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MRI is a versatile, noninvasive imaging technique to 
examine the soft tissue with fine resolution and ex-

cellent contrast (1). With advancement in MRI physics, 
improvements have been made in visualizing organs in 
an accurate and comprehensive manner. Meanwhile, the 
rapid development of artificial intelligence techniques 
enables fast, accurate, and objective analysis of MR im-
ages (2,3). Today, deep learning convolutional neural 
networks (CNNs) are the state of the art for many MR 
image analysis tasks, especially for organ segmentation 
that is traditionally performed by expert radiologists. 
There is accumulating evidence that CNNs can achieve 
expert-level performance in many classic MRI segmen-
tation problems, such as on brain, heart, and tumors 
(4–7). CNN tools may save tedious manual work and 
avoid user subjectivity, further enhancing the value of 
MRI. However, before the widespread adoption of CNN 
tools in clinical practice, there is a question that must be 
addressed: Would the CNN work on the data from my 
MRI machine at my center?

As suggested by its name, a deep learning CNN is a 
learning-based method (8). At the training stage, a CNN 
is given a large amount of training data including the 
original MR images and their manual segmentations. 
The CNN learns its internal parameters (up to millions) 
from the training data, such that the input image can be 
mapped to the known segmentation. It is critical to be 
as accurate as possible during the training stage. At the 
deployment stage, the trained CNN is applied to an “un-
seen” image and uses the trained parameters to predict its 
segmentation. The generalizability of the trained CNN to 
an unseen dataset, therefore, is of utmost importance for 
its practical deployment.

Although many previous studies have tested their 
CNNs on an independent testing dataset, the generaliza-
tion problem still persists for MRI data. CNN is a statistical 
method, which learns the statistics of the training data un-
der the identical independent distribution (IID) assump-
tion (9), which implies that the trained CNN is supposed 
to work on data with identical or similar distributions. 
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Purpose: To quantitatively evaluate the generalizability of a deep learning segmentation tool to MRI data from scanners of different 
MRI manufacturers and to improve the cross-manufacturer performance by using a manufacturer-adaptation strategy.

Materials and Methods: This retrospective study included 150 cine MRI datasets from three MRI manufacturers, acquired between 2017 
and 2018 (n = 50 for manufacturer 1, manufacturer 2, and manufacturer 3). Three convolutional neural networks (CNNs) were 
trained to segment the left ventricle (LV), using datasets exclusively from images from a single manufacturer. A generative adversarial 
network (GAN) was trained to adapt the input image before segmentation. The LV segmentation performance, end-diastolic volume 
(EDV), end-systolic volume (ESV), LV mass, and LV ejection fraction (LVEF) were evaluated before and after manufacturer adapta-
tion. Paired Wilcoxon signed rank tests were performed.

Results: The segmentation CNNs exhibited a significant performance drop when applied to datasets from different manufacturers 
(Dice reduced from 89.7% 6 2.3 [standard deviation] to 68.7% 6 10.8, P , .05, from 90.6% 6 2.1 to 59.5% 6 13.3, P , .05, 
from 89.2% 6 2.3 to 64.1% 6 12.0, P , .05, for manufacturer 1, 2, and 3, respectively). After manufacturer adaptation, the segmen-
tation performance was significantly improved (from 68.7% 6 10.8 to 84.3% 6 6.2, P , .05, from 72.4% 6 10.2 to 85.7% 6 6.5, 
P , .05, for manufacturer 2 and 3, respectively). Quantitative LV function parameters were also significantly improved. For LVEF, the 
manufacturer adaptation increased the Pearson correlation from 0.005 to 0.89 for manufacturer 2 and from 0.77 to 0.94 for manufac-
turer 3.

Conclusion: A segmentation CNN well trained on datasets from one MRI manufacturer may not generalize well to datasets from other 
manufacturers. The proposed manufacturer adaptation can largely improve the generalizability of a deep learning segmentation tool 
without additional annotation.

Supplemental material is available for this article.
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institutional review board and written informed consent to 
use the data was obtained from all patients. All data were ano-
nymized prior to the analysis. Cine MRI data were collected 
from two centers, from three major MRI scanner manufac-
turers. The manufacturers included three major players in the 
field of MRI: GE, Philips, Siemens (in no particular order). 
For each scanner manufacturer, 50 consecutive patients re-
ferred for cardiovascular MRI examination for clinical reasons 
between 2017 and 2018 were included. The datasets collected 
from each scanner were called manufacturer 1, manufacturer 
2, and manufacturer 3.

Clinical indications included myocardial infarction, hyper-
trophy, and dilated cardiomyopathy for reference to the MRI ex-
amination. In some cases, there were no cardiovascular findings 
at MRI. The basic patient information is as follows: mean age, 
57 years 6 20 standard deviation (58% male); 62 years 6 23 
(48% male); and 58 years 6 23 (54% male), for manufacturer 
1, manufacturer 2, and manufacturer 3, respectively.

MR Image Acquisition for Different MRI Machine 
Manufacturer Datasets
The typical cine MRI parameters for each of the three MRI 
machine manufacturers are reported in Table 1.

Manual Annotation
Cine MR images were manually analyzed by two experienced 
observers (L.H., S.G.) with 7 and 5 years experience in cardiac 
MRI, respectively. The myocardium endocardial and epicardial 
borders were manually annotated using the MASS software (re-
search version, Leiden University Medical Center,  Leiden, the 
Netherlands. For all datasets, the cine MR image frames close to 
the end-diastolic and end-systolic phases were annotated, with 
both endocardial and epicardial contours manually drawn.

Training and Testing Datasets
Datasets from each manufacturer were randomly divided by 
2:1 ratio for training and testing (33 and 17 patients). The divi-
sion was based on patients such that the frames in training and 
testing sets were not correlated. As annotation was used as the 
reference standard for both training and testing purposes, the 
annotated frames were only used for development and evalua-
tion. The number of total and annotated cine frames for train-
ing and testing is reported in Table 1. The training data were 
used to build up the segmentation CNN and the GAN adap-
tor. The testing data were used to evaluate the segmentation 
and adaptation performance.

LV Segmentation by U-Net
U-Net is an established CNN architecture for medical image 
segmentation (7). It consists of a contracting path that extracts 
image features and an expanding path that upsamples features 
and convolutes them into a segmentation map. Given the 
training set of MR images and their manual segmentation, the 
U-Net learns an image-to-segmentation mapping. Multiple 
studies have demonstrated its excellent performance on the 
segmentation of cine MR images (4,15,19).

However, MR images are predisposed to statistical shift, caused 
by differences in sequences, scanner manufacturers, and centers. 
Manufacturer differences are a major cause of statistical shift, as 
different MRI scanners produce images of different characteris-
tics related to manufacturer-specific MRI physics (10). When 
the statistical distribution shifts, a well-trained CNN may fail. 
The unsatisfactory generalization of CNNs across MRI data 
from different manufacturers has been reported previously (11) 
and noted in expert reviews (12,13).

Intuitively, we can include as much training data as possible 
from different manufacturers to learn an all-inclusive statistical 
distribution (4,14,15). However, manual annotation of large 
MRI datasets for every new dataset to retrain the CNN is ex-
ceedingly expensive and practically impossible. A more feasible 
solution is to transform the statistics of the input data to that 
of the training data, such that it meets the IID assumption. In 
the context of deep learning, this equates to translating images 
from the “target domain” to the “source domain” (16). Study of 
generative adversarial networks (GANs) is a prominent research 
area that focuses on the generation of new data with the same 
statistics as the training set (17,18). Generation of statistically 
similar datasets provides a possibility to tackle the manufacturer 
shift problem without additional annotations.

This study aims to address the MRI manufacturer shift prob-
lem that hampers the practical utilization of deep learning seg-
mentation tools and present a solution by GAN-based manufac-
turer adaptation. We use the left ventricular (LV) segmentation 
from cine MRI as a representative case.

Materials and Methods

Data from Multiple Manufacturers
Three MRI datasets were retrospectively included in this 
study. The use of the MRI data was approved by the local 

Abbreviations
CNN = convolutional neural network, EDV = end-diastolic vol-
ume, ESV = end-systolic volume, GAN = generative adversarial net-
work, LV = left ventricle, LVEF = left ventricular ejection fraction

Summary
A deep learning segmentation tool developed by using MRI data 
from one MRI scanner may not generalize well to MRI data from 
another MRI manufacturer’s scanner; the authors propose an MRI 
manufacturer adaptation method to improve the generalizability of 
a deep learning segmentation tool without additional manual annota-
tion.

Key Points
 n A well-trained deep learning MRI segmentation tool exhibited 

significantly degraded performance when applied to data acquired 
from an MRI scanner of a different manufacturer.

 n The generalizability of deep learning segmentation can be im-
proved by aggregating annotated training data from different 
manufacturer scanners.

 n The generalizability of deep learning segmentation can be im-
proved by applying the proposed manufacturer adaptation to other 
manufacturer data without need of new annotation.
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domains. Translator 2→1 was trained on the training data from 
manufacturer 1 and manufacturer 2. Translator 3→1 was trained 
on the training data from manufacturer 1 and manufacturer 3.

We adopted the ResNet architecture for the generator (18). 
The network contains nine residual blocks. For the discrimina-
tor, we used a five-layer convolutional network with channel 
depths of 32, 64, 128, 256, and one. The training was alter-
nated between the generator and discriminator. We adopted the 
stochastic gradient descent optimization with an exponentially 
decaying learning rate of 0.0002 and a mini-batch size of one. 
The number of epochs was 45.

As reference, we also performed three conventional image 
preprocessing methods to adapt the input images: intensity nor-
malization, histogram equalization, and bias correction. Details 
are provided in Appendix E1 (supplement).

Experiments on Manufacturer Shift and Manufacturer 
Adaptation
First, we quantitatively evaluated how manufacturer shift could 
affect the segmentation performance. We evaluated the perfor-
mance of U-Net 1, U-Net 2, and U-Net 3 on the testing data 
from manufacturer 1, manufacturer 2, and manufacturer 3, 
respectively (n = 17 testing datasets for each).

Second, we evaluated if the manufacturer adaptation tech-
nique could mitigate the manufacturer shift problem. We tested 
the LV segmentation performance on both the original and 
manufacturer-adapted data. The testing data from manufacturer 
2 and manufacturer 3 were first adapted by translator 2→1 and 
translator 3→1 to manufacturer 1 and then input into U-Net 1 
for LV segmentation.

Manual annotations served as the reference standard to assess 
LV segmentation accuracy before and after manufacturer adap-
tation. The accuracy of LV segmentation was quantified by the 
Dice index of the endocardial and epicardial areas (20). The Dice 
index indicates the ratio of two overlapping areas relative to their 
average area. Clinical parameters derived from the LV segmen-
tation, including the end-systolic volume (ESV), end-diastolic 
volume (EDV), myocardium mass, and left ventricular ejection 
fraction (LVEF), were also compared with those derived from 
the reference standard manual segmentation.

As a reference, we also experimented another scenario as-
suming we had annotated data available from the other two 
manufacturers, namely, 1680 frames from manufacturer 2 and 
1320 from manufacturer 3. We trained a new CNN of the same 

The architecture of the LV segmentation U-Net is shown in 
Figure E1 (supplement). Data augmentation was performed by 
applying random transformations to the original training image, 
including rotation, rescaling, and translation. The same augmen-
tation was applied to the label image. Each pair of training im-
age and label image was augmented to 30 pairs for training the 
U-Net.

To evaluate the manufacturer shift problem, we trained three 
manufacturer-specific U-Nets, named U-Net 1, U-Net 2, and 
U-Net 3, using the training datasets from manufacturer 1, man-
ufacturer 2, and manufacturer 3, respectively. All images were 
first rescaled to the same in-plane resolution of 1.5 × 1.5 mm. 
Cine MR and label images were cropped at the center to a size 
of 192 × 192 pixels. We used an Adam optimizer with a learn-
ing rate of 0.0001, and a mini-batch size of 10. The number of 
training epochs was 30.

Manufacturer Adaptation
In this work, we define each manufacturer as a different domain 
as in the computer vision terminology. The source domain is 
defined as the manufacturer data that a CNN is trained on, 
while the target domain is defined as the other-manufacturer 
data that the CNN is tested on. To train a CNN for adapting 
images between two domains (ie, MRI scanner manufactur-
ers), ideally the same subject needs to be imaged two times 
with identical settings (eg, resolution, orientation, electrocar-
diography, and respiratory gating) by using different MRI ma-
chines to form a “source-target” pair. Such paired datasets are 
however very difficult to acquire in practice. We used the Cy-
cleGAN, an established GAN architecture that can work with 
unpaired data in the source and target domain (14). Such an 
architecture only requires that the training images are sampled 
from the two domains, while the image content may not neces-
sarily match. A CycleGAN-based translator was constructed as 
illustrated by Figure E2 (supplement). The entire network was 
trained in a bidirectional fashion such that the two generators 
and two discriminators were optimized simultaneously. The 
two generators adapted images from source to target and target 
to source domain.

As the manufacturer 1 dataset had the largest number of anno-
tated training samples, the performance of U-Net 1 can best rep-
resent the capability of U-Net segmentation. In our experiments, 
we set the manufacturer 1 dataset as the source domain, and the 
manufacturer 2 and manufacturer 3 datasets as the two target 

Table 1: Specifications of Cine MRI Datasets Acquired from Scanners of Different Manufacturers

MRI Scanner 
Manufacturer

Field 
Strength

In-plane Reso-
lution (mm)

Slice Gap 
(mm)

Phases per 
Cardiac Cycle

Total No. of 
Frames

No. of Annotated 
Training Frames

No. of Annotated 
Testing Frames

Manufacturer 1 3.0 T 1.2 3 1.2 10 30 24 905 2520 923
Manufacturer 2 1.5 T 1.17 3 1.17 9.6 20 14 746 1680 924
Manufacturer 3 3.0 T 1.25 3 1.25 10 20 10 640 1320 764

Note.—All manufacturer datasets had 50 patients each. For each dataset, 33 patient datasets were used for training and 17 
were used for testing.
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performance was optimal on the testing datasets from the 
same manufacturer. When applied to data from a different 
manufacturer, the performance dropped significantly (P , 
.05 in all cases). As shown in Table 2, the reduction of per-
formance, as quantified by the change of Dice index, was 
as high as 24%, 29%, and 33% for U-Net 1, U-Net 2, and 
U-Net 3, respectively.

Manufacturer Adaptation
We evaluated the manufacturer adaptation performance also 
in terms of LV segmentation accuracy. Table 3 reports the Dice 
indexes before and after manufacturer adaptation. The refer-
ence performance of a CNN trained with enlarged annotation 
data was also reported. While this CNN trained on the most 
extensive dataset yielded the best performance overall, manu-
facturer adaptation significantly improved the cross-manufac-
turer performance without the need of extra annotation (up to 
37% and 18% for manufacturer 2 and manufacturer 3, respec-
tively). The performance of the reference methods is reported 
in Appendix E1 (supplement).

Figure 2 shows some typical examples of the segmentation 
results before and after manufacturer adaptation. It can be ob-
served that manufacturer shift caused mostly undersegmenta-
tion; namely, part of the LV failed to be segmented. After manu-
facturer adaptation, the undersegmentation phenomenon was 
reduced. Figure 3 shows an example of the adapted image at the 
different stages of CycleGAN training. To better appreciate the 
changes, we calculated the difference images and zoomed in on 
the grayscale. The segmentation results for the adapted images 
at different stages are also shown in Figure 3. It can be observed 

architecture, but with enlarged training datasets, with a total 
of 5520 annotated images from all three MRI manufacturers. 
The performance of this CNN on the independent testing set 
was reported as well. Both the U-Net and the CycleGAN were 
trained and tested on the Google TensorFlow platform with a 
specialized graphic processing unit (GeForce GTX 1080, 12G; 
NVidia, Santa Clara, Calif ).

Statistical Analysis
Continuous variables were expressed as mean 6 standard de-
viation. Paired variables were compared using the Wilcoxon 
signed rank test without assuming the underlying distribution. 
A P value , .05 was considered significant. The Pearson corre-
lation coefficient r was computed, and Bland-Altman analysis 
was performed. Statistical analysis was performed with Matlab 
(R2017b; MathWorks, Natick, Mass).

Results

Manufacturer Shift
To quantify the manufacturer shift, we assessed the perfor-
mance of each manufacturer-specific U-Net (U-Net 1, U-Net 
2, and U-Net 3) with its own dataset and datasets acquired 
from other manufacturers.

As an example, Figure 1 shows the segmentation results 
by U-Net 1 on the testing data from manufacturer 1 and 
manufacturer 2, respectively. A severe performance drop 
can be observed. In Table 2, we report the performance in 
terms of Dice index in all cross-manufacturer experiments. 
For all three manufacturer-specific U-Nets, segmentation 

Figure 1: Illustration of the manufacturer shift problem. The upper row shows the performance of U-Net 1 tested on datasets from manufacturer 1, and the 
lower row shows the performance of U-Net 1 tested on datasets from manufacturer 2. A performance drop can be observed, in the form of undersegmentation. 
Numbers at upper right corner of each subfigure indicate different examples. Green regions denote the automatic myocardium segmentation results by the 
U-Net, while red regions denote the blood pool segmentation results.
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adaptation: 0.005 and 0.77, respectively. For the manufacturer 
2 dataset, the LVEF derived from the original data had virtu-
ally no correlation with the true values, due to the seriously 
underestimated blood pool at the systolic phase, which is usu-
ally more difficult to segment than the diastolic phase due to 
blurring of blood-myocardium boundaries.

Discussion
In this study, we highlighted the MRI manufacturer shift prob-
lem, a bottleneck to the widespread use of deep learning tools 
in practice. We showed that by adapting the MRI data statisti-
cally using the CycleGAN method, a deep learning segmen-
tation tool can be better extended to multimanufacturer use 
without additional manual annotation.

In recent years, there has been a substantial increase in deep 
learning research for radiologic image analysis. Deep learning 
methods have reported expert-level performance on many organ-
segmentation tasks (4,21,22). However, there is still limited re-
search on the generalizability of these deep learning segmentation 
tools, especially in a clinical scenario where variability simply arises 
from different scanner manufacturers. In this study, we quantified 
how manufacturer shift could negatively affect the performance of 
a well-trained CNN segmentation tool. In practice, this implies 
that a model well trained and well validated on one dataset cannot 
be reliably extended to other-manufacturer data.

that the segmentation results gradually improved when the Cy-
cleGAN progressively learned to generate images with similar 
characteristics to the training dataset.

Clinical parameters, namely, EDV, ESV, LV mass, and 
LVEF, were computed from the automated segmentation re-
sults. Figure 4 and Figure 5 show the results before and after 
manufacturer adaptation for manufacturer 2 and manufacturer 
3, respectively. The results were then compared with the param-
eters calculated from reference standard manual annotation. 
All clinical parameters, including EDV, ESV, LV mass, and 
LVEF, were significantly different from the ground truth when 
the U-Net trained on the manufacturer 1 dataset was directly 
applied to the manufacturer 2 and manufacturer 3 datasets 
(P , .05 by the paired Wilcoxon signed rank test). However, 
significant improvement can be observed after manufacturer 
adaptation. In particular, the undersegmentation phenomenon 
that typically occurred in cross-manufacturer segmentation 
was reduced. After manufacturer adaptation, most clinical pa-
rameters were not significantly different from the ground truth 
measurements, with the only exception being the EDV param-
eter for the manufacturer 3 dataset, with P , .05 (Figs 4, 5). 
For LVEF, manufacturer adaptation resulted in an improved 
Pearson correlation of 0.89 and 0.94 with the ground truth 
for the manufacturer 2 and manufacturer 3 datasets, respec-
tively, compared with the correlation without manufacturer 

Table 2: Dice Indexes of Segmentation Network Trained and Tested on Different MRI Scanner Manufacturer Data

Experiment

U-Net 1 U-Net 2 U-Net 3

Myocardium Blood Pool Myocardium Blood Pool Myocardium Blood Pool

Tested on manufacturer 1 
dataset

89.7 6 2.3 91.8 6 1.6 67.4 6 11.4 78.0 6 9.1 64.1 6 12.0 74.3 6 10.3

Tested on manufacturer 2 
dataset

68.7 6 10.8 67.9 6 11.7 90.6 6 2.1 93.6 6 1.7 75.6 6 9.4 72.3 6 10.7

Tested on manufacturer 3 
dataset

72.4 6 10.2 79.6 6 10.2 59.5 6 13.3 69.8 6 11.5 89.2 6 2.3 91.1 6 1.9

Note.—Values are Dice indexes in percentages ± standard deviations. U-Net 1, U-Net 2, and U-Net 3 were trained on the manufacturer 1, 
manufacturer 2, and manufacturer 3 datasets, respectively.

Table 3: Performance of Segmentation Network U-Net 1

Manufacturer 
Dataset

Before Manufacturer
Adaptation After Manufacturer Adaptation With Annotation from Other-Manu-

facturer Data

Myocardium Blood Pool Myocardium Blood Pool Myocardium Blood Pool

1 89.7 6 2.3 91.8 6 1.6 … … 88.6 6 1.2 92.3 6 0.9
2 68.7 6 10.8 67.9 6 11.7 84.3 6 6.2 85.1 6 5.5* 90.1 6 2.3* 92.7 6 1.8*
3 72.4 6 10.2 79.6 6 10.2 85.7 6 6.5* 89.9 6 4.9* 89.4 6 1.5* 89.4 6 1.5*

Note.—Performance values are Dice indexes in percentages ± standard deviations. Performance of the segmentation 
network U-Net 1 is reported on data from all manufacturers, before and after manufacturer adaptation (adapted to 
manufacturer  1). Results from aggregated training (using additional 1680 and 1320 annotations from manufacturer 
2 and manufacturer 3) are also reported.
* Indicates P , .05 by paired Wilcoxon signed rank test comparing the results to the original performance (columns 
2 and 3).
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Figure 2: Three examples show boost of segmentation performance after manufacturer adaptation. Examples from apical, middle, and basal slices are given. In each 
subfigure, the left column shows segmentation results on original data from another manufacturer, while the right (red box) shows segmentation results on manufacturer-
adapted data. Green regions denote the automatic myocardium segmentation results by the U-Net, while red regions denote the blood pool segmentation results.

Figure 3: The performance of U-Net trained on one manufacturer dataset improved on dataset from another manufacturer, along with training epochs. Middle row shows 
adapted images at different epochs. Bottom row shows the corresponding segmentation results after manufacturer adaptation using the same U-Net. Upper row illustrates the 
subtle difference between the adapted images (scale indicated by gray-scale bar). Numbers 1–5 mark image at different adaptation stages, with 5 being the final adapted 
image. Green regions denote the automatic myocardium segmentation results by the U-Net, while red regions denote the blood pool segmentation results.

http://radiology-ai.rsna.org
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To address the manufacturer shift problem, we can increase the 
variability of the training data as in a recent multimanufacturer, 
multicenter study (4), which showed that the CNN model trained 
with datasets of higher heterogeneity could generalize better to 
new datasets. In our study, increasing the training image variabil-
ity also significantly improved the generalization performance by 
retraining with additional annotated data from other manufac-
turers. The solution, however, is expensive in practice, requiring 
new annotations each time. Alternatively, one can also use transfer 

learning to utilize a previously trained CNN and fine-tune it with 
a limited set of annotated data (23,24). From a design point of 
view, we can certainly reduce the complexity of the deep learn-
ing models or add regulation terms to suppress the overfitting and 
improve the generalizability. Nevertheless, a balance between bias 
and variance always exists in the machine learning theory (9,25): A 
model may generalize better at the cost of reduced accuracy, which 
is undesirable in clinical use. Our study presented an alternative 
solution: Instead of pushing the limits on the training data or the 

Figure 4: Bland-Altman plots of quantitative parameters derived by automated segmentation for manufacturer 2 data, 
compared with the manual reference standard. Red dots represent results before manufacturer adaptation, and blue squares 
represent results after manufacturer adaptation. Four quantitative parameters are reported: end-systolic volume (ESV), end-
diastolic volume (EDV), left ventricular (LV) mass, and left ventricular ejection fraction (LVEF). The P values by the paired Wil-
coxon signed rank test were reported: Porg is P value comparing results from the original MRI with the ground truth, Padapted is P 
value comparing results from the manufacturer-adapted MRI with the ground truth.

http://radiology-ai.rsna.org
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CNN model, we preprocess the data by adapting it to the same 
underlying distribution as that of the training data, such that it 
better fits the training model. We observed a performance boost 
after manufacturer adaptation. We note that the manufacturer 1 
(3.0 T) CNN (U-Net 1) generalized better to the manufacturer 3 
(3.0 T) dataset than to the manufacturer 2 (1.5 T) dataset. This 
may reflect some inherent rules of manufacturer shift: The CNN 
can be sensitive to signal-to-noise ratio and frequency details that 
are related to field strength.

GAN is one of the most intriguing ideas in deep learning: 
to generate fake data by learning from real data (17). Since its 
introduction in 2014, GAN has inspired many new interesting 
research endeavors in computer vision. With GAN, exceed-
ingly convincing fake images of animals, humans, and natural 
scenes can be generated through learning a large quantity of 
real images (26,27). For medical image applications, the use 
of GAN should however be cautioned against, as such “gen-
eration” can be detrimental to the radiologic practice. GAN 

Figure 5: Bland-Altman plots of quantitative parameters derived by automated segmentation for manufacturer 3 data, 
compared with the manual reference standard. Red dots represent results before manufacturer adaptation, blue squares 
represent results after manufacturer adaptation. Four quantitative parameters are reported: end-systolic volume (ESV), end-
diastolic volume (EDV), left ventricular (LV) mass, and left ventricular ejection fraction (LVEF). The P values by the paired Wil-
coxon signed rank test were reported: Porg is P value comparing results from the original MRI with the ground truth, Padapted is P 
value comparing results from the manufacturer-adapted MRI with the ground truth.
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can generate fake medical images that appear authentic but 
likely miss local details specific to a patient. Critical cases are 
examples of abnormally heterogeneous texture smoothed out 
or possible formation and deformation of local details (eg, 
nodules, tumor, or myocardial scar). Risk arises if these im-
ages are to be used for diagnosis or clinical decision making. 
In this work, however, we used GAN merely as a preprocessing 
step for segmentation. Cine images are not to visualize foci tis-
sue fibrosis, instead they are acquired for measuring the overall 
cardiac structure and function. In this scenario, the concern is 
less the high-frequency image details, but the global image style 
in terms of illuminance, contrast, and edge sharpness, which 
CycleGAN is especially good at handling (14).

We observed that the difference between the original MR 
image and manufacturer-adapted image was very subtle. For 
radiologists, the two images make no difference for manual 
segmentation, but when fed to the trained deep learning seg-
mentation tool, such a subtle change can lead to markedly 
different results. This is another proof that the deep learning 
tool may be vulnerable, and that it has not gained human-
level cognition, as argued by the adversarial theory (17). Poor 
generalizability is one consequence of its vulnerability; fur-
ther research is warranted to fundamentally improve its cog-
nition level.

A limitation of this study was that the annotated data from 
three manufacturers were unbalanced in number. The patient 
demographics were also not matched. To avoid confounding the 
manufacturer adaptation performance with the segmentation 
network performance, we chose to only validate the manufac-
turer adaptation on the U-Net trained with the largest number 
of annotations.

In conclusion, we have quantitatively measured the per-
formance drop caused by MRI manufacturer shift and pro-
posed a solution: manufacturer adaptation based on GAN. 
Our work showed that manufacturer adaptation could largely 
increase the generalizability of an existing deep learning tool, 
extending its use to data from different manufacturers with-
out new annotation. The improved generalization is essen-
tial for the widespread use of deep learning tools in clinical 
practice.
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