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Much of the data in electronic medical records is in the 
form of clinical notes, which are largely written using 

unstructured or loosely structured text. This information is 
immensely valuable for clinical care, quality improvement, 
and medical research, particularly in the modern era of 
deep learning technologies. Major advances in automated 
natural language processing systems, which can process 
and generate natural language text, have great potential to 
improve health care quality and research.

The radiology report is often considered the final prod-
uct of the radiology department, as it contains the reason-
ing, interpretations, diagnostic conclusions, and recom-
mendations of the radiologist. While a variety of public 
repositories for medical images exist (1,2), there are few 
public repositories of radiology reports, and most such re-
positories contain reports from only one institution (3,4). 
Development of large-scale report repositories consisting 
of varied reports from many institutions could enable a 
variety of new descriptive studies (5,6) and quality im-
provement tools. However, making these reports available 
to researchers outside the clinical care stream first requires 

Health Insurance Portability and Accountability Act 
(HIPAA)–compliant de-identification (7).

Effective de-identification of protected health informa-
tion (PHI) within clinical free-text notes remains challeng-
ing. A variety of systems designed to de-identify clinical 
notes has been researched and published, and most of these 
systems have been trained and evaluated on general pur-
pose unstructured clinical notes (8–13). We were unable to 
find any system built for or tested primarily on radiology 
reports. The frequency and distribution of PHI in radiol-
ogy reports differs from those in other clinical notes, so 
systems that perform best on general purpose clinical notes 
may not perform optimally on radiology reports. Studies 
from other clinical domains have demonstrated that spe-
cific domain adaptation is often necessary to achieve ac-
ceptable performance (14,15).

Performance standards for an automated de-identifica-
tion system depend strongly on the intended use of the 
de-identified documents and the intended viewers. Perfor-
mance standards also vary with the distribution of PHI. 
Some categories, such as patient names, may be more 
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Purpose:  To evaluate publicly available de-identification tools on a large corpus of narrative-text radiology reports.

Materials and Methods:  In this retrospective study, 21 categories of protected health information (PHI) in 2503 radiology reports were 
annotated from a large multihospital academic health system, collected between January 1, 2012 and January 8, 2019. A subset con-
sisting of 1023 reports served as a test set; the remainder were used as domain-specific training data. The types and frequencies of PHI 
present within the reports were tallied. Five public de-identification tools were evaluated: MITRE Identification Scrubber Toolkit, U.S. 
National Library of Medicine‒Scrubber, Massachusetts Institute of Technology de-identification software, Emory Health Information 
DE-identification (HIDE) software, and Neuro named-entity recognition (NeuroNER). The tools were compared using metrics in-
cluding recall, precision, and F1 score (the harmonic mean of recall and precision) for each category of PHI.

Results:  The annotators identified 3528 spans of PHI text within the 2503 reports. Cohen k for interrater agreement was 0.938. Dates 
accounted for the majority of PHI found in the dataset of radiology reports (n = 2755 [78%]). The two best-performing tools both 
used machine learning methods—NeuroNER (precision, 94.5%; recall, 92.6%; microaveraged F1 score [F1], 93.6%) and Emory 
HIDE (precision, 96.6%; recall, 88.2%; F1, 92.2%)—but none exceeded 50% F1 on the important patient names category.

Conclusion:  PHI appeared infrequently within the corpus of reports studied, which created difficulties for training machine learning sys-
tems. Out-of-the-box de-identification tools achieved limited performance on the corpus of radiology reports, suggesting the need for 
further advancements in public datasets and trained models.
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our institution’s database of adult radiology reports collected 
between January 1, 2012 and January 8, 2019. The reports 
came from multiple hospitals within a single academic health 
system and included all patients over the age of 18 years. A 
subset of 1023 reports was designated as the testing set. Of 
these reports, 500 were labeled by two annotators to establish 
a measurement of interannotator reliability and produce high-
accuracy labels to ensure accurate performance comparison. 
The entire text of each report was annotated, including struc-
tured template headers and footers. Further description of the 
dataset is provided in the Results section.

PHI Definition
We used the Safe Harbor method from the HIPAA Privacy 
Rule to define the standardized types of PHI for our algorith-
mic comparisons (7) (see Appendix E1 [supplement]). In addi-
tion to the original 18 categories, we included three extra PHI 
categories, including “clinician names,” “hospital/institution 
names,” and “vendor and tool names,” as this information can 
be used to identify the location at which a patient received care. 
The complete set of PHI-type labels is provided in Table 1.

Labeling Procedure
Data annotation was performed by two of the authors (J.M.S. 
and J.A.) using a custom labeling application. PHI within the 
documents was annotated at the word-token level, that is, for 
each word in the document, the annotation specified whether 
it was part of an element of PHI and, if so, which type of PHI. 
Tokenization was performed using spaCy (Explosion AI, Berlin, 
Germany) Python package. Annotations consisted of the start 
and end positions of a PHI instance within a document, as well 
as its type (eg, patient name, patient medical record number 
[MRN]). Conflicts were resolved by discussion and consensus.

Included Software Packages
A review of the literature identified the major publicly 
available tools for de-identification of clinical text that are 
available as off-the-shelf software packages (see Appendix 
E2 [supplement]). Note that this study aimed to compare 
out-of-the-box performance of tools designed to be used by 
clinical users without substantial software development expe-
rience or machine learning knowledge. Furthermore, we did 
not evaluate commercial tools. A comparison of these tools is 
provided in Table 2.

De-Identification Software Comparison
The 1023 reports comprising the test set were used to compare 
the performance of the software tools. For the machine learn-
ing–based algorithms, which learn features from data, we used 
the remaining 1480 labeled reports as a training dataset. The 
rule-based algorithms neither learn from nor customize them-
selves to new data, so the training reports were not used in the 
evaluation of these tools.

Some of these tools have modifiable parameters that can 
substantially affect the algorithm performance. For instance, 
the MITRE Identification Scrubber Toolkit (MIST) (http://

sensitive than others, such as dates of admission. No system can 
hope to achieve perfect performance. A comparative study es-
tablished a standard for “acceptable” performance, with recall of 
95% and precision of 80% for both patient names and social 
security numbers, and recall of 85% and precision of 70% for 
other PHI types (16). For particularly sensitive use cases, an even 
higher performance may be desired.

In this study, we evaluated and compared existing publicly 
available de-identification tools on a dataset of radiology reports. 
We built a large dataset randomly sampled from our entire in-
stitutional adult radiology report database, manually annotated 
these reports to identify the PHI, and evaluated the performance 
of five publicly available de-identification tools. We compared 
performance on specific PHI types in order to understand the 
strengths and weaknesses of the available systems. In addition, 
we quantified the prevalence of various types of PHI within our 
institution’s reports to demonstrate the need for readily available 
de-identification tools. Although other de-identification studies 
have been published (5,16–18), few evaluate the effectiveness 
of existing software packages available off the shelf to clinician 
researchers, and none specifically evaluate such systems on radi-
ology reports (a domain with different PHI distributions than 
other medical texts).

Materials and Methods

Data Collection
This retrospective study used data collected for nonresearch 
purposes and was approved by our institutional review board. 
A random sample of 2503 radiology reports was extracted from 

Abbreviations
HIDE = Health Information DE-identification, NeuroNER = 
Neuro named-entity recognition, NLM = U.S. National Library of 
Medicine, MIST = MITRE Identification Scrubber Toolkit, MIT 
deid = Massachusetts Institute of Technology de-identification 
software, MRN = medical record number, PHI = protected health 
information

Summary
Out-of-the-box software tools for de-identification of general purpose 
clinical text did not reach acceptable performance for clinical or 
research use on a dataset of 2503 annotated radiology reports.

Key Points
	n Five out-of-the-box software tools designed for de-identification 

of general purpose clinical text on a manually annotated corpus of 
2503 radiology reports were evaluated.

	n Machine learning systems outperformed rule-based systems on the 
radiology report corpus, with the best-performing system (Neuro 
named-entity recognition [NeuroNER]) achieving a token-level 
F1 score of 93.6%, below acceptable levels for clinical use (95% 
recall) on sensitive categories of protected health information 
(PHI).

	n PHI is relatively rare in the corpus of radiology reports at the 
authors’ institution and consists largely of dates; however, pa-
tient names and medical record numbers are still present in rare 
amounts, making it difficult to create a large, varied, and unbiased 
sample of positive training examples.

http://radiology-ai.rsna.org
http://mist-deid.sourceforge.net/
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for a particular task can be difficult, time-consuming, and task 
dependent. As this study aimed to evaluate readily available tools 
for nonspecialist users rather than state-of-the-art task-optimized 

machine learning algorithms, we opted to test the 
tools using their default parameters rather than per-
form exhaustive parameter comparisons. For further 
details on our task definition and parameter selec-
tion, see Appendix E3 (supplement).

MIST.—MIST (9) comprises a data labeler and a 
conditional random field-based machine learning 
system (Carafe; https://sourceforge.net/projects/carafe/) 
(20). As it is a machine learning system, training 
data must be supplied. However, any number of 
valid types of PHI tags can be provided.

NLM-Scrubber.—The U.S. National Library of 
Medicine (NLM)‒Scrubber (https://scrubber.nlm.
nih.gov/) is an end-to-end pipeline with minimal 
parameter customization that uses rule-based sys-
tems to identify four major categories of PHI in 
clinical reports: names, addresses, dates (including 
ages), and alphanumeric identifiers (10). For evalu-
ation of this software, we group our 21 PHI catego-
ries into these groups.

Emory HIDE.—The Emory Health Information 
DE-identification (HIDE) platform (http://www.
mathcs.emory.edu/hide/index.html) is a multicom-
ponent suite of tools designed to de-identify struc-
tured and unstructured data, including a machine 
learning model based on conditional random fields 
(11). HIDE uses the CRFSuite platform (http://
www.chokkan.org/software/crfsuite/) and a variety of 
custom hand-engineered features.

MIT deid.—The Massachusetts 
Institute of Technology de-
identification (MIT deid) 
platform (https://physionet.org/
content/deid/1.1/) uses a host of 
regular expressions and diction-
aries to de-identify PHI from 
texts (12). It uses no machine 
learning components.

NeuroNER.—The Neuro 
named-entity recognition 
(NeuroNER) software (http://
neuroner.com/) is a machine 
learning model that uses recur-
rent neural networks to identify 
various PHI forms (8,13). It can 
be used either as a Python mod-
ule or as a command-line tool. 
It also includes files correspond-
ing to pretrained word vectors 

mist-deid.sourceforge.net/) allows users to set their own values for 
various algorithmic parameters (eg, learning rate, gradient de-
scent algorithm, etc). Identifying the optimal parameter settings 

Table 1: The 21 Categories of Protected Health Information Avail-
able to Annotators

Category Description

1 Names of patients, family members, employers, etc
2 Names of health care workers
3 Names of hospitals, clinics, or other health care organizations
4 Geographical subdivisions smaller than a state, including ad-

dress, city, county, precinct, and zip code
5 All elements of dates (dates directly related to an individual, 

including birth date, admission date, discharge date, date of 
death, and all ages over 89 years, as well as all elements of 
dates indicative of such age)

6 Phone numbers
7 Fax numbers
8 E-mail addresses
9 Social security numbers
10 Medical record numbers
11 Health plan beneficiary numbers
12 Account numbers
13 Certificate or license number
14 Vehicle identification and serial numbers
15 Device identification and serial numbers
16 Web URLs
17 IP addresses
18 Biometric identifiers
19 Full-face photographic images and any comparable images
20 Any other unique identifying number, characteristic, or code
21 Names of vendors, software, tools, or other institution-specific 

content

Table 2: Details of Software Packages Evaluated for this Study

Tool
Original Release 
Year

Major Algorithmic Tech-
niques

Data Used for Creation and 
Validation

MIST (9) 2010 Conditional random 
fields

1200 discharge summaries, 
laboratory reports, letters, 
and order summaries

NLM-Scrubber (10) 2014 Rules, dictionaries 3093 clinical free-text docu-
ments (unspecified)

Emory HIDE (11) 2009 Conditional random 
fields

100 pathology reports

MIT deid (12) 2008 Rules, dictionaries 2434 nursing notes
NeuroNER (8,13) 2017 Recurrent neural net-

works, conditional 
random fields

2939 free-text medical notes 
(multiple types) from the 
I2B2 2014 and MIMIC 
datasets

Note.—HIDE = Health Information DE-identification, I2B2 = Informatics for Integrating Biology 
and the Bedside 2014 De-identification and Heart Disease Risk Factors Challenge, MIT deid = 
Massachusetts Institute of Technology de-identification, MIMIC = Medical Information Mart for 
Intensive Care, MIST = MITRE Identification Scrubber Toolkit, NeuroNER = Neuro named-
entity recognition, NLM = U.S. National Library of Medicine.

https://sourceforge.net/projects/carafe/
https://scrubber.nlm.nih.gov/
https://scrubber.nlm.nih.gov/
http://www.mathcs.emory.edu/hide/index.html
http://www.mathcs.emory.edu/hide/index.html
http://www.chokkan.org/software/crfsuite/
http://www.chokkan.org/software/crfsuite/
https://physionet.org/content/deid/1.1/
https://physionet.org/content/deid/1.1/
http://neuroner.com/
http://neuroner.com/
http://mist-deid.sourceforge.net/
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or vendors (n = 86 [2.4%]). The presence of patient or fam-
ily member names was comparatively rare in radiology reports 
compared with other types of PHI (n = 21 [0.6%]), and many 
types, including e-mail address and IP addresses, did not appear 
a single time within our sample. The frequency of each type of 
PHI within our dataset, as well as the number of unique text 
spans that comprise each category, are provided in Table 3. Of 
all 2503 reports, 1567 (62.6%) contained at least one instance 
of PHI, while 936 (37.4%) contained no PHI. However, only 
411 (16.4%) included PHI other than dates directly related to 
a patient.

The Cohen k for the doubly labeled data, evaluated as a two-
class task (PHI vs not PHI) at the token level, was 0.938 (95% 
confidence interval: 0.925, 0.950). The discrepancies between 
the two annotators were entirely due to cases in which one an-
notator failed to notice a span of PHI while the other noticed it; 
there were no disagreements about whether a span of text con-
stituted PHI.

Performance Comparison
The Figure shows the overall token-level performance (includ-
ing recall, precision, and F1 score for all PHI types) of each of 
the evaluated software packages on our test set consisting of 
1023 radiology reports.

MIST.—The performance of MIST on the various catego-
ries is provided in Tables 4, 5, and 6. It had relatively high 

and neural network models trained 
on existing corpora of PHI.

Statistical Analysis and Evaluation 
Metrics
We provide descriptive statistics of 
our annotated dataset, including the 
frequency of PHI by category and 
the number of documents contain-
ing PHI. Interannotator reliability was 
calculated at the token level using the 
Cohen k coefficient and two predicted 
classes (PHI vs no PHI).

The five PHI de-identification soft-
ware packages were compared by evalu-
ating token-level recall, precision, and 
F1 score (the harmonic mean of pre-
cision and recall). In PHI de-identifi-
cation, recall may be considered more 
important than precision because the 
consequence of a false positive (PHI is 
disclosed) is substantially more harm-
ful than that of a false negative (infor-
mative information is removed from 
the report). In this study, we report all 
three metrics. We also report token-
level performance on each subcategory 
of PHI (eg, patient names, dates) to 
better characterize model strengths and 
weaknesses. Last, we report document-
level performance metrics for each system, that is, the number of 
reports that retained at least one element of PHI and the number 
of reports with at least one non-PHI element falsely redacted.

Results

Dataset
The dataset of 2503 reports included more than 200 differ-
ent imaging examination protocols, with a variety of different 
system and personal templates, including entirely free-text re-
ports. The dataset consisted of 633 554 tokens, with 254 862 
tokens in the test set. Our institution makes routine use of 
templates and other structured elements. However, it is dif-
ficult to know simply by looking at a report how much of it 
was generated through templated text, so we cannot give pre-
cise estimates about the frequency of templated information. 
Most reports in our dataset include at least some templated 
information, although the degree of structure varies. Some 
templates simply have structured findings and impression seg-
ments, while others have prespecified organ-level structure or 
prepopulated default normal finding blocks.

In total, there were 3528 spans of text corresponding to 
PHI. Dates were by far the most common form of PHI (n = 
2755 [78.1%]), followed by names of physicians or other health 
care workers (n = 360 [10.2%]), names of hospitals or care de-
livery systems (n = 169 [4.8%]), and names of software tools 

Table 3: Frequency of Protected Health Information within the 2503 Radiology 
Reports

Type of PHI No. of Text Spans No. of Unique Text Spans

Dates* 2755 1957
Names of health care workers 360 302
Names of hospitals or clinics or care deliv-

ery systems
169 70

Names of software, tools, institution-
specific vendor content

86 47

Geographical subdivisions smaller than a 
state†

62 9

Any other unique identifying number, 
characteristic, or code

49 34

Names of patients or family members 21 15
Medical record numbers 20 14
Phone numbers 6 3

Note.—Frequency of each type of protected health information (PHI) ranked from most to 
least frequently occurring. In addition, we list the number of unique text spans that fall into 
a given category. For example, if the PHI phrase “Dr Jones” shows up in three different notes, 
this counts as only one unique text span. There were no text spans of other types of PHI (fax 
numbers; mail addresses; social security numbers; health plan beneficiary numbers; account 
numbers; certificate/license numbers; vehicle identifiers and serial numbers, including license 
plate; web URLs; IP addresses; biometric identifiers, including finger and voice prints; full-
face photographic images and any comparable images) for either table column.
* All elements of dates for dates directly related to an individual, including birth date, admis-
sion date, discharge date, date of death; and all ages over 89 years and all elements of dates 
indicative of such age.
† Includes address, city, county, precinct, and/or zip code.

http://radiology-ai.rsna.org
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precision for most categories but poor recall. Of the 1023 
documents in the test set, 40 (3.9%) had at least one non-
PHI token falsely removed from the document, while 395 
(38.6% of all documents [61.1% of documents containing 
PHI]) retained PHI after application of the tool. Of these, 
the most commonly missed PHI categories were as follows: 
370 documents contained retained dates, 45 contained names 
of health care providers, seven contained patient names, and 
seven contained MRNs. On qualitative inspection, the ma-
jority of reports with falsely redacted PHI remained largely 
intact and readable. Even for categories with a large number 
of varied examples (date, health care provider), the system did 
not perform at an acceptable level. Many normal date strings 
and provider names that appeared in stereotyped locations 
were not caught by the system.

NLM-Scrubber.—The performance of the NLM-Scrubber tool 
is provided in Tables 4, 5, and 6. It achieved a precision of 
98.3%, a recall of 97.5%, and an F1 score of 97.9% on the 
most common date category but markedly lower scores on 
the other categories. On the document level, 300 of the 1023 
documents (29.3%) had at least one non-PHI token falsely re-
moved from the document, and 119 documents (11.6% of all 
documents [18.4% of documents containing PHI]) retained 
PHI after scrubbing. The most common categories for retained 
PHI were personal names (73 documents), dates (29 docu-
ments), addresses (20 documents), and alphanumeric identi-
fiers (four documents). Most of the false negatives consisted of 
typographical errors or nontraditionally formatted date strings 
(eg, “to-1–2018”), while the false positives in other categories 

Figure:  (a) Comparison of token-level precision on the test set of 
1023 radiology reports. Error bars reflect 95% confidence intervals. 
Confidence intervals reflect expected performance only on data with 
similar protected health information (PHI) distributions to that of our insti-
tution’s radiology reports and do not reflect generalization performance 
on datasets with different distributions of PHI. (b) Comparison of token-
level recall on the test set of 1023 radiology reports. (c) Comparison of 
token-level F1 score on the test set of 1023 radiology reports. HIDE = 
Health Information DE-identification, MIT deid = Massachusetts Institute 
of Technology de-identification, MIST = MITRE Identification Scrubber 
Toolkit, NeuroNER = Neuro named-entity recognition, NLM = U.S. Na-
tional Library of Medicine.

included incorrect handling of strings on the basis of capital-
ization or alphanumeric composition, such as “Mass” in “No 
Mass” redacted as an address, “CT” in “CT scan” redacted as 
an address, “Osgood‒Schlatter” in “Osgood‒Schlatter disease” 
redacted as a personal name, and a comment on “L4-L5” verte-
brae redacted as an alphanumeric identifier. These types of false 
redactions have the potential to substantially compromise the 
readability of the report.

Emory HIDE.—The performance of the HIDE software is pro-
vided in Tables 4, 5, and 6. It performed well on the date, 
phone number, and identifying code categories, likely owing 
to the inclusion of a variety of orthographic features (eg, “starts 
with a digit”) into the machine learning classifier. However, on 
other categories, including names, addresses, and vendor tools, 
it did not perform as well. As HIDE is a machine learning 
algorithm, it is possible that with additional training examples 
the software could perform better on these categories. Of the 
1023 documents, 39 (3.8%) had at least one PHI token falsely 
redacted, while 80 documents (7.8% of all documents [12.4% 
of documents containing PHI]) retained PHI after the tool was 
applied. The most common categories for retained PHI were 
names of health care providers (31 documents), dates (27 docu-
ments), location names and addresses (18 documents), vendor 
tools (12 documents), and patient names (seven documents). A 
qualitative inspection revealed that the readability for most of 
the reports containing false positives remained intact.

MIT deid.—The performance of the MIT deid system is given 
in Tables 4, 5, and 6. It was not able to generalize effectively our 
radiology report dataset, although it did achieve a performance 
of 89.0% F1 on the dates category. Of the 1023 documents, 
181 (17.7%) had PHI falsely redacted, and 256 documents 
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(25.0% of all documents [39.6% of documents originally con-
taining PHI]) retained PHI after usage of the tool. The most 
common categories of retained PHI were dates (166 docu-
ments), names (71 documents), locations (63 documents), 
and vendor tools (21 documents). Most of the false positives 
consisted of capitalized words at the beginning of sentences, 
which may have the potential to substantially compromise the 
readability of the report.

NeuroNER.— The performance of the NeuroNER system is 
given in Tables 4, 5, and 6. NeuroNER is able to achieve a 
high performance on the majority of categories. Of the 1023 
documents, 34 (3.3%) included at least one token with falsely 
redacted PHI, while 91 documents (8.9% of all documents 
[14.1% of documents with PHI]) retained PHI after appli-
cation of the tool. The most common types of retained PHI 
were names of health care providers (37 documents), dates (32 
documents), addresses or geographic names (20 documents), 
patient names (seven documents), and MRNs (seven docu-
ments). The reports containing false positives remained intact 
and readable. As with the other machine learning systems, 
NeuroNER is likely hampered by the small number of positive 
examples of rarer categories in our training dataset.

Discussion
Our radiology report dataset represents a substantial departure 
from general purpose clinical text de-identification datasets. 
For instance, the amount of PHI per document is substan-

tially lower, and the distribution of PHI types heavily skews 
toward date strings. This likely reflects a concerted effort by 
our radiology department to keep nonessential PHI out of the 
reports. However, appearances of nondate PHI are still com-
mon (16.4% of reports in our corpus). This imbalance makes it 
more difficult to assemble training corpora for machine learn-
ing systems, which require a wide variety of positive examples 
of PHI to learn their general features. Even after hand-anno-
tating more than 2500 radiology reports, there were still only 
15 unique patient or family member names included in our 
dataset. Unfortunately, using shortcuts to identify PHI, such 
as using string matching or regular expressions to prescreen re-
ports for likely PHI instances, introduces substantial bias into 
the test set, as any PHI instances that do not follow those rules 
will be missed. It is likely that large initiatives that aggregate 
data from multiple institutions to build large varied datasets 
are necessary to create robust and generalizable de-identifica-
tion systems.

Dates were by far the most common type of PHI included in 
our radiology report dataset. This is perhaps unsurprising, as radi-
ologists frequently make comparisons to previous studies, which 
are often referenced multiple times within the same report. In 
some cases, dates formatted as “to-for-2015” or “20/17” were 
found, likely owing to dictation software or human input error. 
While not formatted properly as dates, these text spans certainly 
represent PHI. Conversely, many text spans formatted identi-
cally to a date were actually imaging series number references 
(eg, “5/7” for image “5 of 7”). Therefore, it is likely impossible 

Table 4: Token-level Precision for Each of the De-Identification Tools

Variable

MIST NLM-Scrubber Emory HIDE MIT deid NeuroNER

Value  
(%) 95% CI

Value  
(%) 95% CI

Value  
(%) 95% CI

Value  
(%) 95% CI

Value  
(%) 95% CI

All PHI 94.7 93.6, 95.7 64.1 62.5, 65.8 96.6 95.8, 97.3 81.7 79.9, 83.3 94.5 93.5, 95.4
Patient names 100 51.0, 100 37.3 34.1, 40.6 0* NA 37.9 33.3, 42.7 100 75.8, 100
Health care provider 

names
93.0 89.6, 95.3 97.5 95.0, 98.7 82.0 78.1, 85.3

Vendor tools 86.7 75.8, 93.1 88.6 76.0, 95.0 28.6 8.2, 64.1 82.0 69.2, 90.2
Health care location 

names
85.2 78.4, 90.1 93.4 87.7, 96.7 51.1 41.0, 61.2 82.0 78.1, 85.3

Addresses/geographic 
locations

94.9 86.1, 98.3 15.2 11.5, 19.9 97.8 88.4, 99.6 98.1 90.1, 99.7

Dates 97.4 96.2, 98.2 98.3 97.6, 98.9 96.8 95.8, 97.5 96.0 94.8, 96.8 98.4 97.7, 98.9
Phone numbers 100 72.2, 100 19.9 16.4, 23.9 100 72.2, 100 0* NA 0* NA
MRNs 0* NA 0* NA 0* NA 100 64.6, 100
Other identifying 

codes
100 48.9, 100 98.1 (90.2, 

99.7)
0* NA 81.1 70.4, 88.6

Note.—The 95% confidence intervals (CIs) for proportional metrics are calculated using the Wilson score with the Python statsmodels 
package (https://www.statsmodels.org/stable/index.html). The “All PHI” row weights each protected health information (PHI) token equally. 
Note that token counts may differ between different models due to using prepackaged tokenizers that come as part of the software package, 
or redefining our PHI categories to accord with the original algorithm specifications (eg, counting or not counting “Dr” as part of a name, 
depending on the algorithm). HIDE = Health Information DE-identification, MIT deid = Massachusetts Institute of Technology de-
identification, MRN = medical record number, MIST = MITRE Identification Scrubber Toolkit, NER = named-entity recognition, NLM 
= U.S. National Library of Medicine, NA = not applicable.
* Indicates a zero denominator for the proportion (ie, the model never predicted the PHI category within the test set).

http://radiology-ai.rsna.org
https://www.statsmodels.org/stable/index.html
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to devise a set of rules that capture all dates in a report; for a 
system to perform well, it must leverage the surrounding context 
words in the document. Similarly, the large number of unique 
text spans representing health care worker names makes it dif-
ficult to predict them all ahead of time with a list of names or 
regular expression patterns.

None of the evaluated systems performed at an acceptable 
level for clinical or research use, particularly on the highly sensi-
tive categories of PHI (patient names, MRNs, phone numbers; 
desired performance > 95% recall), which were rare in our data-
set. The rule-based models, which were designed to identify PHI 
on the basis of handwritten text patterns detected in different 
corpora, are prone to false positives, often falsely redacting in-
formative eponyms, such as Osgood‒Schlatter disease. The ma-
chine learning models, which can be trained on the unique fea-
tures of new datasets, varied in performance. While both HIDE 
and MIST used conditional random fields, the HIDE system 
uses a wider variety of hand-selected word features, including 
orthographic features, such as “begins with digit,” allowing it to 
learn more complex dependencies between features and perform 
better. The NeuroNER model also leverages pretrained word 
vectors constructed from large amounts of general purpose Eng-
lish text, with no hand-selected features, and performs similarly 
to the HIDE system. Future improvement in radiology report 
de-identification may require large multi-institutional public 
datasets. A large report text corpus could enable the training of 
systems to handle the typical distribution of PHI in radiology 
reports, such as the rare occurrence of patient names, frequent 

appearance of dates, and radiology-specific eponyms and capi-
talization patterns.

Modern machine learning systems achieve state-of-the-art 
performance in a wide variety of complex language tasks, includ-
ing named entity recognition tasks such as PHI de-identification 
(13,21). It is likely that such systems would also perform well on 
this task with a large enough dataset. However, in our literature 
search, we were unable to find many neural network–based tools 
available as off-the-shelf packages designed for use by the average 
clinician-researcher (with the exception of NeuroNER). Thus, 
most of these tools are outside the scope of this study. In future 
work, we plan to evaluate (and build additional) such systems on 
our dataset. However, it would be wise for those building and 
evaluating such systems to keep in mind the ultimate goal of 
more general availability.

One major limitation of our work was the small amount 
of positive PHI examples for certain important categories 
(patient name, MRN) found in our dataset. Not only does 
this lead to wide confidence intervals on the performance 
estimates for the rarer categories, it also limits the machine 
learning models’ ability to learn and generalize from data. 
Larger datasets would likely enable more effective compari-
son and training, but the amount of manual labor required to 
label such datasets makes the task difficult. This represents a 
substantial practical concern with respect to off-the-shelf use 
of these models. Another limitation of our work was that our 
dataset consists of reports from only one health care system. 
Our reporting patterns or system-wide templates may differ 

Table 5: Token-level Recall for Each of the De-Identification Tools

Variable

MIST NLM-Scrubber Emory HIDE MIT deid NeuroNER

Value 
(%) 95% CI

Value 
(%) 95% CI

Value 
(%) 95% CI

Value 
(%) 95% CI

Value 
(%) 95% CI

All PHI 62.7 60.8, 64.6 87.5 86.1, 88.8 88.2 86.9, 89.4 67.6 65.7, 69.5 92.6 91.5, 93.6
Patient names 10.5 4.2, 24.1 57.8 53.6, 61.9 0 0, 9.2 47.5 42.1, 53.0 31.6 19.1, 47.5
Health care pro-

vider names
71.4 66.8, 75.6 77.9 73.5, 81.7 92.6 89.6, 94.8

Vendor tools 89.7 79.2, 95.2 67.2 54.4, 77.9 3.4 0.1, 11.7 70.7 58.0, 80.8
Health care loca-

tion names
74.7 67.5, 80.8 74.7 67.3, 80.9 22.0 16.9, 28.1 77.9 70.7, 83.7

Addresses/geo-
graphic loca-
tions

88.9 78.8, 94.5 68.3 56.0, 78.4 74.6 62.2, 83.9 88.1 77.5, 94.1

Dates 61.2 58.9, 63.5 97.5 96.7, 98.2 96.0 94.9, 96.8 83.0 81.1, 84.7 97.5 96.6, 98.1
Phone numbers 62.5 38.6, 81.5 95.6 89.1, 98.3 62.5 38.6, 81.5 0 0, 19.3 0 0, 19.4
MRNs 0.0 0.0, 25.9 0 0.0, 25.9 0 0.0, 25.9 63.6 35.4, 84.8
Other identifying 

codes
5.9 0, 13.8 84.1 73.1, 91.1 0 0.0, 5.7 88.9 78.8, 94.5

Note.—The 95% confidence intervals (CIs) for proportional metrics are calculated using the Wilson score with the Python statsmodels 
package (https://www.statsmodels.org/stable/index.html). The “All PHI” row weights each protected health information (PHI) token equally. 
Note that token counts may differ between different models due to using prepackaged tokenizers that come as part of the software package, 
or redefining our PHI categories to accord with the original algorithm specifications (eg, counting or not counting “Dr” as part of a name, 
depending on the algorithm). HIDE = Health Information DE-identification, MIT deid = Massachusetts Institute of Technology de-identi-
fication, MRN = medical record number, MIST = MITRE Identification Scrubber Toolkit, NeuroNER = Neuro named-entity recognition, 
NLM = U.S. National Library of Medicine.

https://www.statsmodels.org/stable/index.html
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from those used at other institutions in ways 
that substantially alter the performance of 
de-identification tools. Last, there are com-
mercially available tools that offer similar 
services and that fall outside the scope of 
this study.

In summary, we have built a labeled da-
taset consisting of 2503 radiology reports 
across all imaging modalities, departments, 
and anatomic regions and provided descrip-
tive analyses of the PHI patterns. We have 
identified and evaluated major public off-
the-shelf software tools on this dataset to 
establish performance metrics. In future 
studies, we will evaluate modern neural net-
work models on the same task and attempt 
to build systems that achieve an acceptable 
level of performance. Our ultimate aim is to 
build large, cross-institutional repositories 
of de-identified radiology reports to enable 
new types of research studies and software 
tools that leverage the promise of unstruc-
tured natural language data.
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