact on their overall reading time.
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Figure 1: Dataset selection flowchart.

technical problems). The two reading sessions made it possible 
to take into account the learning effect between the first time 
that readers used the AI system and the second reading session 
in which the readers were more familiar with the system and 
the entire workflow.

A secondary analysis was conducted to better understand 
the obtained results. This analysis was based on four subgroups 
of examination according to lesion type (soft tissue or calcifica-
tions), breast density (lower density [BI-RADS categories a and 
b] or higher density [BI-RADS categories c and d]), radiologists’ 
years of experience (less than 10 years or more than 10 years), 
and reading time as a function of three MammoScreen score 
categories (MammoScreen score  4, MammoScreen score = 
5 or 6, and MammoScreen score  7). The software used for 
conducting the statistical analysis was Obuchowski-Rockette 
and Dorfman-Berbaum-Metz software (version 2.5; Medical 
Image Perception Laboratory–University of Iowa, Iowa City, 
Iowa; available from https://perception.lab.uiowa.edu/software-0).

Finally, the intraclass correlation coefficient (ICC) was 
computed to assess the agreement between the 14 radiologists 
in rating the 240 included cases with and without the use of 
the AI system (21,22). ICC estimates and their 95% CIs were 
calculated using ICC R package (23) based on a single-rater, 
absolute-agreement, two-way random-effects model.

approach (19). Endpoints were the area under the receiver 
operating characteristic (ROC) curve (AUC), specificity, 
sensitivity, and reading time. The difference in AUC, speci-
ficity, and sensitivity for each reader under each condition 
was estimated with the trapezoidal method and analyzed 
using two-sided 95% CI and P value. P values less than 
.05 were considered indicative of statistical significance. The 
difference in mean AUC between the two reading condi-
tions was estimated with the Obuchowski-Rockette model, 
assuming a 0.03 difference in mean AUCs, with an 80% 
power at the nominal two-sided level of significance (20). 
The covariances of the errors were estimated using the jack-
knife method.

For the analysis of the reading time, a generalized lin-
ear model with Poisson distribution, including random case, 
reader, condition, session factors, and their interactions, was 
used. Outliers (defined as values extending beyond 10 minutes) 
were initially removed and considered as not representative of 
the real clinical practice (eg, due to interruptions, breaks, or 

Table 1: Demographic and Clinical Data of the Popula-
tion and Digital Mammographic Examinations Selected 
for the Study

Characteristic Value

Age (y)
 Mean 59
 Median 60
 Range 37–85
 Interquartile range 50–68
Median breast thickness (mm) 59.88 (52–68)*
Mean glandular dose (mGy) 1.79 (1.27–2.18)*
Breast density†

 Category A 15 (36/240)
 Category B 43.75 (105/240)
 Category C 34.58 (83/240)
 Category D 6.67 (16 /240)

* Interquartile range shown.
† Data are percentages with numbers in parentheses.

Table 2: Characteristic of the 120 Malignant Cancers In-
cluded in the Selected Dataset

Characteristic No. of Cases

Histologic type
 Invasive ductal carcinoma 75
 Ductal carcinoma in situ 27
 Invasive lobular carcinoma 6
 Other 12
Lesion type
 Mass 64
 Calcification 30
 Asymmetry 13
 Architectural distortion 13
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Table 3: AUC Values for Each Radiologist and Average AUC for Reading Conditions

Reader Years of Experience AUCR AUC R1A ∆

1 8 0.845 0.824 20.021
2 13 0.724 0.779 0.055
3 12 0.697 0.812 0.115
4 5 0.762 0.796 0.034
5 25 0.816 0.831 0.015
6 23 0.744 0.767 0.023
7 5 0.751 0.745 20.006
8 3 0.782 0.797 0.015
9 6 0.694 0.783 0.089
10 0 0.768 0.781 0.013
11 21 0.820 0.785 20.035
12 7 0.747 0.791 0.044
13 10 0.809 0.847 0.038
14 9 0.803 0.825 0.022
Average* … 0.769 (0.724, 0.814) 0.797 (0.754, 0.840) 0.028 (0.002, 0.055)

Note.—Area under the receiver operating characteristic curve (AUC) for reading conditions with (R 1 A) and without 
(R) the AI system. 
* Values in parentheses in the last line of the table (the one related to the average values) are the 95% CIs. The P value 
between the observed average values was .035.

Figure 2: A, Receiver operating characteristic (ROC) curves of all readers in unaided reading condition and, B, reading with the help of 
artificial intelligence (AI). The blue circle underlines the area where ROC curves are most improved. Examples of ROC curve of, C, reader 2 
and, D, reader 11 with and without using the help of AI.

http://radiology-ai.rsna.org
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.035) (Fig 3). The increase in AUC was also seen in all the 
considered subgroups; results are shown in Table 4.

Use of AI Increased Sensitivity and Specificity
Average sensitivity was shown to be statistically significantly in-
creased by 0.033 when using AI support (P = .021); average speci-
ficity showed a lower level of improvement (P = .634). Results 
are reported in Table 5. The use of the AI tool resulted in a trend 
toward lowering the false-negative rate for 11 of 14 readers with 
an average improvement of 18% (range, 2%–50%). Similarly, the 
false-positive rate was decreased by the use of AI for eight radiolo-
gists by an average of 25% (range, 9%–42%). Figure 4 reports 
the cancer detection rate and the false-positive rate for each reader 
along with the percentage of improvement brought by the use of 
the AI system. Figure 5 shows an example in which nine of the 14 
radiologists detected an invasive ductal carcinoma when reading 
the case using the AI tool while in the unaided reading condition 
only three radiologists detected the cancer.

Results

Use of AI Increased the AUC
ROC curves and their related AUCs were computed using the 
level of suspicion estimated by the reader during the reading 
sessions (Fig 2, A, B). The AUC of each reader aided by the 
AI system, each reader unaided, and the difference between 
them, together with average values and P values are reported 
in Table 3.

Among the 14 readers, 11 (79%) had an increase in AUC 
using the AI system. Figure 2, C and D, show the change 
of the ROC curve for reader 2 and reader 11, respectively. 
In the first case, there was an increase of AUC going from 
0.724 to 0.779, while in the second case the AUC decreased 
from 0.820 to 0.785. The average AUC across readers read-
ing unaided was 0.769, while the average AUC across read-
ers when using the AI system was 0.797. The average dif-
ference in AUC was 0.028 (95% CI: 0.002, 0.055 and P = 

Figure 3: A, Average receiver operating characteristic (ROC) curves of all readers when unassisted (yellow) and assisted with artificial 
intelligence (AI) (dark green) and ROC curve of the AI system as stand-alone (dashed black). ROC curves are averaged using linear inter-
polation between sampled points of each curve (the area under the ROC curve [AUC] of the average ROC curve is similar to the average 
area under the curve of all readers [difference of 1 × 10−3]). B, ROC curve of the AI as a stand-alone system for soft-tissue lesions (yellow) 
and calcifications (red). 

Table 4: AUC Values for Subgroups Secondary Analysis

Subgroup Average AUCR Average AUC R1A ∆ P Value

Lesion type
 Soft-tissue lesions 0.775 (0.726, 0.824) 0.802 (0.756, 0.849) 0.027 (20.003, 0.058) .073
 Calcifications 0.749 (0.669, 0.830) 0.782 (0.699, 0.865) 0.033 (20.006, 0.072) .099
Breast density
 Low breast density 0.782 (0.729, 0.836) 0.813 (0.761, 0.866) 0.031 (, 1 3 10-4, 0.062) .050
 High breast density 0.750 (0.683, 0.817) 0.776 (0.705, 0.846) 0.026 (20.009, 0.061) .144
Experience level
 Least experienced 0.776 (0.725, 0.826) 0.793 (0.748, 0.839) 0.018 (20.017, 0.052) .281
 Most experienced 0.760 (0.703, 0.817) 0.803 (0.755, 0.851) 0.043 (0.002, 0.084) .041

Note.—Area under the receiver operating characteristic curve (AUC) for reading conditions with (R 1 A) and without (R) the 
AI system. Values in parentheses are 95% CIs.
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Reading Time Changes with Use of AI Were Dependent on 
Likelihood of Malignancy
Of all reading times, 51 of 6720 (0.8%) were defined as outli-
ers and were excluded. On the first reading session, the average 
reading time per case was 62.79 seconds for the unaided readings 
(95% CI: 60.77, 64.80) and 71.93 seconds for the readings with 
the AI support (95% CI: 69.52, 74.33) (Table E3, Appendix E2 
[supplement]). The difference was statistically significant (P , 
.001); the reading time increased for 11 radiologists and decreased 
for three radiologists. The analysis of the reading time as a function 
of MammoScreen score categories is reported in Figure 6, A.

For the second reading session, the average reading time 
per case was 57.22 seconds for the unaided readings (95% CI: 

55.10, 59.33) and 62.16 seconds for the readings with AI (95% 
CI: 60.04, 64.29) (Table E3, Appendix E2 [supplement]). The 
difference was statistically significant (P , .001); the mean read-
ing time increased for eight radiologists and decreased for six 
radiologists. For this second session, the analysis of the reading 
time as a function of MammoScreen score categories showed a 
learning effect, with a decrease in the reading time for Mammo-
Screen score lower than 4, and an increase in reading time of less 
than 10 seconds for scores higher than 4 (Fig 6, B).

Interrater Reliability
A moderate interrater reliability was found in both reading 
conditions. For the unaided reading condition, ICC was equal 

Table 5: Average Sensitivity and Specificity across Readers

Parameter R R1A ∆ P Value

Sensitivity 0.658 (0.574, 0.743) 0.691 (0.600, 0.782) 0.033 (0.017, 0.072) .021
Specificity 0.725 (0.656, 0.794) 0.735 (0.656, 0.815) 0.010 (20.030, 0.038) .634

Note.—Sensitivity and specificity for reading conditions with (R 1 A) and without (R) the AI system. 
Number in parentheses are 95% CI values.

Figure 4: A, Cancer detection rate and percentage improvement brought by the use of the artificial intelligence (AI) system and, 
B, false-positive rate and percentage decrease as a result of the use of AI. Green bars indicate the percentage improvement brought 
by the help of AI, thus an increase in cancer detection rate and a decrease in the false-positive rate. Similarly, red bars indicate a 
deterioration of performances, thus a, A, decrease in cancer detection rate, B, and an increase in false-positive rate.

http://radiology-ai.rsna.org
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to 0.586 (95% CI: 0.528, 0.642), while for the reading condi-
tion using the AI system the ICC value was 0.679 (95% CI: 
0.62, 0.732).

Discussion
This clinical investigation demonstrated that the performance 
of radiologists in reading two-dimensional breast cancer screen-
ing mammograms can be improved with the concurrent use 
of an AI-based tool. The improvement was seen on a cancer-
enriched dataset of 240 digital mammography examinations 
including different types of abnormalities.

Looking at the overall trend of all ROC curves with and with-
out the aid of AI, it was observed that all curves exhibited less 
dispersion (variability) when AI was used, which highlights the in-
fluence of the system on radiologist decision. Interreader reliability 
appeared to increase in aided reading conditions, meaning that 
AI would provide a more standardized, expert-independent result.

Reading time increased in both reading sessions when using 
AI. For low MammoScreen scores (1 to 4), the time was about 
the same in the first session and slightly decreased in the second 
session; for higher MammoScreen scores, the reading time in-
creased, on average, with the use of AI. However, because of the 
presence of measurement errors, we were not able to quantify 
these time differences in a reliable way.

The decrease in reading times was observed for cases that re-
ceived a MammoScreen score of less than 4. The AI-based tool 
has the potential to increase overall efficiency of radiologists on 
these cases, allowing them to focus their attention on the most 
suspicious examinations, while reassuring them on less suspi-
cious examinations, which are far more numerous.

Furthermore, the learning curve observed between the first 
and the second session, together with the fact that the maximum 
increment of time did not exceed 15 seconds, suggested that 
the introduction of this tool into screening programs may not 

Figure 5: Mammograms in a 51-year-old woman with invasive ductal carcinoma. The upper panels show the craniocaudal and 
the mediolateral oblique views. The lower panels show a close-up of the left breast area containing the lesion. The case is one of the 
false-negative cases included in the dataset. Accordingly, the initial screening assessment was a BI-RADS 2, meaning visible findings 
were judged as benign. After 1 year, the patient presented for another screening examination. This time, a focal asymmetry with as-
sociated distortion within the left breast was noticed; the patient was recalled and diagnosed with a 1.5-cm mass in the upper outer 
quadrant of the left breast on the craniocaudal view (circle).



8 radiology-ai.rsna.org n Radiology: Artificial Intelligence Volume 2: Number 6—2020

Improving Breast Cancer Detection Accuracy

prolong the workflow of the radiologists and possibly even lead 
to a shorter average reading time. It should be noted that in real 
conditions, additional factors may have an impact on reading 
time (ie, stress, tiredness, etc), and that those factors were obvi-
ously not considered in the present analysis.

Because the use of AI systems to help read screening mam-
mograms is in the early stage of investigation, there is sparse 
literature on their clinical performance (16,24–27). Important 
results have been achieved by Rodríguez-Ruiz et al (11) who 
demonstrated an improvement in the average AUC of two per-
centage points with the use of the AI system with respect to the 
unassisted reading. A significant difference of this study, with 
respect to the work of Rodríguez-Ruiz et al, was the inclusion 
of false-negative cases within the dataset assessed by the readers, 
which explains the differences in absolute values of AUC (with 
and without AI). The choice of including false-negative cases was 
driven by the fact that we believe the AI tool can aid in the de-
tection of very early signs of cancer that may be overlooked in 
a regular screening setting. Despite the different distribution of 
examination categories (true positive, true negative, false posi-
tive) and the inclusion of false negative in the dataset, the present 
study confirms the observed trend that AI algorithms are able 
to improve radiologists’ success rate in breast cancer detection, 
supporting the conclusion that radiologists and AI achieve bet-
ter performance together than each of them individually. An-
other important difference with this study was the reading setup. 
Rodríguez-Ruiz et al tested two configurations (ie, half the read-
ers used the AI system integrated in the reading workstation, 
and the other half used the AI system on a separate screen from 
the workstation). In our study, the results (ie, suspicious region, 
level of suspicion related to each suspicious region, level of sus-
picion per breast, and overall assessment of the case) were dis-
played on a separate screen and presented at the same time as the 
mammography. In addition, contrary to the AI system tested by 
Rodríguez-Ruiz et al, the system used in the present study does 
not allow for interaction between the radiologist and the system, 
thus resulting in much shorter average reading times. Other re-
cent remarkable results have been published by Kim et al (26) 
and by McKinney et al (27). Both describe reader studies carried 
out on similar datasets and with similar designs. However, apart 

from the use-case tested (AI tested as a second reader by Kim 
et al, and AI tested as stand-alone system by McKinney et al), 
the major difference that emerged with the present study was 
that mammograms collected in the very same centers used for 
algorithm training were used during validation, while indepen-
dent, geographically different (United States vs Europe) centers 
were used in the present study. Choosing data from centers in-
dependent of those used during algorithm training is especially 
important when dealing with neural networks that generally 
contain several millions of parameters. Indeed, algorithms tested 
and trained with data from the same center have the capacity to 
learn center-specific biases, often indistinguishable for humans, 
and performances of such models tend to be overestimated when 
evaluated on data originating from the training centers. This 
type of validation is often referred to as external geographic vali-
dation and shall be preferred to other types of validation when 
evaluating generalizability of AI models (28).

As with the study of Rodríguez-Ruiz et al, the main limita-
tions of this investigation were due to the used dataset that was 
not representative of the normal screening practice. First, it was 
enriched with cancer cases and because readers were aware of 
that fact, this could have caused a laboratory effect, inducing 
a high rate of false-positive assessments (29,30). Second, all 
subcategories (eg, high or low density, lesion type) were not 
homogeneously distributed. In addition, because readers had 
no access to prior mammographic examinations of the same 
patient, additional imaging examinations, or any other kind of 
information, the assessment was more challenging than a typi-
cal screening mammography reading workflow. However, this 
scenario is representative of a baseline screening examination 
(eg, a patient who does not have prior studies), which accounts 
for 12% of all screening mammography per year (31). It has 
been demonstrated that the callback rate of baseline mam-
mograms is higher than the recall rate of nonbaseline patients 
(31–33); thus, having a relevant benefit on this subgroup of 
patients would have an important impact on the global recall 
rate and false-positive reduction. Finally, the overall conclusion 
of this clinical investigation was that the concurrent use of this 
AI tool improved the diagnostic performance of radiologists in 
the mammographic detection of breast cancer. In addition, the 

Figure 6: Difference in reading time per MammoScreen for the, A, first reading session and the, B, second reading session. The upper part of 
the plot indicates an increment in reading time when using MammoScreen. The lower part of the plot indicates a decreased reading time when using 
MammoScreen. The maximum increase in reading time for the first reading session does not exceed 15 seconds. A session effect is noticeable with a 
gain in reading time for low MammoScreen score (1 to 4), while the increase does not exceed 10 seconds for the higher scores.
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use of AI was shown to reduce false negatives without affecting 
the specificity.
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