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Abstract 

Nutritional immunity is the sequestration of bioavailable trace metals such as iron, zinc and copper by the host to 
limit pathogenicity by invading microorganisms. As one of the most conserved activities of the innate immune sys‑
tem, limiting the availability of free trace metals by cells of the immune system serves not only to conceal these vital 
nutrients from invading bacteria but also operates to tightly regulate host immune cell responses and function. In the 
setting of chronic lung disease, the regulation of trace metals by the host is often disrupted, leading to the altered 
availability of these nutrients to commensal and invading opportunistic pathogenic microbes. Similarly, alterations in 
the uptake, secretion, turnover and redox activity of these vitally important metals has significant repercussions for 
immune cell function including the response to and resolution of infection. This review will discuss the intricate role 
of nutritional immunity in host immune cells of the lung and how changes in this fundamental process as a result of 
chronic lung disease may alter the airway microbiome, disease progression and the response to infection.
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Background
Respiratory disease remains a global leading cause of 
death despite the advancements made by respiratory 
research [1]. Furthermore, those with poor respiratory 
health have a greatly diminished quality of life and recur-
rent hospitalizations. To alleviate the immense burden of 
respiratory disease we need a greater understanding of 
the resident and recruited immune cells in the lungs, their 
role in respiratory disease, and their complex interplay 
with the lung microbiome and with invading pathogenic 
microorganisms. Metabolite and nutrient availability in 
the lung, whether produced by the host or the microbi-
ota, are likely to have a crucial role in the progression of 

lung disease as many immune cells  require these specific 
nutrients to fuel their immune function when activated.

Nutritional immunity is classically defined as the 
sequestration of trace metals, most notably iron, by the 
host organism in an effort to block bacterial metal acqui-
sition and thus limit disease progression during infection. 
Trace metals are essential to all forms of life. Most organ-
isms require manganese, cobalt, iron, copper, nickel, sele-
nium and zinc. Metal cofactors serve both catalytic and 
structural roles in a range of biological processes. With 
the exception of zinc, these metals are redox-active and 
this property contributes both to their catalytic activi-
ties and toxicity. Iron is the most abundant element on 
Earth and is also the most widely used metal in biological 
processes. This dependence on iron for most organisms 
makes it a vital currency in the context of host–patho-
gen interactions. The host takes advantage of this by 
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sequestering iron during infection as a means of block-
ing iron acquisition by the invading microorganism, 
whereas bacteria have evolved mechanisms to steal iron 
from the host despite host iron sequestration [2]. Many 
respiratory pathogens such as Mycobacterium tubercu-
losis, Pseudomonas aeruginosa, Klebsiella pneumoniae 
and Haemophilus influenzae require iron and use sev-
eral iron acquisition strategies [3–6]. Similarly, the com-
mensals that comprise the microbiome require iron and 
other metals to support their metabolism. Thus, iron 
homeostasis and iron sequestration in the lung is crucial 
to controlling lung infections and to support a normal 
microbiome [7, 8]. Though nutritional immunity was first 
described and best characterized for iron, the sequestra-
tion, and intoxication of other metals including, zinc, 
manganese and copper has also been described [2, 9].

While the concept of nutritional immunity has tradi-
tionally encompassed the sequestration of metals from 
microbes, the innate and adaptive immune systems can 
also actively utilize metals to facilitate bactericidal func-
tion. For example, the host utilizes copper to exert a 
bactericidal effect through both redox-dependent and 
independent mechanisms limiting bacterial growth and 
facilitating bacterial death [10–12]. Similarly, the S100 
family of calcium-binding host proteins, primarily cal-
protectin, are commonly found at the site of infection, 
where they can chelate free zinc, iron, nickel, copper 
and manganese and exert bactericidal activity in addi-
tion to nutrient deprivation having a pleiotropic role in 
the nutritional immune response [13]. Less ubiquitous 
metals also have a role to play: selenium, as part of sele-
noproteins, is important in defence against viral rep-
lication, and host manganese can reduce superoxide 
dismutase (SOD) activity in pathogens [14]. The proper 
storage, metabolism, and utilisation of these metals 
by immune cells is therefore critical both in facilitating 
immune cell function and depriving microbes of the nec-
essary nutrients for survival and proliferation in the host. 
Intriguingly, pathogen reliance on the acquisition of host-
derived metal supports further investigations into thera-
peutic avenues for metal chelators in chronic and acute 
lung infection.

Finally, metabolites created through metal-dependent 
metabolic pathways are also essential for the function 
of immune cells such as macrophages, neutrophils and 
T-cells [15]. As our understanding of the rapidly emerg-
ing field of immunometabolism expands, we are now 
beginning to appreciate that trace metal biology may also 
be essential for the correct functioning of key metabolic 
pathways (e.g., glycolysis, fatty acid oxidation, the tri-
carboxylic acid cycle, etc.) engaged by immune cells. We 
could therefore expand the meaning of nutritional immu-
nity to encompass not just the battle over trace metals 

but also the role of all metabolites and nutrients that are 
dependent on metal biology important for host pathogen 
interactions.

This review will discuss the key roles for metals in lung 
immune cell function, how metals are altered and dys-
regulated in chronic respiratory disease and the evidence 
if any, for the role of metals in dictating the repertoire of 
commensal bacteria present in the lung as well as the role 
of nutritional immunity in the response of the lung to 
infection.

Metals, innate immune cells of the lung 
and response to infection
Metal cofactors serve both catalytic and structural roles 
in a range of biological processes and play an impor-
tant role in the development, maturation and function 
of immune cells. The role of metals in the biology of 
immune cells that are present in the lung is discussed 
below.

Monocytes and macrophages
Macrophages are a heterogenous family of profes-
sional phagocytes and are the most abundant immune 
cell present in the lung under homeostatic conditions 
[16]. Their key role in the respiratory immune response 
is highlighted by macrophage dysfunction contributing 
to chronic lung diseases including chronic obstructive 
pulmonary disease (COPD) [17], asthma [18] and cystic 
fibrosis [19]. Their phagocytic abilities make them excel-
lent surveillance cells both in the context of lung home-
ostasis and inflammation or infection. Tissue resident 
macrophages maintain immune homeostasis by carry-
ing out essential housekeeping roles such as tissue repair 
while also acting as a first line of defence against micro-
bial infections [20]. There are two major classes of lung 
resident macrophage populations. Alveolar macrophages 
(AMs) are the most abundant and are easily characterised 
for their low levels of the phagocytic receptor CD11b, 
their autofluorescent nature and high levels of the inte-
grin CD11c and the lectin SiglecF [21]. AMs originate 
from foetal liver cells in the embryonic yolk sac where 
under the influence of granulocyte macrophage-colony 
stimulating factor (GM-CSF) they remain and sustain 
themselves within the alveoli [21, 22]. AMs reside within 
the lumen of the alveolus in close proximity to the alve-
olar epithelium and are directly exposed to air and the 
environment. AMs phagocytose antigens but also main-
tain homeostasis in the lung by catabolizing surfactant, 
removing particles as well as limiting inflammation [23, 
24]. Originally thought to be sessile, AMs have recently 
been shown to be motile and to continuously crawl and 
cleanse all alveoli of particulate matter [25]. They also 
have the ability to communicate immunosuppressive 
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signals to alveolar epithelial cells (AEC) [26]. AMs act 
as first line defence for respiratory pathogens, including 
bacteria and viruses such as Streptococcus pneumonia, 
Mycobacterium tuberculosis and influenza [27–29]. Dur-
ing infection AMs limit the inflammatory response by 
producing anti-inflammatory cytokines and by promot-
ing tissue repair upon pathogen clearance [30, 31].

The second major resident lung macrophage popula-
tion is the interstitial macrophage (IM) which is com-
prised of three phenotypically distinct subpopulations 
identified by their differential expression of CD11c, major 
histocompatibility complex (MHC)II and the mannose 
receptor CD206 [32, 33]. While their precise location in 
the lung remains controversial, IMs have been found in 
the lung parenchyma, both in the interstitium of the alve-
oli and the bronchovascular bundles with some specific 
subpopulations associated with nerves and blood vessels 
[32]. IMs originate and are maintained by circulating pro-
genitor cells. They are smaller than AMs, immunoregula-
tory, and capable of antigen presentation [34].

In the setting of injury, inflammation, disease or with 
aging, resident AMs and IMs are often depleted and 
require the assistance of monocyte-derived macrophages 
that infiltrate the lung [35–38]. Once in the lung these 
infiltrating macrophages are defined by niche-derived tis-
sue-instructive signals that trigger expression of specific 
differentiation programs, thus tailoring a particular lung 
specific functional identity [39].

Macrophages, iron and heme
Macrophages have been termed the “ferrostat” of tissue 
iron homeostasis [40]. Macrophages are vital for systemic 
iron homeostasis; supplying, sequestering or recycling 
iron as needed for erythropoiesis, bacteriostasis and 
erythrophagocytosis and constitute the main iron reser-
voir among immune cells and the third most important 
in the body after haemoglobin and liver ferritin stores 
[41]. Tissue-resident macrophages sequester and secrete 
iron on demand regulating local iron availability and 
modulating the tissue microenvironment, contributing to 
cellular and tissue function [40]. The exposure of AMs to 
a multitude of exogenous and endogenous sources in the 
lung, position AMs as key regulators of iron in the lung. 
As such, the storage, metabolism and detoxification of 
iron by AMs is paramount in their protection of alveoli 
against oxidative damage and maintenance of their innate 
immune functions (Table 1).

Following gut absorption of dietary and heme-conju-
gated iron, ferric iron (Fe3+) is bound to the glycoprotein 
transferrin for systemic circulation. Uptake of iron by 
AMs is mediated through the iron transporters trans-
ferrin receptor 1 (TFR1) and divalent metal transporter 
1 (DMT1); AMs also express the additional iron uptake 

proteins including low-density lipoprotein receptor-
related protein 1 (LRP1) and the zinc uptake receptor 
ZIP-14 (Fig.  1) [42–45]. Once inside the cell, iron dis-
sociates from transferrin and is reduced to ferrous iron 
(Fe2+) for storage in ferritin, a ‘nanocage’ like structure 
for safe storage of iron within the cytoplasm [46]. The 
transmembrane protein ferroportin (FPN) exports fer-
rous iron from AMs into the extracellular space, where it 
is oxidised and bound to transferrin in serum [42]. FPN is 
the only known exporter of elemental iron, allowing the 
release of iron into the circulation and to other cell types. 
In the lungs FPN is highly expressed in epithelial cells 
and AMs [47, 48]. Decreased levels of FPN are observed 
in response to infection, in a bid to reduce cellular iron 
efflux and extracellular iron levels [49, 50]. The systemic 
iron regulator hepcidin, expressed in response to pro-
inflammatory cytokines and bone morphogenic pro-
tein 6 signalling, inhibits FPN to reduce circulating iron 
(Fig. 1) [51, 52]. While hepcidin does not seem to signifi-
cantly contribute to AM lung iron trafficking [53], AMs 
produce endogenous hepcidin in response to challenge 
with the endotoxin lipopolysaccharide (LPS), potentially 
to sequester iron intracellularly through FPN degrada-
tion [53]. Indeed, this AM-produced hepcidin has proved 
essential for AM bactericidal function [54].

Heme (iron-protoporphyrin IX) is an essential metal-
locofactor and signalling molecule across all cell types. 
While in highest demand in erythroid cells, heme syn-
thesis is an evolutionarily conserved process occurring in 
virtually all eukaryotic cell types. De novo heme synthesis 
is a multienzyme process which starts and culminates in 
the mitochondria, with the first step of glycine and suc-
cinyl CoA condensation by 5-aminoevulinate synthase 
(ALAS) constituting the rate-limiting step in non-eryth-
roid cells like AMs [55]. The hydrophobicity and cytotox-
icity of heme necessitates carefully regulated handling in 
the cell, with such mechanisms of paramount importance 
in macrophages owing to their roles in erythrophagocy-
tosis and heme degradation [56]. Unlike reticuloendothe-
lial macrophages, which recycle iron from senescent 
erythrocytes via erythrophagocytosis [57] AMs in the 
alveoli do not seem to necessitate erythrophagocytosis 
at homeostasis. Instead, AMs uptake haemoglobin-hap-
toglobin and heme-hemopexin complexes via CD163 and 
CD63 respectively. However, AMs of patients exhibiting 
lung haemorrhage show iron overload, suggesting during 
increased heme burden AMs possess some erythophago-
cytic capability [58]. AMs play important roles regulating 
the iron pool by sensing free heme (the iron-containing 
porphyrin, key to O2 transport and storage among other 
biological processes) at concentrations reflective of pul-
monary haemorrhage. AMs utilize heme to produce 
reactive oxygen species (ROS) and nitric oxide (NO) 
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enhancing their bactericidal and phagocytic capabilities 
[59]. Importantly, erythrophagocytosis also upregulates 
the expression of heme oxygenase 1 (HO-1) in mac-
rophages leading to heme degradation. Heme catabolism 
by HO-1 exerts anti-inflammatory effects through the 
products of heme degradation: bilirubin (arising from the 
reduction of biliverdin), carbon dioxide and ferritin all of 
which possess anti-inflammatory activity [60–62]. This 
illustrates the importance of iron metabolism, particu-
larly of the HO-1/heme axis in maintaining AM function 
and lung homeostasis.

Iron-sequestration is of particular importance to limit 
pathogen outgrowth in the lungs. AMs act as the first line 
of defence against respiratory pathogens and contribute 
to limiting iron availability to pathogens. An example is 
the ability of AMs to secrete the siderophore lipocalin-2 
(LCN-2) during infection that binds to enterobactin-type 
and mycobacterial siderophores to sequester free iron 
(Fig.  2) [63]. Macrophage polarisation also differentially 
regulates iron-response in AMs. Iron accumulation in 
M1-polarized AMs promotes a bacteriostatic response 

to the anaemia of chronic infection and simulates expres-
sion of pro-inflammatory cytokines, potentially through 
hepcidin-mediated FPN downregulation [64]. In con-
trast, M2 cells favour iron release linked to upregulation 
of FPN a phenotype that may be driven by upregula-
tion of HO-1 [65]. Reciprocally, iron can also modulate 
monocyte polarization. In  vivo murine models of iron 
overload drive macrophage polarization to favour the 
M2 phenotype mitigating pro-inflammatory responses 
[66]. However, in  vitro studies of macrophages isolated 
from chronic venous leg ulcers showed excessive eryth-
rophagocytosis and an ensuing high intracellular iron 
concentration to promote M1 polarization [67]. Likely, 
iron concentration is crucial in modulating polarisation – 
the tissue iron deposition exhibited in venous leg ulcers is 
extremely high, whilst the dietary iron supplementation 
approach used in the murine studies provides a moder-
ate dose [66]. While the effects of iron overload in the 
lung on macrophage polarization remain unclear, it will 
be interesting to see if such a concentration-dependent 
mechanism is also observed.

Table 1  Metal homeostasis within immune cells

Iron Zinc Copper

Macrophages DMT1 [42]
Transferrin Receptor 1 (TFR1) [45]
Slc39a14 (ZIP14) [77]
Lactoferrin receptor (LfR) [43]
CD163 [45]
CD64 [220]
Ferroportin (FPN) [50]
Lipocalin-2 (LCN-2) [63]
Nramp-1 [45]
Hepcidin [53]

SLC39A (ZIP)
Slc39a2 [77]
Slc39a4 [77]
Slc39a14 [77]
SLC30A (ZnTs)
Slc30a1 [77]
Slc30a3 [77]
Slc30a5 [77]

CTR1 [84]
ATP7A [84]

Neutrophils Nramp-1 [63]
Lipocalin-2 [63]
Myeloperoxidase [113]
Ceruloplasmin [119]
Lactoferrin [110]

Calprotectin
(S100A8/S100A9 heterodimer) [13]
Calgranulin C
(S100A12) [124]

Calgranulin C
(S100A12) [124]
ATP7A [118]
ATP7B [118]
Ceruloplasmin [119]

NK cells TfR1 (CD71) [183]
Lactoferrin receptor (LfR) [185]

KIR receptor [188]
Surface receptors with tyrosine phosphorylation 

sites [190]

Unknown

Dendritic cells Unknown ZIPs and ZNTs [102] Unknown

Basophils Unknown Methallothioneins (MTs) [158] Unknown

Eosinophils Eosinophil peroxidase (EPX) [152] Unknown Unknown

Mast cells Unknown Unknown Ctr2 [161]

ɣδ T cells Lactoferrin receptor (LfR) [195]
Hereditary hemochromatosis susceptibility 

gene (HFE) [197, 198]
Β2-microglobulin (βm-2) [198]

Unknown Unknown

iNKT cells Ferroportin (FPN) [201]
Hepcidin [201]

Unknown Unknown

MAIT cells Unknown Unknown Unknown

T cells TfR1 (CD71) [209]
Lactoferrin receptor (LFR) [195]

Unknown Unknown

B cells TfR1 (CD71) [209] Unknown Unknown
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Macrophages carry out a vast array of effector func-
tions and must be able to adopt several activation states 
by changing their metabolism to fuel these functions 
[68]. The influence of macrophage immunometabolism 
in determining an inflammatory or anti-inflammatory 
phenotype have been extensively reviewed [69]. How-
ever little attention has been given to the role that met-
als play in the regulation of immunometabolic networks. 
Iron-sulfur (Fe-S) clusters play an essential role in mac-
rophage metabolism by acting as cofactors to essential 
metabolic proteins and mediating the electron transport 

chain. For example, the mitochondrial enzyme lipoic acid 
synthase (LIAS) requires Fe-S clusters to aid in the syn-
thesis of lipoamide-requiring enzymes such as pyruvate 
dehydrogenase (PDH) and α-ketoglutarate dehydroge-
nase (α-KGDH). Furthermore, the proteins involved in 
electron transport, such as ferredoxins also require Fe-S 
clusters as a part of their redox-active centres to ulti-
mately produce ATP [70]. In response to inflammatory 
stimuli Fe-S clusters are also regulated. LPS/interferon-ɣ 
(IFN-γ) stimulation of murine bone marrow derived 
macrophages (BMDMs) and RAW264.7 macrophages 

Fig. 1  Macrophage Metal Metabolism. This brief summary of the metal metabolism of a generic macrophage highlights several mechanisms 
by which a macrophage can obtain metals. There are numerous metal transport proteins and receptors involved to ensure an adequate supply 
of these essential metals to the macrophage. (1) Macrophages obtain iron from various sources. Free circulating iron is first reduced from ferric 
to ferrous iron and then imported into the macrophage via protein transporters such as DMT1 and ZIP14. Transferrin-bound iron is bound to 
the transferrin receptor on the cell surface and imported via receptor-mediated endocytosis. Some macrophages also have the ability to obtain 
iron via erythrophagocytosis while others express receptors such as CD163 and CD64 allowing for the uptake of haemoglobin-haptoglobin and 
heme-hemopexin complexes, respectively. Once iron enters the macrophage it has numerous fates depending on the activation state of the cell. It 
can be stored in its ferrous state within the ferritin complex or utilized in the mitochondria for Fe-S cluster and heme biosynthesis. Iron is exported 
out of the macrophage through the only known iron export protein, ferroportin (FPN) whose expression is regulated by the hormone hepcidin. 
Further post-transcriptional regulation of intracellular iron levels is carried out by cytosolic regulatory proteins IRP1 and IRP2. (2) Intracellular zinc 
supply is mediated by two families of transport proteins; SLC39A (ZIPs) import zinc into the cell while SLC30A mediates zinc export out of the cell. 
(3) The copper importers Ctr1 and ATPase metal pump, ATP7A are two known copper transporters within the macrophage and gets upregulated to 
facilitate copper mediated host defence mechanisms
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downregulates two key Fe-S cluster biosynthesis proteins 
(cysteine desulfurase Nfs1 and its partner IscU) possi-
bly to avoid damage to Fe-S clusters by NO [71]. In vivo 
stimulation with Mycobacterium bovis Bacille Calmette 
Guerin (BCG) or in  vitro stimulation with IFN-γ inhib-
its aconitase activity in macrophages by removing an iron 
atom for the Fe-S prosthetic group of aconitase which is 
essential for its catalytic activity in the TCA cycle. This 
inhibition of aconitase coincides with the downregulation 

of mitochondrial respiration upon its activation and also 
a compensatory increase of glycolysis [72]. Similarly, 
acute iron deprivation of primary human macrophages 
enhances glycolysis by upregulating hypoxia-inducible 
factor 1-α (HIF-1α) regulated genes while downregulat-
ing oxidative phosphorylation (OX PHOS) via the iron-
responsive transcription factor ATF-4. Furthermore, 
when these iron-deprived cells were stimulated with LPS 
their proinflammatory functions were impaired [73].

Fig. 2  Host Bactericidal Immune Defence Facilitated by Trace Metals. Metals play a pivotal role in contributing to the host immune response during 
bacterial infection. They can be used by immune cells to either mediate metal toxicity to rapidly kill the bacteria or be sequestered away in order to 
deprive the bacteria of essential metals in order to limit bacterial growth and replication. Whether the metals are sequestered or used to facilitate 
toxicity mechanisms is highly dependent on the nature of the bacterial infection. (1) Intracellular bacteria are mainly located within the phagosome 
of their host cell. Here they release siderophores allowing them to scavenge iron within the cell. In response, the host limits bacterial iron supply 
by exporting iron out of the infected phagosome via the NRAMP1 transporter. Furthermore, the host employs toxicity mechanisms by which 
both zinc and copper are pumped into the infected phagosome via their respective transporters in order to limit bacterial growth and replication. 
(2) Extracellular bacteria produce numerous different proteins to mediate metal acquisition from the host. The majority produce siderophores, 
which vary between bacterial species. However, they all function to supply the bacteria with an adequate amount of iron. The host also employs 
mechanisms to limit the amount of metals available to the bacteria in the extracellular space. Iron is sequestered by the upregulation of hepcidin 
resulting in the degradation of FPN which reduces the amount of iron exported from the cell. Furthermore, the iron importer DMT1 is also 
upregulated in both macrophages and neutrophils. Several metal binding proteins have also been shown to be produced mainly by neutrophils 
to bind extracellular metals. Lipocalin2, produced in secondary granules of neutrophils, binds bacterial siderophores and shuttles them away from 
the bacteria to the host cell. S100 proteins such as Calprotectin that binds zinc and manganese, and Calgranulin C binding zinc and copper also 
sequester these metals out of the extracellular space
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Macrophages, zinc and copper
Like iron, zinc is an essential cofactor for life. Vertebrates 
have evolved complex transport and buffering systems to 
maintain zinc homeostasis. The balance of zinc homeo-
stasis is crucial during infection to block access to zinc 
from invading microorganisms, but also to ensure the 
function of immune cells. Zinc deficiency in humans is 
associated with impaired response to several infectious 
diseases [74, 75]. Zinc deficiency leads to reduced phago-
cytic ability of macrophages, while zinc supplementation 
can improve phagocytosis but the molecular mechanisms 
behind how zinc affects this process is not yet known 
[74–76]. Cellular zinc homeostasis is regulated by two 
families of zinc transporters, the SLC39A importers 
(ZIPs) and the SLC30A exporters (ZnTs). Zinc plays an 
important role in macrophage efferocytosis involving the 
coordinated action of the ZIP1 and ZIP2 importers [77]. 
The roles of other zinc transporters in different infection 
contexts is not yet known but the exporter SLC39A10 is 
vital for mediating zinc homeostasis in macrophages in 
response to LPS stimulation resulting in increased mac-
rophage survival (Fig. 2) [78]. Slc30a1 (ZnT1) is induced 
in human macrophages during M. tuberculosis infection 
and zinc toxicity is a strategy used by M. tuberculosis 
infected macrophages [79]. Zinc accumulation was also 
observed in phagosomes containing E. coli contributing 
to its killing, suggesting that this may be a general antimi-
crobial strategy employed by macrophages [80].

Copper is used as an essential cofactor in an array of 
biological processes in many forms of life, including 
microorganisms. Copper deficiency increases suscepti-
bility to many types of infections indicating an important 
role for this metal in host defence [10, 81, 82]. Further-
more, the prevalence of copper resistance mechanisms 
in pathogenic microbes highlights the importance of 
copper toxicity as a defence strategy in mammals. Mac-
rophages exploit both the essentiality and toxicity of 
copper to defend against microbes. As a host defence 
strategy, copper levels rise within phagosomes of peri-
toneal macrophages upon infection with mycobacteria 
[83]. The copper importer Ctr1 and the ATPase copper 
pump ATP7A are induced by IFN-ɣ in macrophages. 
The ATPase pump is trafficked to phagosome compart-
ments and is required for the bactericidal activity of mac-
rophages (Fig.  2) [84]. Copper toxicity is a host defence 
strategy against other respiratory pathogens such as S. 
pneumoniae as pulmonary macrophages were shown 
to be more efficient at clearing pneumococcal bacteria 
lacking the CopA copper efflux pump [85]. Conversely, 
IFN-ɣ activated macrophages reduce copper levels in 
phagosomes to control the fungal pathogen Histoplamsa 
capsulatum [86]. Fungi have high tolerance to copper 
and so copper toxicity as a defence strategy is not suitable 

for these micro-organisms, thus macrophages restrict 
this essential nutrient from fungi within the phagosome.

Macrophages and other trace metals
The role of other trace metals in macrophage biology 
is poorly studied and has mainly focused deciphering 
additional metal binding capabilities of proteins impli-
cated in iron biology. In addition to iron, the membrane 
transporter NRAMP1 also has affinity for manganese, 
transporting it across the phagosomal membrane [87]. 
Transferrin has been shown to bind manganese in vitro 
and is the main manganese-positive protein in circula-
tion in vitro, although whether macrophages can take up 
manganese-laden transferrin through TFR1 remains to 
be defined [88].

While numerous selenoproteins key in cellular pro-
cesses have been characterised, their precise roles in 
processes governing the macrophage immune response 
are poorly defined. Selenoprotein methionine sulfox-
ide reductase B1 (MsrB1) expression is induced in mac-
rophages upon LPS stimulation, where it regulates actin 
assembly and production of anti-inflammatory cytokines 
[89]. This anti-inflammatory role is concordant with 
observations that dietary selenium supplementation 
drives macrophages towards the alternatively activated 
M2 phenotype in an IL-4 dependent manner [90]. Mac-
rophages deficient in the selenocysteine tRNA showed 
diminished migration in vitro, but no change in inflam-
matory response [91]. Targeting of specific selenopro-
teins in future studies will allow a greater understanding 
of the intricacies of selenium regulation in macrophages.

Dendritic cells
Dendritic cells (DCs) play a crucial role in the initiation 
and regulation of the immune response by functioning 
as powerful antigen presenting cells. DCs resident in the 
lungs can be divided into three subsets that are of inde-
pendent origin and have distinct functions depending 
on their location [92]. Regardless of their subtype, DCs 
develop in the bone marrow from hematopoietic stem 
cells into early progenitor cells where they then branch off 
into their specific subsets [93]. Conventional DCs (cDCs) 
in the lung express either CD103 or CD11b. CD103 + DCs 
(cDC1) are located in the respiratory epithelium where 
they sample contents of the conducting airways by pro-
jecting their long dendrites between epithelial cells into 
the airway lumen. In contrast, CD11b + DCs (cDC2) are 
lodged under the basement membrane of the lamina pro-
pria [94]. Once the cDCs sample an antigen, they migrate 
the draining lymph nodes where they present the pro-
cessed antigen to naïve T cells which drives specific T cell 
polarization and proliferation [95].
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Monocyte-derived DCs (moDC) are recruited to the 
lung during infection or inflammation to help drive the 
immune response. The existence of these DCs remains 
controversial as they express markers such as CD11c, 
CD64 and the MAR-1 antibody which can also represent 
a macrophage cell population [94, 96]. Plasmacytoid DCs 
(pDC) secrete large amounts of type I interferon (IFN) 
during viral infections and have been located in the lym-
phoid follicles of the small airways [97, 98]. Furthermore, 
pDCs also play an immunoregulatory role by sensitising 
T helper (Th) type-2 cells to harmless antigens in the lung 
while suppressing the generation of effector T cells. How-
ever, this tolerance is suggested to be suppressed when 
the pDCs interact with a virus and produce IFNs [99].

Dendritic cells and metals
Not much is known about the role that metals may play in 
the function of dendritic cells. Iron levels affect the devel-
opment of DCs from bone marrow progenitors whereby 
high iron conditions used to culture bone marrow cells 
leads to a defective development of moDCs that are 
unable to respond efficiently to LPS [100]. On the other 
hand, iron deficiency in vitro also leads to the improperly 
differentiated moDCs that are unable to stimulate T cells 
[101]. Interestingly, reduced intracellular free iron levels 
promote the activation of DCs. Stimulation of DCs with 
LPS leads to an NFκB dependent increase of ferritin.

Zinc has also been implicated in DCs response to 
stimulation. A study identified a link between toll like 
receptor (TLR) signalling and zinc homeostasis in these 
immune cells. Stimulation of DCs with the TLR4 ligand 
LPS lead to altered expression of zinc transporters (both 
importers and exporters), and a decrease in intracel-
lular free zinc [102]. Treating DCs with a zinc chelator 
resulted in the same effects as LPS stimulation, in terms 
of upregulation of MHC class II and costimulatory mol-
ecules. Further investigations are needed to understand 
the link between DC zinc homeostasis and their response 
to TLR stimulation.

Neutrophils
Neutrophils are short-lived, highly mobile phagocytes 
that constitute hallmarks of acute infection. As granulo-
cytes neutrophils have enzyme-filled granules that they 
use to fight off infections in addition to their phagocytic 
capabilities and synthesis of chromatin-derived neutro-
phil extracellular traps (NETs) [103]. Despite their promi-
nent phagocytic role in the response to acute infection, 
neutrophil function is remarkably plastic, with secreted 
effectors driving pro- and anti-inflammatory neutrophil 
function [104–106]. Neutrophils also possess the capac-
ity to modulate the functionality of other immune cells 
through secreted effector proteins, with the cleavage 

of TLRs and cytokines by neutrophil elastase associ-
ated with altered macrophage function [107]. Given its 
frequent exposure to environmental pathogens, it is no 
surprise that the lung is a major neutrophil reservoir. 
Studies in a rabbit model have shown the upregulation 
of P-selectin by AECs in response to internal and exter-
nal stimuli binds P-selectin glycoprotein ligand-1 on 
circulating neutrophils, facilitating further binding and 
subsequently tissue extravasation [108]. The majority of 
marginated neutrophils in the lung reside in the capil-
lary bed, expressing the chemokine receptor (CXCR) 4 
to promote their retention [109]. Such margination in 
the microvasculature positions a large pool to kill inhaled 
bacterial, fungal and viral pathogens through phagocyto-
sis, NETosis and release of antimicrobial cytokines [107].

Neutrophils and iron
Iron is central to numerous neutrophil inflammatory 
responses. Neutrophils secrete LCN2 from their second-
ary granules to bind bacterial siderophores and limit their 
iron acquisition, and express NRAMP1 to sequester free 
iron from serum during infection [63]. Studies in the iron 
transport protein lactotransferrin (lactoferrin)-deficient 
mice have illustrated a role of neutrophil-secreted lacto-
ferrin in modulating the oxidative burst response [110]. 
Iron-unsaturated lactoferrin was shown to inhibit human 
neutrophil apoptosis in vitro, suggesting a role in chronic 
neutrophilic inflammation [111]. Binding of recombinant 
human lactoferrin to human neutrophils in vitro induces 
neutrophil activation although the precise mechanisms 
of lactoferrin binding to the neutrophil surface remain 
uncharacterised [112]. Neutrophils also express the 
heme-containing myeloperoxidase, which catalyses the 
generation of hypochlorite anions to drive degranulation 
and NETosis [113].

Iron availability may also influence metabolic repro-
gramming in neutrophils. HIF-1α is regulated by a fam-
ily of prolyl hydroxylases (PHDs) and under normoxic 
conditions the PHDs rapidly hydroxylate HIF-1α and 
so target it for degradation [114]. Phd2−/− neutrophils 
have higher ATP levels, increased abundance of pen-
tose phosphate pathway intermediates, more glycogen 
stores and a greater glycolytic capacity [115]. This sug-
gests that neutrophils, like macrophages, require HIF-1α 
to engage in glycolysis. Low oxygen tension is not the 
only way to block HIF-1α hydroxylation, as PHDs also 
require α-ketoglutarate, Fe2+ and ascorbate. Increased 
expression of HIF-2α, regulated in a similar manner to 
HIF-1α, has been linked to decreased death of neutro-
phils by apoptosis, and iron chelators have been shown to 
inhibit apoptosis in neutrophils [116]. Heme metabolism 
has also been implicated in neutrophil function during 
respiratory infections as HO-1 expression in the lung is 
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also associated with reduced neutrophil recruitment in 
murine models of LPS-induced pulmonary inflammation 
[117].

Neutrophils and other metals
Copper is required for proper NETosis, with mice car-
rying mutations in the copper transporters ATP7A and 
ATP7B showing a reduced capacity for NET release dur-
ing systemic inflammation [118]. Ceruloplasmin, a Cu2+ 
dependent ferroxidase elevated in serum during acute 
infection, is secreted by human neutrophils to upregulate 
ROS in a potentially bactericidal mechanism [119]. Cal-
protectin is released from the cell during degranulation 
as part of NETs, where it is essential for antifungal activ-
ity [13].

Neutrophil expression of protein effectors binding 
other trace metals is crucial in their bactericidal function. 
Zinc deficiency induces expression of the zinc-binding 
heterodimer calprotectin and detrimentally impacts 
neutrophil phagocytic capacity through impairing ROS 
function, along with oxidative burst, degranulation and 
cytokine production [120]. Indeed, zinc signalling has 
been shown to be vital in NET formation by neutrophils 
and granulocytes: both zinc excess and deficiency inhibit 
superoxide production in neutrophils, a prerequisite 
for NET formation [121]. Neutrophils express calpro-
tectin which can bind zinc and manganese, attenuating 
the effects of zinc-associated enzymes such as matrix 
metalloproteases and manganese-dependent bacterial 
superoxide defences [122, 123]. Neutrophils also express 
calgranulin C (S100A12), which can bind copper and zinc 
to exert an antimicrobial effect and trigger monocyte 
recruitment [124]. In addition to iron and zinc, calpro-
tectin can also chelate manganese in a manner that both 
sequesters the nutrient from pathogens and facilitates 
antimicrobial activity, with recombinant calprotectin 
defective in manganese binding unable to exert antifun-
gal activity against Aspergillus fumigatus [125]. Indeed, 
calprotectin-mediated manganese and zinc sequestration 
is a host immune strategy against the S. aureus superox-
ide defence, enhancing the susceptibility of the bacterium 
to neutrophil killing [122] Little is known about the role 
of selenium in neutrophil function, although increased 
dietary intake may protect neutrophils from oxidative 
damage [126].

Other granulocytes
Mast cells
Mast cells are granulocytic leukocytes that mediate 
inflammation through degranulation in response to 
infection, allergens and tissue injury [127]. Mast cells 
are unique among leukocytes in that they are released 
from the bone marrow as CD34 + mast cell progenitors 

and do not terminally differentiate until their recruit-
ment to tissue [128]. These immature progenitors are 
minimally granulated and reach maturation upon tis-
sue homing, where stem cell factor and other tissue-
specific factors drive MCs towards a pro-inflammatory, 
anti-inflammatory or an immunosuppressive pheno-
type [129]. Mast cell activation is regulated by several 
cell surface receptors, including TLRs, cytokine and 
chemokine receptors, hormone receptors and FcεRI 
and Fcγ receptors. The ensuing combination of stimuli 
facilitates a pleitropic role for mast cells in the immune 
response and leads to the secretion of a wide range of 
effector proteins: preformed mediators rapidly released 
upon activation (TNF-α, histamine and proteoglycans), 
and mediators synthesised following activation (lipid 
mediators, growth factors, cytokines and chemokines) 
[130–132]. Mast cell frequency in the lung at homeo-
stasis is low and interspecies variation in mast cell 
populations have made the homing process difficult to 
study, although the identification of a multitude of mast 
cell chemoattractants means it likely occurs through a 
regulated recruitment process [133, 134].

Basophils
Basophils similar to mast cells contain granules within 
their cytoplasm [135], express the high affinity recep-
tor for IgE (FcεRI) and release proinflammatory media-
tors such as histamine when this receptor becomes 
cross-linked. Both are derived from CD34 + haemat-
opoietic stem cells located in the bone marrow [136]. 
Despite their similarities, basophils and mast cells are 
morphologically and biochemically distinct cell types 
[137]. The type 2 immune response is initiated by the 
immune system when in contact with parasites which 
increases IgE production and the number of eosino-
phils, basophils and CD4 T cells [138]. Basophils drive 
this type 2 response by producing the cytokine IL-4 
[139] but also plays a role in allergic reaction and air-
way inflammation. Basophils have quite a short lifespan 
and so they must be constantly replenished by the bone 
marrow. For many years it was accepted that basophils 
are present in circulation and only migrate to tissue in 
response to certain inflammatory signals [140]. How-
ever, murine studies have proposed the idea of tissue-
resident basophils after it was discovered that basophils 
seem to be present at all stages of lung development 
[141]. Furthermore, these lung-resident basophils dif-
fer phenotypically from peripheral blood basophils and 
are driven by IL-33 and GM-CSF produced in the lung 
microenvironment. Localised in the alveoli, intrigu-
ingly basophils also seem to be responsible for guiding 
the development and function of AMs [141].
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Eosinophils
Eosinophils are bone marrow-derived, granule contain-
ing, pro-inflammatory leukocytes. Terminally differen-
tiated in circulation, eosinophils act as effectors in host 
defence from microbial and metazoan infection and 
allergic reaction, primarily through the activity of cati-
onic proteins resident in the eosinophilic granule. Eosin-
ophils comprise a mere 1–3% of circulating leukocytes 
and readily migrate to the lung during inflammation. 
Following their IL-5-induced proliferation and mobili-
zation in the bone marrow, eosinophil recruitment into 
the lung is driven by local expression of the chemotac-
tic factor eotaxin [142]. Lung-resident eosinophils reside 
in the parenchyma and display a marker expression pat-
tern (Siglec-FmidCD62L+CD101low) distinct from those 
recruited to the airways (Siglec-FhiCD62L−CD101hi) 
although functional differences between the two subsets 
remain uncharacterised [143]. Murine models of chronic 
allergic asthma have shown secretion of CCL17 and 
CCL22 by dendritic cells recruits circulating eosinophils 
to the lung in response to allergic inflammation, where 
eosinophils recruit further DCs and Th2 cells [144, 145]. 
During viral respiratory infection, expression of TLR7 
allows eosinophils to detect pathogen associated molec-
ular patterns (PAMPs) and exert direct antiviral effects 
through degranulation and cytokine and superoxide pro-
duction [146].

Metals and granulocyte function
There are many reports correlating altered iron metabo-
lism with allergy and atopic airway hyperreactivity. There 
is a higher prevalence of allergic diseases in those with 
diseases causing high systemic iron levels [147]. As baso-
phils, eosinophils and mast cells play a role in allergy, 
the altered iron homeostasis likely impacts the function 
of these cells,  contributing to pathology. Reducing iron 
levels, by administration of an iron chelator reduces IgE 
serum levels in a rat model of Th2 mediated autoimmun-
ity [148]. Iron supplementation results in a significant 
decrease of airway eosinophila in an ovalbumin-driven 
allergic asthma mouse model [149]. Neutrophils utilize 
the metalloprotein myeloperoxidase (MPO), which is a 
hemeprotein that plays a role host defence via oxidation 
[150]. Similarly, eosinophils have eosinophil peroxidase 
(EPX), which is a two-chain hemeprotein and has been 
shown to have homology to MPO in neutrophils [151]. 
Efficient iron stores and uptake is said to be required for 
the generation of EPX suggesting iron levels are impor-
tant for eosinophil function and activity [152].

HIF-1α, whose activation is iron dependent was shown 
to accumulate after basophils were stimulated with 
anti-IgE [153]. Accumulation of HIF-1α is suggested 
to be linked to the reaction of basophils to the hypoxic 

environment and stress-induced conditions. Whether 
intracellular iron levels in basophils affects HIF1α and 
cell activation as it does in macrophages and dendritic 
cells remains to be determined. This would be an inter-
esting avenue to explore as altered iron levels are linked 
with allergic inflammation.

Reduced zinc levels are associated with several aller-
gic diseases including bronchial asthma and chronic rhi-
nosinusitis [154–156]. Zinc is required in mast cells for 
degranulation and the production of cytokines and mast 
cell granules are reported to contain high levels of zinc 
[157]. FcɛRI is expressed on the surface of mast cells 
and basophils, and its activation leads to the release of 
cytokines (including IL-4) and chemical mediators. The 
requirement of zinc in basophil function has not yet been 
fully elucidated however the regulation of intracellular 
zinc levels by metallothioneins (MTs) has an important 
role in FcɛRI-driven calcineurin/nuclear factor of T cell 
signalling and IL-4 signalling in basophils [158]. Zinc 
suppresses eosinophilic inflammation, increased num-
bers of eosinophils in bronchoalveolar lavage fluid fluid 
(BALF) are observed in zinc deficiency while zinc sup-
plementation reduces the numbers of eosinophils in 
BALF, similar to what is observed with iron [159, 160]. 
However, the molecular mechanism driving this zinc-
associated eosinophil recruitment to the lungs is yet to be 
elucidated. While copper has been implicated in mast cell 
maturation, little remains known about the role of copper 
and other metals in granulocyte function [161].

Innate lymphocytes
In addition to the innate and adaptive defences, the lung 
harbours innate-like lymphocytes types that constitute 
the second and third tiers of defence. Lung tissue-resi-
dent innate-lymphocytes include innate lymphocyte cells 
(ILCs) which include NK cells, invariant natural killer 
cells (iNKT), MR1-restricted T (MAIT) cells and γδT 
cells.

Natural killer (NK) cells are short-lived innate effectors 
that belong to type 1 innate lymphoid cells, and account 
for 5–25% of total CD45+Lin− cells in the lungs [162, 
163]. NK cell activation is mediated through expression 
of inhibitory and activating receptors. Inhibitory recep-
tors (killer cell-immunoglobulin like receptor (KIR), 
CD94:NKG2A, ILT-2) recognise host major histocom-
patibility complex class I molecules to limit cytotoxic-
ity towards the host and facilitate self-tolerance in the 
‘missing self ’ response [164]. Activating receptors (TLRs, 
NGK2D) recognise increased ligand expression on target 
cells to mediate the ‘induced self ’ response [165]. NK cells 
migrate from the bone marrow to the lung. In humans, 
NK cells are found in the lung parenchyma whereas in 
mice they have been found in the alveoli during influenza 
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infection [166, 167]. In the human lung NK cells consti-
tute several heterogenous populations. CD16+ CD56dim 
cells constitute 80% of lung NK cells and are a hypore-
sponsive, mature, cytotoxic population that express KIR 
[168]. Whether the lung contains a tissue resident pop-
ulation of NK cells has been debated. Marquardt et  al. 
showed lung NK cells lack expression of the CD69 tissue 
resident marker; however, Yamamoto et  al. showed that 
blocking NK cell recruitment has no effect on NK ability 
to control lung tumour growth, suggesting lung-resident 
NK cells are essential in controlling metastasis [167, 169]. 
Parabiotic mouse studies have shown this lung-resident 
population to be low relative to other tissues with a spe-
cific tissue and functional signal, potentially contributing 
to barrier functions in the lung [170]. Murine lung NK 
cells also have diminished proliferative capacity and cyto-
toxic activity than splenic NK cells [171], suggesting that 
the lung microenvironment may inhibit NK cytotoxic 
potential to prevent airway damage. NK cells play impor-
tant roles in response to infection and cancer. Murine 
models have illustrated their importance against res-
piratory viruses, bacteria and fungi [172]. Their precise 
contribution during human lung infections is unclear, 
but they are important in the early response to influenza 
[173]. Loss-of-function mutations leading to NK cell defi-
ciencies uncovered an increased susceptibility to recur-
rent bacterial respiratory infections [174]. NK cells have 
also been implicated in asthma [172] and COPD [172].
ɣδ T cells are a subset of unconventional or innate-like 

T cells that are characterized by the expression of a γ and 
δ chain T cell receptor (TCR) which require MHC for 
antigen recognition. ɣδ T cells are abundant in mucosal 
surfaces including the lungs [175] where they swiftly 
react to conserved non-peptide antigens and produce 
large amounts of cytokines. In the lungs, ɣδ T can con-
stitute up to 20% of resident lymphocytes and contribute 
to maintain tissue homeostasis and fight infections and 
cancer. These cells play important roles against bacte-
rial pathogens including S. pneumoniae, B. pertussis, 
M. tuberculosis, viruses i.e., influenza, and some fungi. 
Likewise, they promote protection in models of cancer. 
However, these cells can also contribute to pathology in 
asthma and lung fibrosis [176].

In addition to NK cells, ILCs include a heterogene-
ous population of other innate lymphocytes described 
both in mice and humans. These include lymphoid tis-
sue inducer (LTi) cells and three subsets of ‘helper’ ILCs 
(ILC1, ILC2 and ILC3) which unlike NK cells, lack cyto-
toxic properties and secrete higher amounts of effec-
tor cytokines. Lung helper ILCs have been extensively 
reviewed [177]; these cells are present across all different 
parts of the respiratory tract and lungs, including upper 
respiratory tract, lung parenchyma and bronchoalveolar 

spaces, where they contribute to homeostasis, pathogen 
clearance and also pathology [177].

Invariant natural killer cells (iNKT) and MR1-restricted 
T (MAIT) cells are “innate-like” unconventional T cells 
that reside in the lung and other mucosal surfaces and 
play important roles during infection by recognizing 
non-peptidic antigens [178]. iNKT cells are αβ T cells 
which recognize glycosphingolipids and other micro-
bial-derived glycolipids presented in CD1d molecules. 
iNKT cells can swiftly produce a range of inflammatory 
cytokines when activated and type I iNKT also present 
cytolytic activity against cancerous and virally infected 
cells [178, 179]. Lung type I NKT cells are mainly resident 
within the parenchyma (NKT17, which produce IL-17) or 
in the vasculature (NKT1 and NKT2) [180, 181]. MAIT 
cells recognize microbial-derived metabolites [178] and 
produce cytokines including IFN-ɣ, TNF-α, IL-17A, and 
IL-22 aiding in bacterial killing [182]. Their role and pre-
cise localization in the lung in homeostasis remains to be 
determined.

Metals and innate lymphocytes
The influence of metals on innate lymphocytes has been 
less studied and seem to vary among different innate 
lymphocytes subsets.

NK cells and Iron
In contrast to monocytes and polymorphonuclear cells, 
little is known about a potential role for an iron-related 
nutritional immune response in NK cell function, 
although recent studies suggest a role for iron signalling 
pathways in NK cell activation. Specifically, expression of 
the transferrin receptor CD71 is upregulated in the NK 
cell surface during their maturation in the murine bone 
marrow and during activation with poly(I:C) [183]. Basal 
expression of CD71 in human NK cells at homeostasis 
is low and increases in response to cytokine treatment 
in  vitro, although how this potential to increase iron 
uptake drives the activated NK cell phenotype is unclear 
[184]. Lactoferrin increases NK cell cytotoxicity in vitro, 
which could imply an antimicrobial role for NK cells in 
infection in response to neutrophil and macrophage 
secretion of lactoferrin [185]. NK cells of patients exhibit-
ing systemic iron overload in myelodysplastic syndromes 
displayed upregulated c-Jun N-terminal kinase (JNK) and 
downregulated p38 expression, suggesting a role for iron 
in NK signal transduction pathways [186]. It is interest-
ing to note that perturbed iron homeostasis in NK tar-
get cells affects NK cell recognition—iron depletion and 
ferritin heavy chain (FTH) in primary cancer cells was 
observed to increase NK cell targeting [187].
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NK cells and other metals
Zinc signalling has also been suggested as a mediator of 
the NK cell phenotype. Recognition of surface MHC-1 
on endogenous cells by the NK cell KIR is essential in for 
NK cell-mediated killing. Zinc is essential for KIR mul-
timerization to form this ‘NK cell synapse’ [188]. Zinc 
supplementation in  vitro stimulates the differentiation 
of human-derived CD34+ progenitors to NK cells [189]. 
NK cells also possess several surface receptors with 
tyrosine phosphorylation sites, suggesting a role for zinc 
in signal transduction; the cytotoxic capabilities of NK 
cells are reduced in zinc deficiency and increased in zinc 
excess, with the precise signalling pathways driving such 
a change remaining unclear [190]. Roles for other trace 
metals such as copper or manganese in NK cell biology 
are difficult to decipher; the few studies attempting to 
ascertain this were largely performed in  vitro and thus 
may not hold significant physiological relevance [191]. 
Manganese supplementation promotes NK cell anti-
tumoral activity in vivo [192]. Manganese also activated 
the adhesion protein lymphocyte function-associated 
antigen (LFA)-1, essential for NK cell cytotoxicity [191]. 
In vitro supplementation with selenium increases splenic 
NK cell cytotoxicity [193]. Further in  vivo studies are 
required to ascertain the exact role of manganese and 
selenium on NK cell function and the biological pathways 
implicated.

iNKT, MAIT, γδT cells and metals
Limited data on ɣδ T cells suggest that variations in 
iron availability may not affect these cells as much as 
they affect their adaptive lymphocyte counterparts. ɣδ 
T cell express the TFR1 (or CD71) which is required by 
αβ CD4+ and CD8+ T cells during proliferation. While 
blocking TFR1 with an anti-CD71 antibody blocks prolif-
eration of T cells, ɣδ T cells proliferation is not affected, 
suggesting these cells are either less dependent on iron 
or rely on other mechanisms for obtaining iron [194]. 
Indeed, activated γδ T cells express high levels of the 
lactoferrin receptor (LfR). Like transferrin, lactoferrin can 
bind 2 ferric ions and provide LfR-expressing cells of an 
iron source; in addition lactoferrin possesses antimicro-
bial activity [195]. Unlike transferrin, which is present at 
high concentrations in plasma, lactoferrin is abundant in 
secretions like breast milk, and fluids covering the linings 
of mucosae like saliva, mucus and BALF [195, 196]. Addi-
tion of lactoferrin to in vitro cultures increase the prolif-
eration of γδ T cells upon mitogen stimulation. Given the 
important role of γδ T cells in defence against mucosal 
pathogens, high expression of LfR may be an adaptation 
for acquisition of lactoferrin-bound iron in mucosal sites 
including the lungs.

A functional link between the hereditary hemochroma-
tosis (HH) susceptibility gene HFE (also known as home-
ostatic iron regulator), iron status and adaptive T cell 
function has been suggested [197]. However, if or how 
HFE regulates ɣδ T cells remains unknown. HFE encodes 
a non-classical MHC molecule; as such the protein may 
have the ability to form complexes with β2-microglobulin 
(β2-m) [198]. Interestingly, mice deficient in β2-m dis-
play iron overload patterns similar to HH [199] and have 
enhanced homeostatic proliferation of ɣδ T cells. Since 
HFE deficiency is linked to iron overload, it is possible 
to hypothesize that excess iron could be  linked to the 
altered ɣδ T cell proliferation in these mice and maybe 
also in HH patients. In addition to the altered lympho-
cyte ratios, some HH patients may have altered iNKT 
numbers. Iron overload is associated with reduced num-
bers of iNKT cells, which was more notable in untreated 
patients [200]. Intriguingly, the regulation of iron lev-
els and iNKT activation/proliferation seems to be two-
way: iron levels affect iNKT numbers, and iNKT cells 
can affect iron homeostasis. In vivo, activation of mouse 
iNKT cells by injection of their prototypical antigen 
α-galactosylceramide (α-GalCer), not only induces iNKT 
proliferation but also promotes early hepcidin expression 
while suppressing FPN. Activation of iNKT cells also lead 
to an early peak of serum iron followed by accumulation 
of iron in the spleen and liver. These effects were abol-
ished in Jα18−/− mice which particularly lack iNKT cells. 
This indicates that iron and iNKT cells reciprocally regu-
late each other [201]. More research is needed to under-
stand the effects of iron and other metals on MAIT cells 
and other groups of innate lymphocytes.

Metals and adaptive immune cells of the lung
Adaptive lymphocytes (B and T cells)
T and B cells are at the centre of cellular adaptive 
immune responses. These cells are virtually capable to 
recognize infinite antigens in a highly specific manner 
thanks to their TCR and B cell receptors (BCR) and offer 
long-term protection against infection thanks to the gen-
eration of effector and tissue resident memory T lympho-
cytes and long-lived antibody producing plasma cells. 
Adaptive lymphocytes can be found in different lungs 
compartments. Conventional CD4+ and CD8+ T lym-
phocytes populate the mucociliary epithelium of the con-
ducting airways in the trachea and bronchi. In contrast, 
B cells (mostly IgA+) and most CD4+ T cells are found in 
the bronchial lamina propria. Early studies also reported 
the presence of lymphocytes in the lung interstitium in 
similar numbers to those found in the circulation [202]. 
In addition, an intravascular pool has been identified. T 
CD4+, T CD8+ and B lymphocytes have been isolated 
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from the alveolar spaces. B cells constitute only 5–10% of 
the total lymphocytes isolated in BALF [202].

T and B lymphocytes can also accumulate in ter-
tiary lymphoid structures (TLS) in the lungs. Bronchial 
Associated Lymphoid Tissue (iBALT) are the main TLS 
in the lung and serve as priming structures for B and T 
cells. iBALT organization is similar to secondary lym-
phoid organs, presenting a T cell zone and a B cell fol-
licle. These structures are readily detectable in children 
but only inducible and transient in adults. Once iBALT 
is formed, it can be maintained in the lungs for months 
even in the absence of the original stimulus that trig-
gered it and serves as a transient lymphoid structure to 
recruit naïve lymphocytes from the blood and to pro-
mote their interaction with local antigens in the airways 
to favour activation and differentiation into effector cells. 
The iBALT is formed near the basal side of the bronchial 
epithelium and in close association with the pulmonary 
blood vessels in response to infection or other inflamma-
tory stimuli [203]. iBALT formation is protective against 
acute viral and bacterial respiratory infections and it 
has been also shown to contribute during chronic M. 
tuberculosis infection. However, activation of lympho-
cytes in TLS can also contribute to airway damage. For 
instance, these structures tend to form near small airways 
in COPD patients and are associated with more severe 
forms of the disease [204].

Lung resident memory T cells (TRM) protect against 
infection by expanding rapidly upon challenge. CD4+ 
TRM reside in the lung parenchyma, whereas CD8+ TRM 
are found in parenchyma and the airway epithelium. 
CD4+ TRM are maintained over longer periods of time 
while CD8+ TRM decay and must be replenished from cir-
culating T effector memory cells [205]. A subset of mem-
ory CD69+ CD103+ T regulatory (Tregs) cells expressing 
FoxP3 are also found in the lungs of mice and humans 
[206, 207]. Antigen-specific memory Tregs differentiate 
in response to certain respiratory infections such as influ-
enza and can persist in the lungs after the pathogen has 
been cleared. These cells can contribute to limit the dam-
age upon reencounter with the pathogen [207] and can 
limit the pro-fibrotic potential of CD44hi CD69+ CD103lo 
CD4+ T cells [208].

Metals and adaptive immune cells
Trace metals including iron and zinc, as well selenium 
can influence adaptive lymphocyte biology and function. 
As for most immune cells, iron is key to T and B lympho-
cytes. Both express TFR1 or CD71 which allows them to 
acquire transferrin-Fe3+ via endocytosis. The acquired 
iron is used as a cofactor in several enzymes and a small 
proportion is stored in ferritin or remains as part of the 
labile iron pool in the cell; although the iron reserve 

pool in lymphocytes is very limited compared to other 
immune cells [209]. In addition to TFR1, lymphocytes 
also express LfRs upon activation which are particularly 
abundant on ɣδ T cells [195].

Both iron overload and iron deficiency impact adaptive 
immunity and lymphocyte function but the different T 
helper and cytotoxic lymphocyte subsets display different 
responses to iron perturbations and their dependence on 
TFR1 iron uptake. Mice fed an iron-rich diet show lower 
IFN-ɣ production and impaired delayed-type hypersen-
sitivity responses, whereas iron-deficient diets are linked 
to impaired T-cell proliferation [209]. In  vitro, blocking 
TFR1 with antibodies causes the arrest of helper T cell 
(Th)1 cell proliferation, whereas Th2 cells do not seem 
to be affected. In contrast, supplementation of culture 
media with iron and transferrin boosts lymphocyte pro-
liferation induced by polyclonal activators such as conca-
navalin A, phytohemagglutinin or LPS [210]. Supporting 
the importance of transferrin and iron for lymphocytes in 
the lungs, transferrin levels in the BALF of patients with 
COPD and sarcoidosis correlate with the number of lym-
phocytes in the BALF [211].

Iron levels are key to adaptive responses to patho-
gens and vaccines; anemia, iron or increased hepcidin 
and low serum iron caused by a mutation in TMPRSS6 
predict reduced responses to rubella, diphtheria, per-
tussis, H. influenzae type B and pneumococcal vaccines 
[212, 213]. Importantly, in humans another homozygous 
mutation in TFRC (the gene encoding TFR1) results in 
defective TFR1 iron internalization. Homozygous car-
riers of this mutation display a combined immunodefi-
ciency syndrome that results from impaired T and B cell 
proliferation, defective class-switching and lower anti-
body production, demonstrating the importance of iron 
uptake and TFR1 for adaptive response and lymphocyte’s 
function [214].

T cells are also affected by iron overload as seen in 
certain cohorts of patients with HH or transfusion-
dependent thalassemia. A subgroup of thalassemia 
patients present with unusually low counts of CD8+ 
T cells, which can improve after subcutaneous chela-
tion therapy with the iron chelator deferoxamine 
(DFO) [215]. A similar phenotype has been observed 
in HH patients. HFE competes with transferrin for 
binding to TFR1 and downregulating iron cellular 
uptake. Iron‐sensing via the HFE-TFR1 axis ultimately 
induces hepcidin transcription blocking iron efflux. 
HH is associated to the partial or total loss of hepci-
din, which results in excessive iron uptake and accu-
mulation in the tissues. HH patients present anomalies 
in CD8+ T cells and altered CD4+/CD8+ T cell ratios; 
in particular HH is associated with lower numbers of 
CD8+ T cells in the circulation and liver and a defect 
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in the generation of CD8+ memory cells [197]. Altered 
cytokine profiles are also seen in HH patients, where 
CD8+ T cells increase the production of IL‐10 and 
IL‐4 contributing to Th2 polarization of the adaptive 
response. Although HFE is a non-classical MHC Ib 
molecule it does not appear to have antigen present-
ing capabilities; however, a role for HFE in the antigen 
presentation process cannot be ruled out. TFR1 inter-
acts with the TCR ζ chain, which is involved in signal 
transduction upon antigen recognition [216]. There-
fore, by competing with transferrin, and depending on 
iron availability HFE could regulate T cell activation. 
In addition to the altered lymphocyte ratios, some HH 
patients may have altered iNKT numbers. Iron over-
load was associated with reduced numbers of iNKT 
cells, which was more notable in untreated patients 
[200].

The balance between iron and selenium also seems 
important to the development of T cell responses. Iron 
metabolism is key to survival of CD8+ T cells as Fe2+ 
mediates a type of cell death known as ferroptosis in 
CD8+ T cells. During ferroptosis, Fe2+ reacts with H2O2 
produced by mitochondrial respiration driving the for-
mation of free hydroxyl radical (OH·) which promotes 
lipid peroxidation and death. The glutathione peroxi-
dase 4 (Gpx4) is a selenoenzyme that acts as a major 
scavenger of phospholipid hydroperoxides and is essen-
tial to prevent ferroptosis. Gpx4 is essential for homeo-
stasis of both CD4+ and CD8+ T cells, as mice lacking 
Gpx4 have impaired proliferate T cell responses during 
a viral challenge or Leishmania infection [217]. Sele-
nium has been shown to be important for both cellular 
and humoral immune responses, although cell-medi-
ated immunity seems to depend more on selenium. 
Selenium can enhance responsiveness of lymphocytes 
to IL-2 by inducing the upregulation of IL-2 receptors, 
therefore promoting proliferation, cytotoxic activity 
and antibody production [218]. High selenium diets 
promote Th1 differentiation in mice. Whereas selenium 
deficiency has been linked to more severe influenza 
in mice [219]. Selenium deficiency leads to reduction 
in the expression of selenoprotein K (SelK), which is 
expressed in the endoplasmic reticulum membrane of 
many immune cells including T cells. SelK deficiency 
impairs proliferation of T cells as it impairs crucial 
Ca2+ fluxes upon TCR activation. SelK deficiency also 
affects neutrophil and macrophage function increas-
ing susceptibility to a viral challenge. Zinc (Zn2+) is 
required for thymic development of T lymphocytes. 
Zn2+ deficiency leads to impaired Th1 responses while 
promoting Th17 differentiation and IL-1β production 
[219].

Host nutrient availability and the microbiome 
of the lung
The human body harbours over 100 trillion microor-
ganisms that live in a commensal relationship with their 
host, mostly at barrier surfaces and mucosae including 
the gut, the airways, skin and genitourinary tract. Imbal-
ances in the composition of the human microbiota have 
been increasingly linked to pathologies such as allergy, 
asthma, chronic inflammation and autoimmunity. While 
the gut has been the most studied and characterized 
niche in terms of the microbiome, in recent years the 
importance of other niches including the lung microbi-
ome, became apparent. We are only now learning that 
the lung is colonized by a complex and dynamic microbi-
ota. While progress in understanding how changes in the 
lung microbiome contribute to disease has been limited 
due to sampling, technical and analytical problems, 16S 
sequencing studies have demonstrated distinctive differ-
ences in the lung microbiome between health and disease 
[220]. Despite the low density of the lung microbiota, 
the extraordinary diversity of interacting microbiota is 
evident, and it is the change or decline in this diversity 
that is often associated with the progression of disease. 
To date, no particular bacterial genera have been impli-
cated in lung disease and the variability in the diversity of 
the species detected in the upper versus lower respiratory 
tract as well as the regional variations in the host environ-
ment (e.g., mucus or surfactant secretion, pH, nutrient or 
oxygen availability) has also limited our understanding of 
the contribution of the respiratory microbiome in lung 
disease [221].

It appears that the airway microbiota in healthy lungs 
is dominated by Bacteroidetes and with prominent gen-
era including Prevotella, Veillonella and Streptococ-
cus [222–224], all of which are dependent on metals for 
growth and survival [9, 225, 226]. Approximately 30% of 
all proteins in bacteria depend on metals for their func-
tion [226] and changes in host metal availability alters 
bacterial diversity and abundance in  vivo [227–236], 
however there have been few studies examining the effect 
of metal availability directly on lung microbe populations 
[237]. In addition, whether or not changes in host metal 
availability in the lung directly modifies the lung micro-
biome which in turn contributes to the development and 
progression of chronic or acute respiratory disease is an 
evolving question.

Similarly, it has become evident that it is not only the 
microbial communities but also the metabolites they 
produce that can influence host susceptibility to cer-
tain diseases [238]. Despite the advances in microbiome 
research, our knowledge of the airway microbiome is 
still way behind compared to that of the gut microbiome. 
And as such, lung microbiota composition, microbiota 
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derived metabolites and how they could contribute to 
lung inflammation, immunity and disease is only in its 
infancy [239, 240]. Alterations in bacterial burden, gut 
microbial species and the metabolites they produce are 
associated with altered inflammation and immunity in 
the lungs as well as the development of lung diseases. 
This interaction, known as the gut-lung axis allows the 
access of gut-derived bacterial components, hormones, 
microbial metabolites, endotoxins and cytokines to the 
lung niche via the bloodstream, also influencing immune 
cell trafficking. Future research of the lung microbiota 
in the context of both heathy and diseased airways will 
likely discover the causes and consequences of altered 
lung microbiota in lung disease and identify microbial 
derived metabolites that play important roles in these 
processes. Whether or not microbe derived metal regula-
tors interfere with the host immune responses in the lung 
therefore requires significant attention. In the below sec-
tions we will discuss the existing evidence for alterations 
in host metal availability in chronic respiratory disease 
and the evidence, if any, for the role trace metals have to 
play in the nutritional immune response or to changes in 
the lung microbiome.

Nutritional immunity and the host lung 
microbiome in chronic respiratory disease
Asthma
Asthma is a chronic and heterogeneous disease of the air-
ways characterized by airway hyperreactivity, difficulty 
breathing, cough, wheezing and chest tightness. It is esti-
mated that 300 million people are affected with asthma 
and that ~ 250,000 die as a result each year. The patho-
genesis of asthma is complex with innate and adaptive 
cells acting together with epithelial cells to induce airway 
hyperreactivity. A broad clinical spectrum of phenotypes 
associated to different underlying immune mechanisms 
(endotypes) have been described [241, 242]. Asthma can 
be divided in two subsets: the eosinophilic type mainly 
controlled by Th2 or ILC2s, and the neutrophilic type 
which is characterized by a strong Th17 component and 
can present as steroid-resistant asthma. Eosinophilic 
asthma can be categorized as Th2hi and Th2lo compo-
nent depending on the presence of IL-4, IL-5 and IL-13 
being produced and the number of eosinophils in blood 
and lungs [243]. In addition to Th2 cells, ILC2 can also 
contribute to the pathology of asthma and produce high 
amounts of type 2 cytokines. These cells have been iden-
tified in samples of blood but also BALF and sputum of 
asthmatic patients [177]. ILC2 also drive mucus hyperse-
cretion, mucus cell metaplasia, fibrosis and inflammation 
which are driven by IL-13, eosinophils and monocytes 
[244]. Late onset and steroid-resistant asthma phe-
notypes are associated with IL-17 driven neutrophilic 

asthma and present with a more irreversible airway 
obstruction. Besides Th17 cells, cell including ɣδ T cells, 
NKT cells and ILC3 can contribute to IL-17A, IL-17F and 
IL-22 production amplifying the pathology [242, 245].

T helper responses in asthma are supported by DCs 
that are directly activated by allergens and other envi-
ronmental insults or via the damaged epithelium. Aller-
gens including house dust mites, spores, cat dander and 
others can have protease activity that damages epithelial 
cells and triggers protease-activated receptors and trig-
gers the release of damage associated molecular patterns 
(DAMPs) that lead to the secretion of innate responses 
via IL-33, TSLP, TLR4 and C-type lectin receptors among 
others [242]. Among lung DCs conventional DC express-
ing CD11b and SIRP1α and that rely on interferon regu-
latory factor (IRF)4 are the most important for allergic 
sensitization [246, 247]. DCs and epithelial cells not only 
contribute to sensitization to allergens but also play a role 
in ongoing asthma.

The lung microbiome and asthma
The time from the perinatal period up to the first years 
of life is key to the establishment of a “healthy” micro-
biome. The composition of the microbiome at all ana-
tomical sites is dynamically shaped by the interactions 
between symbionts, pathogens, the immune system, 
nutrition and the environment. Disturbances during the 
critical period of establishment of this ecosystem may 
determine future pathological manifestations [248]. Sev-
eral retrospective and longitudinal studies suggest this 
is the case for asthma and airway hyperreactivity, where 
aberrant immune development results from environmen-
tal exposures that may influence the airway microbiota. 
The analysis of the airway microbiome in infants revealed 
an association between the airway microbial composition 
and the risk of developing asthma within the first 6 years 
of life. Enrichment of the upper airway microbiome with 
taxa including Veillonella, Prevotella, and Gemella, was 
associated with increased risk of asthma and a character-
istic immune profile in the airway which was also inde-
pendently associated with increased asthma risk within 
6 years. While the study cannot prove causation, it sug-
gests a potential link between an early shift in the air-
way microbiome composition and immune perturbation 
which could lead to asthma later in life [249].

Analysis of different respiratory samples in healthy 
vs asthmatic adults suggests that the lungs of asthmatic 
patients receiving corticosteroid therapy are dominated 
by the phylum Proteobacteria which include the genera of 
potential pathogens including Haemophilus, Moraxella, 
and Neisseria [250]. Response to steroids in accompa-
nied by an increase in Actinobateria, whereas Kelbsiella 
is linked to severe asthma [250]. In addition, patients 
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with severe neutrophilic asthma receiving high doses of 
inhaled corticosteroids display lower airway microbiome 
diversity, enrichment with Moraxella and Haemophilus 
and a reduction in Streptococcus, Gemella and Porphy-
romonas [248]. While airway microbiome profiles seem 
to correlate with severity of the disease and may even 
predict response to corticosteroids, it is not possible to 
discriminate whether these changes are promoted by the 
interactions between commensals and the immune sys-
tem or induced by the steroid treatment. In a group of 
steroid-naïve asthmatic patients, members of the Sphin-
gomonodaceae family and species of Haemophilus, Neis-
seria, Fusobacterium, and Porphyromonas were enriched 
in the bronchi compared to healthy controls, whereas 
members of the Mogibacteriaceae family and Lactobacil-
lales order were lower. Importantly, steroid treatment 
caused a shift in the balance of the bronchial microbiome 
and differences were linked to responsiveness to treat-
ment [251].

In addition to the local airway and lung microbiome, 
the distant gut microbiome and the gut-lung axis of 
immune regulation have been implicated in the patho-
genesis of asthma. Significant reduction in species of the 
genera Lachnospira, Veillonella, Faecalibacterium and 
Rothia in the gut of 3-month-old infants correlated with 
elevated risk of developing asthma [252]. Mechanistically, 
high risk of asthma and gut dysbiosis has been linked to 
loss of short-chain fatty acid (SCFA)-producing bacte-
ria which ferment soluble fibre into these highly volatile 
metabolites (e.g., acetate, propionate, butyrate) known 
for their immunoregulatory properties [253] Higher lev-
els of butyrate and propionate in the stool of 1-year old 
toddlers associate with less atopic sensitization and low 
risk of asthma between the age of 5 and 6 [254] and sup-
plementation with soluble fibre inulin, associates with 
clinical improvement of asthma in adults and an increase 
in Bifidobacteria which degrade inulin into the SCFA 
acetate and lactate [255].

Intestinal bacteria can also produce metabolites that 
may be detrimental for lung function. For example, his-
tamine-producing bacteria are more abundant in the gut 
of asthmatic patients compared to healthy controls and 
this histamine has been liked to airway hyperrreactiv-
ity [248]. Shifts in the microbial populations in the air-
ways and in the gut seem to be associated with asthma 
endotypes and severity, the causal link between develop-
ment of the disease and dysbiosis remains to be proven. 
The current evidence supports mechanisms of immune 
modulation mediated by microbial-derived metabolites. 
While an inverse correlation between SCFA in the gut 
and asthma severity exists, whether significant concen-
trations of SCFA can reach the bloodstream or the lungs 
remains questioned. It would be interesting to determine 

if changes in the lung microbiome influence local pro-
duction of these metabolites to directly modulate the 
lung response to allergens and other environmental 
insults that could promote asthma.

Trace metals, nutritional immunity and asthma
Epidemiological studies have shown a correlation 
between iron deficiency and atopic disease, involv-
ing iron metabolism in the regulation of the immune 
response to allergens and atopic airway hyperreactiv-
ity [256, 257]. A large cross-sectional study in children 
and adolescents in the US, found a strong association 
between anaemia and atopic disease, including eczema or 
asthma [257]. The prevalence of asthma decreases with 
age and the iron reserve is higher in adults compared to 
children supporting the idea that the higher incidence 
of asthma and atopic disease in early life is linked to 
iron deficiency. In adulthood, men have higher levels of 
iron compared to women and asthma primarily affects 
women, again supporting a role of iron in prevention of 
asthma [41]. Though, the relationship between iron and 
asthma is not straightforward: increased iron stores in 
the form of ferritin have been associated with decreased 
odds of asthma, whereas higher tissue iron (lower serum 
soluble transferrin receptor) and lower body iron have 
been linked to lower lung function [256].

The iron storage capacity of Th2 cells is higher than 
Th1 as the latter have a lower iron labile pool [258]. 
Iron chelation affects Th1 cytokine production includ-
ing IFN-ɣ, IL-12 and IL-18, but not Th2 cytokines [259]. 
Therefore, a limited iron supply during stimulation of 
lymphocytes by allergens may favour development of 
Th2 responses over Th1 and predispose to allergic sen-
sitization [41]. Severe and moderate asthma patients pre-
sent low cell-free (non-heme) iron levels in BALF which 
correlate with lower lung function measured as (forced 
expiratory volume in 1  s (FEV1), whereas iron-loaded 
cells numbers are increased and also show increased 
expression of DMT1 and TFR1. These features were reca-
pitulated by a murine model of house dust mite asthma 
where macrophages display the highest expression of 
Tfr1 and also upregulate Il13, suggesting that by accu-
mulating iron they orchestrate the type 2 response in the 
lungs [260]. The relationship between iron metabolism 
and pathophysiology of asthma represents a dichotomy: 
while low systemic and local iron levels in BALF corre-
late with severity of asthma, cellular iron overload is also 
linked to the pathology of the disease.

Importantly, most allergens of mammalian origin 
including those in dander, urine, fur, and saliva of ani-
mals, belong to the lipocalin family of proteins and 
have the capacity to sequester bacterial siderophore-
iron complexes. Some of these allergens promote Th2 
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responses when not bound to iron, suggesting that iron 
deficiency may potentiate the stimulatory potential of 
lipocalin-like allergens [261, 262]. In addition, to pro-
moting Th2 responses directly, allergens may change 
the microbial ecosystem of the gut and/or the airways 
by sequestering bacterial siderophores and altering the 
availability of iron to certain bacteria, therefore induc-
ing dysbiosis. Supporting this notion, supplementation 
of dietary iron in rats favoured the production of the 
SCFA butyrate compared to animals fed an iron defi-
cient diet [263]. This suggests that iron availability can 
influence the composition of the microbiome and the 
production of immunomodulatory metabolites such as 
SCFA that are important modulators of type 2 allergic 
responses and asthma [41].

The role of other metals in the pathophysiology 
of asthma is less clear but serum concentrations of 
trace elements including copper, zinc and selenium 
have been found to be altered in individuals suffering 
from asthma compared to healthy controls. Imbal-
ances in selenium have been implicated in allergic 
inflammation. Curiously, while mice fed on high and 
low selenium diets show low incidence of allergic 
inflammation in an ovalbumin sensitization model, 
intermediate doses of selenium were associated with 
heightened inflammation. This suggests that the mod-
ulation of the allergic response by selenium in the 
lungs is not linear and may involve several intermedi-
ate enzymes and other unknown mechanisms [264].

Two independent studies reported elevated serum 
levels of copper in adults suffering from asthma com-
pared to healthy controls, whereas zinc and selenium 
were lower and magnesium remained unchanged [155, 
265]. While the mechanisms by which alterations in 
trace metal concentration contribute to the pathology 
are unclear, given the role of copper and zinc in regula-
tion of redox metabolism, altered levels of these met-
als may contribute to imbalances in oxidative stress 
in asthma. Indeed, asthmatic patients present higher 
levels of NO and nitrated products than healthy indi-
viduals, and these correlate with the severity of the 
disease. Non-enzymatic decomposition of S-nitro-
sothiols (RNSO) is mainly catalyzed by Cu2+ ions 
leading to generation of NO and the corresponding 
disulphide [266]. Therefore, it is possible to postulate 
that elevated copper levels in asthma may accelerate 
RSNO consumption with the concomitant increase in 
NO. Supporting this hypothesis, RSNO deficiency in 
the airways has been linked to asthmatic respiratory 
failure in children which suggests that RSNO metabo-
lism and in particular their copper-mediated catalytic 
decomposition could be therapeutic targets in asthma 
[267].

Chronic obstructive pulmonary disease
COPD is a chronic inflammatory lung disease associ-
ated with cigarette smoke or other environmental expo-
sures. As a leading cause of death worldwide, COPD 
encompasses chronic bronchitis and emphysema [268, 
269] and involves an aberrant immune and inflamma-
tory responses to the inhalation of noxious particles [269, 
270], with chronic inflammation persisting for many 
years after [204]. The definitive molecular mechanisms 
underlying the chronic inflammatory changes observed 
in COPD remain to be determined, however there is 
overwhelming evidence implicating AMs in this pro-
cess [204, 271, 272]. AMs exposed to cigarette smoke 
have been shown to ineffectively clear respiratory path-
ogens, damaged epithelial cells as well as having defec-
tive responses to activating stimuli [273–276]. Strikingly, 
there is a 25-fold increase in the number of AMs in the 
lung parenchyma and alveolar space in COPD, which 
correlates with disease severity [277, 278] and areas of 
lung destruction [272], highlighting their central role in 
disease pathogenesis. Neutrophilic inflammation is also a 
hallmark of COPD and is associated with bacterial infec-
tion [279] whereas eosinophilic inflammation is present 
in a subgroup of COPD patients [280], and is associated 
with less bacterial infection [281]. Aberrant regulation 
of the immune response is a clear factor in the develop-
ment and progression of COPD however little is known 
regarding the microbiome or nutritional immunity in this 
process.

The lung microbiome and COPD
Microbiome changes have emerged as a contributing 
factor in COPD progression, clinical phenotypes, sever-
ity and long-term mortality [282–284]. Studies compar-
ing sputum and BALF microbiota between stable COPD 
patients and healthy controls have identified a change 
in microbial diversity with an increased abundance of 
Moraxella, Streptococcus, Proteobacteria, Veillonella, 
Eubacterium and Prevotella in disease [283–289]. Other 
studies of BALF report no difference in Streptococcus 
[290]. Conversely, increased Proteobacteria and reduced 
Firmicutes, Bacteroidetes, Streptococcus, Haemophilus 
influenza and Prevotella spp. have been documented in 
COPD lung tissue explants [291]. During an exacerba-
tion event (periods of symptom worsening and reduced 
lung function) shifts in bacterial composition, char-
acterized by a relative increase in Proteobacteria that 
falls in response to antibiotics have also been observed 
[292, 293]. Some of the above studies suggest that these 
changes may be independent of smoking status and that 
real changes in microbial diversity may be more appar-
ent upon examination of associations in specific COPD 
endotypes [289] such as the neutrophilic inflammatory 



Page 18 of 44Healy et al. Respir Res          (2021) 22:133 

endotype [283, 294]. Intriguingly the faecal microbiome 
and COPD patients is also distinct from those of healthy 
individuals, with Streptococcus sp000187445, Strepto-
coccus vestibularis and multiple members of the family 
Lachnospiraceae correlating with reduced lung function 
[295]. During an acute exacerbation event the faecal 
microbiome has also been shown to display a lower rela-
tive abundance of Firmicutes and Actinobacteria with an 
increase in Bacteroidetes and Proteobacteria [296]. The 
importance of the gut microbiota in COPD development 
is further highlighted by the reversal of murine smoke-
induced inflammatory emphysema via faecal microbiota 
transplantation or a high-fibre diet, possibly via the ben-
eficial effects of SCFAs [297].

Trace metals, nutritional immunity and COPD
Genome wide association studies of COPD patients 
implicate a role for abnormal iron metabolism in COPD 
[298–302]. Current and former smokers have abnormally 
high levels of iron in sputum, BALF in exhaled breath 
condensate, and in AMs, compared to non-smoking con-
trols [211, 303–312]. Anaemia and non-anaemic iron 
deficiency often accompany COPD [313] with anaemia 
being an independent predictor of mortality [314–316], 
and with iron-deficient COPD patients having more 
exacerbations than control subjects [317]. Smoke expo-
sure also reduces hepcidin expression in murine mod-
els. COPD patients have an inappropriate suppression of 
hepcidin in response to iron deficiency, with less hepcidin 
expression in severe end-stage disease [54, 316, 318]. This 
may or may not be related to findings that iron accumu-
lates inside cells and tissues of in vitro and in vivo COPD 
models [304, 305, 309]. Whether increased cellular iron 
is pathogenic [319] or a protective [307, 320] stratagem 
should consider the lung and systemic iron regulation as 
separate entities. Both the use of iron chelators directly in 
the lung as well as administering intravenous ferric car-
boxymaltose to iron deficient COPD patients may have 
beneficial effects [319, 321].

As previously mentioned, iron plays an important role 
in the functional response of macrophages and other 
immune cells of the lung and similarly iron regulatory 
pathways play an important role in the response of these 
cells to smoke [54, 304, 319]. Specifically, cigarette smoke 
increases the expression of FPN, ferritin and the TFR1 on 
AMs and inhibits hepcidin induction by LPS as well as 
inducing ferroptosis [54, 322]. However, whether or not 
the above changes in macrophage iron regulation in the 
lung as a result of smoke or COPD progression alters the 
interplay between immune cells and the lung microbi-
ome remains to be determined.

Zinc levels have also been shown to play an important 
role in COPD. COPD patients have lower levels of zinc 

[77, 323] and smokers with low dietary zinc intake have 
an increased incidence of COPD [324]. The zinc trans-
porter ZIP8 is also increased at mRNA and protein levels 
in the lungs of chronic smokers [325] and zinc deficiency 
potentiates the effects of smoke on the epithelial cell bar-
rier function [326, 327]. Depletion of zinc in adult mice 
resulted in a significant increase in lung cadmium bur-
den and permanent lung tissue loss following prolonged 
smoke exposure [328]. Zinc also regulates the immune 
response to smoke whereby airway inflammation is exag-
gerated in zinc deficient mice [329] and zinc supplemen-
tation reduces AM numbers in smoke-exposed mice 
[330]. Zinc protects against cadmium toxicity and loss of 
zinc in AMs leads to the toxic accumulation of cadmium 
in the AMs of smokers [331]. Functionally, loss of zinc 
inhibits efficient efferocytosis of apoptotic epithelial cells 
by AMs [77]. Whether or not a loss in zinc levels alters 
the microbiome of the lung or the response of immune 
cells such as AMs to infection remains to be determined.

Copper also plays a role in the development of COPD. 
Copper deficiency induces emphysema in animal models 
[332–334] and the EBC of stable COPD patients contains 
lower copper levels than of controls an observation that 
is positively related to FEV1 in individuals with COPD 
[335]. Intriguingly, individuals with Menkes disease, an 
X-linked recessive disorder of mutations in the intracel-
lular copper-transporter ATP7A display an increased 
incidence in emphysema [336, 337]. A loss of copper 
directly impacts AEC integrity and copper directly regu-
lates elastin synthesis via the copper dependent enzyme 
lysyl oxidase [334, 338]. However, whether or not copper 
levels in lung immune cells dictate function or regulate 
responses to cigarette smoke remains to be determined. 
Finally, selenium responsive genes are altered in indi-
viduals with COPD [339] and COPD patients with higher 
selenium have a higher FEV1 [340]. Selenium and man-
ganese levels may be beneficial before the clinical onset 
of COPD in smokers [341] and manganese levels are 
higher in COPD patients with severe disease when com-
pared to control smokers [342] however the role of sele-
nium or manganese in disease pathogenesis is unknown.

Cystic fibrosis
Cystic Fibrosis (CF) is an autosomal recessive disease 
caused by mutations in the CF transmembrane conduct-
ance regulator gene (CFTR). The CFTR gene encodes a 
protein that mainly acts as a chloride channel that trans-
ports ions across the apical membrane of epithelial cells. 
This disease is characterized by progressive lung disease, 
malnutrition, growth defects and several other presenta-
tions [343]. In the lungs, CF is characterised by mucus 
accumulation and obstructive lung disease. Reduced 
mucus clearance leads to higher bacterial loads in the 
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lower airways and recurrent respiratory infections are 
the main cause of morbidity and mortality in CF patients, 
with Pseudomonas aeruginosa being one of most com-
mon pathogens in CF.

The lung microbiome and CF
The altered landscape of the CF airways results in a dys-
biosis of the airway microbiome, however which spe-
cific factors of the CF lung microenvironment drive this 
change in the microbiota still remains unknown [344]. 
The onset of the CF microbiome involves an increase 
in bacterial burden and a reduction in microbial spe-
cies diversity. Infants and children with CF have a higher 
microbial diversity which is lost with age, disease pro-
gression, and the domination of CF pathogens, most 
notably P. aeruginosa [345–349]. In advanced disease the 
lower airways consist of mostly homogenous populations 
of CF pathogens [350]. The main taxa found within CF 
microbiomes are Streptococcus, Prevotella, Veillonella, 
Rothia, Actinomyces, Gemella, Granulicatella, Fusobac-
terium, Neisseria, Atopobium and Porphyromonas [351, 
352]. Diversity appears to serve as a marker for lung 
function as reduced species richness correlates with 
reduced lung function [351, 353]. Several studies have 
examined the airway microbiome in CF patients during 
exacerbation [351, 354, 355] and have observed that over-
all microbial community structure remains the same dur-
ing stable periods and exacerbations and that the extent 
of changes observed during exacerbation are dependent 
on the community composition and diversity at base-
line. In one study the relative abundance of Gemella was 
increased in most of the patients during exacerbation and 
was the most altered genus between baseline and exacer-
bation [354]. In this same study a subset of patients had 
substantial changes in microbial community structure 
during exacerbation in that those that had Pseudomonas 
dominated microbiota communities at baseline became 
more diverse at exacerbation. Furthermore, the presence 
of anaerobes in the microbiota is associated with reduced 
inflammation and higher lung function at early exacer-
bation compared to Pseudomonas [356]. While many 
studies have identified the constituents of the microbial 
community in the CF lung and during exacerbation and 
stable periods, there are few mechanistic insights into 
how these microbial residents of the airways can con-
tribute to this disease. A recent study quantified bacte-
rial active translation in the sputum from CF patients and 
found that active bacteria (i.e., those actively translating 
proteins) represent only a subset of those captured by 
conventional sequencing [357]. By adopting a dormant 
phenotype in which reduced cellular activity endows a 
temporary multi-drug resistant phenotype, the inactive 
bacteria subpopulations could persist during  antibiotic 

challenge. While the common residents of the CF airway 
microbiota are now known, their physiology and how 
they interact with other members of the microbiota and 
with their airway microenvironment remain to be more 
fully explored in order to understand how CF drives 
altered microbial community in the airways and how the 
CF microbiota subsequently contributes to CF disease 
progression.

Trace metals, nutritional immunity and CF
Systemic iron deficiency is prevalent among adults 
and children with CF [358–364]. However iron levels 
are elevated in the airways in CF with higher iron lev-
els detected in the sputum and within AM and IMs 
[365–368]. With macrophages being key regulators of 
extracellular iron levels, they represent a likely source 
contributing to increased airway iron. Indeed, CF mac-
rophages have recently been shown to have altered iron 
metabolism that can be corrected with CFTR modula-
tors ivacaftor and lumacaftor [369]. Furthermore, airway 
epithelial cells expressing ΔF508-CFTR, the most com-
mon CFTR mutation observed in CF, have been shown to 
have altered iron homeostasis and release more iron than 
those expressing WT-CFTR [370, 371]. This increased 
iron in the airways provides easier access of this vital 
nutrient to bacteria present in the airways, including P. 
aeruginosa. Iron not only is essential for growth, but it 
also regulates biofilm formation in this respiratory patho-
gen [369, 370, 372]. This has a major impact on the ability 
of these bacteria to persist in the lungs as bacteria within 
biofilms are much more difficult to clear by host immu-
nity and by antibiotic treatment. With persistent P. aer-
uginosa lung infections driving increased mortality in CF 
patients, reducing high iron levels in the lungs or depriv-
ing P. aeruginosa of iron appears to be a sensible strat-
egy to control this CF pathogen. Gallium has been used 
to treat P. aeruginosa in CF, this metal was shown to and 
inhibit growth of P. aeruginosa in sputum and improved 
lung function in people with CF and chronic infection by 
interfering with bacterial iron metabolism [373]. Gallium 
compounds have also been shown to inhibit in vitro and 
in  vivo growth of Mycobacterium abscessus by disrupt-
ing iron uptake in this emerging important pathogen in 
CF[374].

Zinc deficiency has been observed in CF patients, espe-
cially those with malabsorption and impaired growth. 
The serum or plasma levels of subsets of CF patients, 
both child and adult, have been observed to be lower 
than healthy controls in several studies [375, 376]. Zinc 
supplementation has been used to treat CF patients, 
but studies have shown conflicting results, some have 
shown that zinc supplementation leads to improved 
lung function and reduced need for antibiotics and 
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hospitalisations, while others showed no benefits for 
zinc supplementation [377–381]. Interestingly, while 
zinc levels in serum can be low, zinc levels in the airways 
of CFs are reported to be higher [382, 383]. The preva-
lence and the impact of altered zinc homeostasis in CF 
is not yet well defined, however zinc levels affect micro-
bial community structure in CF. Explants of CF lungs had 
S.aureus and P. aeruginosa co-existing in calprotectin 
enriched regions. As calprotectin chelates zinc, regions 
in the lungs enriched with this protein will have lower 
zinc levels which causes P. aeruginosa to reduce its pro-
duction of antistaphyloccal factor thus allowing for the 
co-existence of this bacterial species [384].

Studies have found reduced activities of copper 
enzymes from cells (mononuclear cells, neutrophils and 
erythrocytes) in CF patients, possibly indicating reduced 
copper availability within these cells [385, 386]. Interest-
ingly copper supplementation does not counteract this 
copper deficiency in CF patients indicating an altered 
copper metabolism that cannot be corrected simply by 
supplementation [387]. One study reported that copper 
levels are elevated in the sputum in CF [382]. The cause 
and consequences of altered copper homeostasis in CF 
are yet to be determined. Selenium deficiency is observed 
in CF patients [388–391] but the levels of selenium in the 
CF lung have not been reported.

Non cystic fibrosis (CF) Bronchiectasis
Bronchiectasis refers to the permanent widening of the 
bronchi and usually presents clinically with coughing, 
sputum production and recurring respiratory infections, 
along with other symptoms. The widening of the bron-
chi leads to impaired mucociliary clearance and failure 
to effectively clear microbes and mucus leading to per-
sistent infection and inflammation. Bronchiectasis is 
complex and heterogenous and can be the final common 
feature of many infectious, inflammatory, and allergic 
disorders [392].

The microbiome and bronchiectasis
Several studies of the lung microbiome in bronchiectasis 
have observed alterations. A longitudinal study of non-
CF bronchiectasis patients found that the airway micro-
biomes remained stable over time and that patients with 
lower diversity of the microbial community were more 
likely to experience a subsequent decline in lung func-
tion [393]. This study also reported that the microbi-
omes of patients that were dominated by Pseudomonas 
differed greatly from patients whose microbiomes are 
Haemophilus dominated and that antibiotic treatment 
did not affect their microbiome composition. However, 
a larger study observed that disease severity is reduced 
with lower microbiome diversity [394]. Another study 

reported no significant changes in microbial diversity and 
during or after exacerbations, but also observed stability 
in the microbiomes of patients over time (6 months) even 
with antibiotic therapy [395]. This study also highlighted 
the differences in culture versus sequencing to identify 
the composition of the airway microbiota, notably H. 
influenzae is not detected well by culture. A study which 
compared bronchiectasis patients treated with low dose 
of a macrolide antibiotic (erythromycin) with a placebo 
control found that patients with Haemophilus dominated 
microbiomes were associated with fewer exacerbations 
but both Pseudomonas and Haemophilus dominated 
microbiomes were associated with lower lung function 
[396, 397]. Infections caused by non-tuberculous myco-
bacteria (NTM) are often seen in patients with bronchi-
ectasis. These bacteria are found in the environment and 
usually do not cause disease but can establish chronic 
infections in people with underlying conditions. The role 
of NTM in the lung microbiome and how it may inter-
act with other species in the microbiota of bronchiectasis 
patients, or even in healthy individuals, is not yet known. 
Limitations of sequencing approaches commonly used 
contribute to this lack of knowledge and studies have 
shown that 16S rRNA gene sequencing is not sensitive 
enough for Mycobacteria [398, 399]. Using a more sensi-
tive technique for mycobacteria, a study was able to iden-
tify a non-tuberculous ‘mycobacteriome’ in in the mouth 
and upper respiratory tract of healthy individuals [399]. A 
study involving non-CF bronchiectasis patients with high 
prevalence of NTM used this mycobacteriome sequenc-
ing approach for the lower airways of 20 patients [398]. 
They found that in the lower airways of NTM positive 
patients, taxa identified as oral commensals were asso-
ciated with increased inflammatory biomarkers. Studies 
with larger cohorts and using sensitive sequencing meth-
ods for mycobacteria are required to further investigate 
the role of NTM in the microbiome, particularly in the 
context of bronchiectasis.

Trace metals, nutritional immunity and bronchiectasis
The roles that metals such as iron, zinc and copper may 
play in non-cystic fibrosis bronchiectasis is not known 
and there are only a few reports measuring the levels of 
these metals in patients with this chronic lung disease. 
Some reports have observed that altered trace metals lev-
els in non-CF bronchiectasis patients. Specifically, serum 
zinc levels have been reported to be lower in bronchiec-
tasis patients when compared to healthy controls, but an 
earlier study did not find significant differences in serum 
zinc levels and found that even though zinc supplemen-
tation resulted in increased zinc serum levels no clinical 
improvement was observed [400, 401]. Two studies have 
detected higher levels of iron and zinc in the sputum of 
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non-CF bronchiectasis patients compared to controls 
[382, 383]. Bacteria that cause recurrent infections in 
non-CF bronchiectasis could benefit from easier access 
to essential trace metals in the airways, supporting their 
growth. Thus further study of the source of these trace 
metals in the airways and their role in both the pathology 
of non-CF bronchiectasis, and in respiratory infections 
in those with chronic lung disease needs to be further 
investigated.

Lung cancer
Lung cancer is one of the most aggressive and lethal 
cancers, with low treatment success and many compli-
cations. The most common form of lung cancer is non-
small cell lung cancer which is subdivided into three 
main types; adenocarcinoma (AD) which arises in the 
peripheral bronchi, squamous cell (SC) which arises in 
the main bronchi and large-cell undifferentiated car-
cinoma [402]. The less common form of lung cancer is 
small cell lung cancer (SCLC) which accounts for ~ 15% 
of lung cancers is characterised by its neuroendocrine 
features [403]. Previously, lung cancer was thought to 
be non-immunogenic due to failed immunotherapies 
but has recently been revisited as being correlated with 
various immune cells and responses, particularly with 
inflammatory responses being integral to cancer progres-
sion [404]. Commonly during early stages of lung tumour 
generation an influx of immune cells such as leukocytes 
into the tumour and around the tumour microenviron-
ment (TME) are observed [405]. The main source of this 
immune inflammation comes from M2 macrophages, 
which have been shown to promote angiogenesis, tissue 
remodelling and repair for the malignant cells [406].

The microbiome and lung cancer
Studies testing patients with lung cancer found strong 
associations between the presence of malignancy and 
high densities of Haemophilus influenzae, Acidovo-
rax, Klebsiella, Moraxella catarrhalis, Mycobacterium 
tuberculosis and Granulicatella adiacens [224, 407]. 
Furthermore, comparison between the taxa present in 
SCLC and AD revealed specific taxa such as Acidovo-
rax,  Klebsiella,  Rhodoferax, Tepidimonas and Anae-
rococcus were more abundant in SCLC [408]. Possibly 
through an environmental influence, the density of com-
mensal bacteria was reduced within the lungs, allowing 
for more insidious opportunistic species to proliferate 
and drive lung inflammation. Microbial profiles have 
been suggested as a potential biomarker for lung can-
cer. Using 16S RNA sequencing and real time PCR Yan 
et al. (2015) successfully linked microbiota present in the 
saliva to lung cancer. Both Capnocytophaga and Veil-
lonella were significantly higher in patients with lung 

cancer [409]. However, the sample size of this study was 
relatively small so further investigations into the affili-
ation between microbial composition in saliva and lung 
cancer is needed. In more recent studies, comparisons of 
the microbial profile between patients with emphysema 
and or lung cancer noted that the microbial composition 
of lung cancer tissue samples were distinctly different 
from both controls and patients with emphysema [410]. 
Furthermore, preliminary analysis of the microbiome in 
the sputum identified six further bacterial species that 
were significantly more abundant in lung cancer sam-
ples compared to controls [411]. It is clear that there is 
link between microbial composition and disease status, 
however, it is noted that the above studies attempted to 
analyse the lung microbiome indirectly through analys-
ing the microbial composition in either saliva or spu-
tum. Further direct analysis of the lung microbiome are 
needed to establish a stronger link between the microbial 
profile within the lung and lung cancer.

The gut microbiome has also been identified to play 
potential roles in the pathobiology of lung cancer. For 
example, H.pylori has been suggested to play a role in 
lung cancer pathology [412, 413] with patients with lung 
cancer possibly having a significantly higher rate of sero-
positivity for antibodies against H.pylori [414], however 
these findings have not been well replicated [415, 416]. 
The mechanisms behind bacterial burden and lung can-
cer include; the production of bacterio-toxins and pro-
inflammatory factors, which could ultimately lead to the 
DNA damage and mutation causing malignancy, as well 
as a hyperinflammatory immune response [417, 418]. 
Also of note, evidence from patients with lung cancer 
has suggested antibiotic use during treatment to have a 
largely negative effect on tumour regression, with anti-
biotics only strengthening the pathogenic bacteria and 
staving off healthy commensal species [419]. Taken 
together it is clear that both commensal and infiltrating 
bacteria play a strong role in the carcinogenesis of lung 
cancer. Further investigations should attempt to directly 
assess the lung microbiome, for example, through BALF 
samples collected via endotracheal tube extraction to 
avoid contaminants from both mouth and upper airways 
[349].

Trace metals, nutritional immunity and lung cancer
Disturbed metal homeostasis has been previously pro-
posed as a biomarker of lung cancer [420]. Specifically, 
increased level of copper and decreased level of zinc in 
the serum has been a successful indicator for lung can-
cer when compared to healthy controls [421]. Increased 
serum copper may aid in tumour progression through 
angiogenesis, while decreased zinc may lead to unprec-
edented changes in cell cycles and apoptosis [422]. In 
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contrast, increased plasma zinc levels correlated with 
a lower risk of lung cancer [423]. Higher levels of zinc 
were also shown to regulate eight different cancer genes 
and suggested to prevent cancer progression through 
decreasing telomere attrition [423].

Iron accumulation has been seen in several cancers and 
has even been suggested as a potential target for cancer 
therapy [424]. In the context of lung cancer, ferritin lev-
els in patients are significantly elevated when compared 
to controls and patients with COPD [425]. Increased 
expression of other iron regulators like LCN2 and TFR1 
have also been observed in lung cancer patients [426, 
427]. Furthermore, down-regulation of LCN2 or TFR1 
in murine models for adenocarcinoma was shown to sig-
nificantly suppress the growth of the tumours [426, 427]. 
Higher IL-6 levels in lung cancer patients [428] may be 
associated with the upregulation of hepcidin, result-
ing in decreased iron influx and induced cancer-related 
anaemia [429]. miR-20a, upregulated in non-small cell 
lung cancer (NSCLC), and can negatively regulate FPN, 
which may promote proliferation of cancer cells indi-
rectly through the retention of iron [430]. Iron has also 
been reported to induce cancer stem cells and aggressive 
phenotypes through ROS generation in human lung can-
cer cells [431].

The TME has been characterized as a key player in 
tumour growth and progression [432]. Tumour asso-
ciated macrophages (TAMs) are the most commonly 
found immune cell in the TME and have been shown 
to integrate an M2 ‘like’ phenotype to promote tumour 
growth and proliferation [405]. In contrast, a subset of 
TAMs, iron-loaded TAMs (iTAMs), were characterized 
as tumoricidal due to their ability to switch the polari-
zation of M2 macrophages to pro-inflammatory M1 
macrophages when exposed to iron or heme [433, 434]. 
Furthermore, AD patients with higher levels of iTAMS 
were shown to have an overall better survival in com-
parison to controls [435]. Little is known about where 
the surplus of iron is coming from, although some stud-
ies have suggested cigarette smoking may be a contrib-
uting factor [304]. Metagenomic sequencing of microbial 
profiles in the sputum of lung cancer patients have also 
identified increases in iron siderophore sensors and 
receptors [411]. M2 ‘like’ TAMs produce higher levels of 
FPN and lower levels of ferritin when compared to M1 
macrophages. Furthermore, it was suggested that M2 
‘like’ TAMs contribute to tumour progression through 
their “iron-recycling” phenotype and fulfil the high iron 
demand from tumour cells by exporting iron into the 
TME [433]. Interestingly, the treatment of cells with 
exogenous iron can prevent liver metastases by induc-
ing a pro-inflammatory M1 polarization in macrophages 
[436].

Links between other trace-elements, such as selenium 
and manganese with cancer have also been explored in 
the literature. While there are no reports on altered levels 
of manganese in lung cancer, some studies have reported 
an increase in manganese SOD (MnSOD) activity to be 
correlated with the disease [437–439]. Genetic analysis 
demonstrated that polymorphisms in the MnSOD gene 
were shown to contribute to a higher risk of lung cancer 
[440]. It is thought that these polymorphisms accelerate 
tumour progression due to the reduced ability to defend 
against oxidative stress. In more recent studies, over 
expression of an isoform of MnSOD in cancer cells was 
shown to increase tumour invasion in  vitro [441]. The 
altered expression and mutations of MnSOD seen in lung 
cancer implicate an important role for mitigating oxida-
tive stress in order to supress tumour progression.

Finally, the role of selenium in the pathogenesis and 
progression of lung cancer is controversial with some 
studies demonstrating a lower risk of lung cancer with 
higher exposure to selenium [442] and others reporting 
no correlation between dietary selenium and lung cancer 
risk a [443, 444]. Further metallomic and observational 
analysis are needed to clarify whether these metals are 
associated with the pathogenesis of lung cancer.

Idiopathic pulmonary fibrosis
Idiopathic pulmonary fibrosis (IPF) is a form of intersti-
tial lung disease, characterised by a gradual, irreversible 
decline in lung function [445]. Symptoms include grad-
ual dyspnea and a non-productive cough. The disease is 
diagnosed via CT or lung biopsy to show the presence of 
usual interstitial pneumonia. As ‘idiopathic’ would sug-
gest, the exact cause of the disease is unknown. IPF tends 
to affect those aged 60 and above, often with a history 
of smoking, and is more common in men than women. 
Environmental, occupational and genetic risk factors 
may also play a role in the onset of IPF. It is thought that 
persistent damage and abnormal repair to the alveolar 
epithelium drives the disease. Treatments for IPF are lim-
ited, and none can reverse the fibrosis. The current strat-
egy focuses on slowing the progression of the disease and 
two antifibrotics have been approved, nintedanib and pir-
fenidone [446].

The microbiome and IPF
Active infection in patients with IPF is a high risk for 
mortality, and as antibiotics can improve quality of life 
for IPF patients, this would suggest that the microbiome 
can negatively affect disease progression [447, 448]. One 
study showed bacterial burden in BALF from IPF patients 
to be twice that of healthy controls, and this increase has 
been shown to correlate with worsening disease pro-
gression [449, 450]. The microbiota of IPF patients has 
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been shown to be less diverse than healthy controls, with 
increased number of Streptococcus, Haemophilus, Neisse-
ria, and Veillonella [449]. The Streptococcus and Staphy-
lococcus taxa in particular may be linked to increased 
mortality, though subsequent studies have not supported 
this [449, 451, 452]. Instead, it may be the increased bac-
terial load, rather than particular species that is detri-
mental [449]. Interestingly, germ free mice had reduced 
mortality in a bleomycin-induced pulmonary fibrosis 
model despite similar levels of fibrosis, with the authors 
of the study speculating that the microbiome may alter 
the balance between Th1 and Th2 responses [450]. In a 
study comparing the difference in the microbiomes of 
patients with either stable IPF or those undergoing an 
acute exacerbation, those with stable IPF had a reduced 
bacterial load in their BALF fluid [452]. With increased 
bacterial load comes epithelial cell damage and increased 
expression of pro-inflammatory cytokines leading to 
inflammation and fibrosis [453]. Genetics may play a role 
determining the increased bacterial burden. Mucin 5B 
is one of a family of proteins that when combined with 
water forms mucus. Individuals with a polymorphism in 
the promoter region of the MUC5B gene, a gene associ-
ated with susceptibility to IPF have a higher bacterial 
burden than those lacking this polymorphism [449].

As bacteria must acquire metals essential for their 
viability from their host the altered metal profile in the 
lung during IPF, as discussed below, may affect bacte-
rial growth. Streptococcus pneumoniae, for example, 
requires manganese and iron from its host, while high 
levels of copper are toxic [454]. Growth of both Haemo-
philus influenzae and H. parainfluenzae can be inhibited 
by the addition of the iron chelator, deferoxamine, to the 
growth media [455]. Whether the changes seen in metal 
availability in the lung drive infection during IPF, or 
whether they occur due to infection or the disease itself is 
unknown. Further study would be required, but as metal 
availability can affect the growth of the bacterial species 
that may exacerbate IPF, monitoring metal levels in BALF 
may be an indication of how susceptible patients with IPF 
are to bacterial infection.

Trace metals, nutritional immunity and IPF
Exposure to different metals, whether in an environ-
mental or occupation settings, has been linked to the 
development of lung fibrosis and is considered a risk fac-
tor in the development of IPF [456]. The availability and 
metabolism of several metals have also been implicated 
in IPF. BALF from IPF patients showed lower levels of 
chromium, nickel, manganese and zinc when compared 
to healthy controls, and the authors of this study specu-
lated that this may due to increased oxidative stress as 
these metals are involved in the antioxidant response 

[457]. Of the metals implicated in IPF, iron has been the 
most widely studied. Iron homeostasis is known to be 
altered in IPF patients as increased iron deposition is 
seen, which may also lead to increased oxidative stress in 
the lung [458, 459]. The same study also showed iron and 
copper to be elevated in BALF of IPF patients [457].

AMs may play a role in driving fibrosis [460]. Iron 
accumulation in macrophages leads to persistent activa-
tion in other diseases, and as iron is known to accumu-
late in AMs this may also contribute to damage in IPF 
[461]. BALF cells from IPF patients have increased iron-
dependent ROS generation [461]. A higher proportion 
of AMs in IPF patients lack expression of TFR1, when 
compared to healthy controls [462]. Consequently, a 
higher level of transferrin is found in BALF and TFR1neg 
AMs were shown to be unable to take up transferrin. 
The inability to sequester iron may lead to an increase 
in bacterial growth in the lung, for example Staphylococ-
cus aureus can use transferrin bound iron as a growth 
factor [463]. The impairment in phagocytosis seen in 
these TFR1neg AMs may also allow for increased bacte-
rial growth. Coupled with this possible increase in bacte-
rial burden due to a lack of TFR1 expression, the TFR1neg 
AMs also had an altered gene expression profile that 
could be described as profibrotic. This increased propor-
tion of TFR1neg AMs was also linked to reduced survival 
in IPF patients [462].

Other metalloproteins may also contribute to fibrosis. 
Lysyl oxidase-like 2 (LOXL2), a copper-dependent mon-
oamine oxidase, has been linked to pulmonary fibrosis 
[464]. LOXL2 plays an essential role in matrix remodel-
ling and fibrogenesis, but in both bleomycin treated mice 
and patients with IPF, LOXL2 expression is increased 
[465, 466]. The transforming growth factor (TGF)-β/
Smad signalling pathway has been implicated in the onset 
of IPF, and signalling through this pathway in fibroblasts 
from bleomycin challenged mice was reduced when 
LOXL2 was silenced with siRNA [464]. Targeting LOXL2 
with an inhibitory monoclonal antibody has also been 
shown to be protective in bleomycin exposed mice [467]. 
SODs convert superoxide radicals into the less damaging 
hydrogen peroxide and oxygen [468]. Mammalian cells 
possess three isoforms: the cytosolic copper-zinc SOD1, 
the mitochondrial manganese-dependent SOD2, and 
the extracellular copper-zinc SOD3. Macrophages from 
patients who had been exposed to asbestos have high 
levels of the copper, zinc-SOD/SOD1, and produce high 
levels of H2O2, while SOD1−/− mice were protected from 
developing pulmonary fibrosis following intratracheal 
exposure to asbestos [469]. Follow up studies showed 
that SOD1, via its generation of H2O2, drives a M2 mac-
rophage phenotype among AMs, which is associated 
with the development of fibrosis [469, 470].
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Pulmonary arterial hypertension
Pulmonary arterial hypertension (PAH) is character-
ized by increased pulmonary arterial pressure asso-
ciated with remodelling of the pulmonary arteries 
that leads to right ventricular hypertrophy and fail-
ure increasing the incidence of right heart failure and 
death [471]. Variants of pulmonary hypertension (PH) 
affect over one hundred million people globally [472]. 
Immune cells play an important role in the develop-
ment of PAH supported by the observation that dys-
regulated lymphocytes, AMs, DCs, and mast cells 
frequently accumulate in the perivascular regions and 
in the pulmonary arterial vascular lesions found in 
human PAH tissue samples [473].

The microbiome and PAH
There have been few studies assessing the airway micro-
biome in individuals with PAH. However, a recent study 
described the difference in abundance of microbiota in 
pharyngeal swabs showing a significantly higher pro-
portion of Streptococcus, Lautropia, and Ralstonia in 
patients with PH than reference subjects [474]. Gut 
microbiota differences have also been noted in PAH and 
experimental models for PAH have documented altera-
tions in faecal microbiota composition with rodents 
displaying a three-fold increase in Firmicutes-to-Bacte-
roidetes ratio [475, 476].

Trace metals, nutritional immunity and PAH
Iron deficiency and/or anaemia is prevalent in PH 
patients, significantly affecting morbidity and mortality 
of PH patients [477, 478]. Similarly PH is a major cause 
of morbidity and mortality in patients with hemoglobi-
nopathies and chronic haemolytic anaemias including 
sickle cell disease (SCD) and thalassemia [479]. Muta-
tions (G208C) in NFU1, a mitochondrial protein that 
is involved in the biosynthesis of iron-sulfur clusters 
develop PAH in ∼ 70% of cases [480]. Iron accumulates 
in the lungs and AMs of individuals with PH [481]. Iron 
handling, in particular the hepcidin/FPN axis has been 
shown to be important in the vascular remodelling and 
endothelial cell dysfunction associated with PAH and loss 
of the iron regulatory protein Irp1 leads to the develop-
ment of PH in mice [482–484]. While the role of iron in 
vascular endothelial and smooth muscle cells has been 
well studied; little is known regarding the role of iron in 
the perivascular immune cell infiltrates observed in PH. 
Circulating macrophages recruited to the lung that con-
tribute to pulmonary vascular remodelling in PH have 
a distinct iron and HO-1 rich phenotype driven by hae-
moglobin [485], however whether other immune cells 

also display alterations in iron handling remains to be 
determined.

Increases in both zinc and copper transport have also 
been implicated in pulmonary vascular homeostasis 
[486, 487] and selenium levels may be lower in individu-
als with PH [488]. Pulmonary hypertension can be trig-
gered by chronic hypoxia. Hypoxia has been shown to 
cause an NO-dependent increase in labile zinc in mouse 
lung endothelial cells from isolated perfused lungs (IPL) 
[489]. Hypoxic restriction is attenuated in IPL from mice 
treated with a zinc chelator suggesting a role for chelata-
ble zinc in modulating hypoxic pulmonary vasoconstric-
tion. Furthermore, zinc homeostasis has been implicated 
in PH as disruption of the zinc importer ZIP12 (Slc39a12) 
gene attenuates the development of PH in rats housed 
in a hypoxic environment [486]. Increased expression 
of copper-related genes, copper uptake transporter 
(CTR1), copper efflux pump ATP7A, and lysyl oxidase (a 
copper-dependent enzyme), was observed in mice with 
hypoxia induced PAH. Increased expression of CTR1 has 
also been observed in response to hypoxia within mac-
rophages [490]. However, administration of a low copper 
diet in experimental models of PH had no effect on right 
ventricular (RV) failure [491]. Dietary administration of 
selenium to broiler chickens prevented RV hypertrophy 
associated with PH syndrome [492] suggesting some pos-
sible benefit for PH. Little is known regarding the role of 
these trace metals in immune cell function in the lung or 
interaction with the airway microbiome in PAH.

Mycobacterial lung infections: tuberculosis 
and non‑tuberculous mycobacteria (NTM)
Lung infections caused by mycobacteria cause a signifi-
cant global health burden. Mycobacterium tuberculosis 
(Mtb), the causative agent of tuberculosis (TB), causes 
9 million new infections each year and over 1 million 
deaths [493]. While Mtb is a human adapted pathogen, 
non-tuberculous mycobacteria (NTM) consist of over 
200 species of environmental mycobacteria, some of 
which can opportunistically infect humans. NTM lung 
infections most often occur in those with underlying 
conditions including COPD, cystic fibrosis and bron-
chiectasis. NTM infections are less prevalent than TB 
but the prevalence of these infections is increasing glob-
ally [494]. This is concerning as the treatment for NTM 
requires multi-drug regimen lasting over a year with only 
a 50–80% success rate [495]. Furthermore, recurring 
infections after treatment completion are common.

Mycobacteria and trace metal acquisition
Pathogenic mycobacteria must be able to acquire nutri-
ents to support growth, survival and persistence within 
the host [496]. These intracellular pathogens acquire 
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iron by stealing it from their host through the produc-
tion of siderophores as well as utilisation of host iron-
binding proteins heme, haemoglobin and transferrin 
[497]. Siderophores are compounds produced by some 
microorganisms with a high-affinity for iron in response 
to iron deficient conditions [498]. There are three types 
of mycobacterial siderophores: mycobactin, carboxymy-
cobactin and exochelin. Mycobactin is associated with 
the bacterial cell envelope and transports iron through 
the cell envelope into the cytoplasm. The structure of 
mycobactin varies between bacterial species. However, 
its general lipid-soluble structure allows the binding of 
one iron atom per molecule at a very high affinity [498, 
499]. Carboxymycobactin has a very similar structure to 
mycobactin but it is modified by the addition of a carbox-
ylic acid group, making it more hydrophilic, thus it is an 
extracellular siderophore that is secreted by the bacteria. 
Exochelins are extracellular siderophores and are pro-
duced only by fast growing mycobacteria. Their structure 
consists of ornithine-derived hydroxamates as iron coor-
dination sites allowing them to acquire iron from insolu-
ble sources such as ferric oxide and ferritin [499].

Mycobacteria also have alternative mechanisms to 
siderophores to obtain iron from their host [500]. Heme 
is one of the largest human iron stores and as a result it is 
often exploited by bacteria as a source of iron. M. tuber-
culosis is capable of importing heme and either extracting 
the iron if needed or storing the heme. M. tuberculo-
sis also requires heme itself and encodes its own heme 
biosynthesis pathway, which is essential if an external 
heme source is not provided [501–503]. Mycobacteria 
can also use haemoglobin as an iron source to support 
their growth. The growth supported by haemoglobin was 
accompanied by an decrease in siderophore production, 
suggesting an alternative iron-acquisition system [504].

Pathogenic bacteria must be able to safely store intra-
cellular iron once it has been acquired from the host and 
like vertebrates, they use ferritins and bacterioferritins 
(Bfrs) to do so. Typically, ferritins assemble into spheri-
cal particles or ‘nanocages’ consisting of 24 subunits with 
a ferroxidase centre within each subunit. M. tuberculosis 
has both ferritin and Bfrs (BfrA and BfrB). The expres-
sion of bfrA and bfrB genes is regulated by the iron sensi-
tive regulator IdeR such that ferritins levels adapt to the 
level of iron [505]. Deletion of BfrA and BfrB from M. 
tuberculosis results in a decreased ability to withstand 
oxidative stress, antibiotic treatment and survival within 
human macrophages. Loss of both genes leads to reduced 
virulence in a guinea pig model of TB infection and loss 
of bfrB lead to an inability for M. tuberculosis to persist 
in mice [506, 507]. These studies show the iron storage 
system of M. tuberculosis to be an attractive drug tar-
get, as it not only is required for full virulence but also 

to withstand antibiotic treatment (including the front-
line TB drug isoniazid). M. avium encodes only one fer-
ritin homologue (BfrA) which is less important to iron 
homeostasis and virulence in M. tuberculosis. As M. 
avium most often causes infections in those with chronic 
lung diseases such as COPD, CF and non-CF bronchi-
ectasis where iron levels in the lungs are increased, one 
could speculate that iron storage within M. avium is par-
ticularly crucial to persist in the host and thus we could 
speculate that the BfrA homologue in M. avium could be 
important for this opportunistic pathogen in dealing with 
abundant iron. Interestingly, the crystal structure of Bfr 
from M. smegmatis (which is 87% identical to its homo-
logue in M. tuberculosis) revealed that it contained zinc 
in its di-nuclear metal binding site [508]. The biological 
implications of this and whether this is also true for the 
Bfrs in other mycobacteria have not yet been explored.

TB and the microbiome
Studies have shown that M. tuberculosis infection affects 
both the lung and the gut microbiome of its host. How-
ever, the role of other mycobacterial species on the 
microbiome still needs to be elucidated. Interactions 
between the microbial communities of the gut and lung 
of an infected host can influence the outcome of M. 
tuberculosis disease progression and response to treat-
ment [509]. The microbiota of sputum samples from 
TB patients were more diverse compared to respiratory 
secretions of healthy participants. Bacteria such as Pseu-
domonas and Cupriavidus were exclusive to TB patients 
and could influence the onset or development of infec-
tion [510]. BALF samples of TB patients showed a similar 
diversity in the lower respiratory tract with Cupriavidus 
bacteria possibly acting as a cofactor to secondary TB 
infections [511]. Furthermore, oral microbes present 
in the lungs of HIV patients on anti-retroviral therapy 
produce SCFAs, such as butyrate and propionate that 
increased patient susceptibility to M. tuberculosis infec-
tions by inhibiting the production of IFN-ɣ and IL-17A 
cytokines [512].

Mice infected with M. tuberculosis by aerosol lost their 
gut microbial diversity and recovered with a different 
microbial composition [513]. Furthermore, the admin-
istration of first-line TB antibiotics almost immediately 
(within 1  week) altered the intestinal microbiota of M. 
tuberculosis infected mice with distinct and long lasting 
effects [514]. Faecal samples from clinical pulmonary 
TB patients had dysbiosis of their gut microbiota with 
a significant decrease in the SCFA-producing bacteria. 
A decrease in SCFA-producing bacteria have also been 
found in systemic inflammatory disease and therefore, 
loss of these bacteria in TB patients may indicate sys-
temic inflammation and an impaired immune response 
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[515]. There have been attempts to create a classification 
model using the abundance of gut microbes to discrimi-
nate between healthy and diseased patients [515].

Trace metals, nutritional immunity and mycobacteria
Elemental analysis of the phagosomes of peritoneal 
macrophages of C57BL/6 mice infected with M. avium, 
M. tuberculosis or M. smegmatis showed that the iron 
concentration of the phagosomes containing the patho-
genic mycobacteria was significantly higher [83]. Radio-
active iron-loaded transferrin was used to reveal that 
the infected macrophages acquire extracellular iron and 
delivers it to vacuoles containing M. avium through the 
transferrin receptor. However, when the macrophages 
were activated with IFN-ɣ before infection, iron accu-
mulation by the pathogenic mycobacterial phagosomes 
was prevented. IFN-ɣ is known to downregulate the 
transferrin receptor in order to reduce the iron pool 
and enhance macrophage activity. Furthermore, when 
the macrophages were treated after infection, there was 
no change in iron concentration indicating macrophage 
anergy to IFN-ɣ activation [83]. Iron is extracted from 
transferrin by mycobactins but holo-transferrin can also 
be taken up by M. tuberculosis within macrophages [516].

The Nramp1/Slc11a1 gene is associated with the con-
trolling intracellular pathogens such as Mycobacte-
ria, Salmonella and Leishmania. Several studies have 
reported polymorphisms in Nramp1 which are associ-
ated with increased susceptibility to tuberculosis and 
leprosy (caused by M. leprae) in humans [517–519]. 
NRAMP1 is a transmembrane protein localised to lyso-
somal membranes of phagocytic cells and is recruited 
to the phagosome upon infection [520–522]. It belongs 
to a family of divalent cation transporters and func-
tional studies have shown that it transports iron out of 
the phagosome [523–526]. A recent report found that 
NRAMP1 restricts Salmonella growth in mice through 
magnesium deprivation, but whether this is via magne-
sium being directly transported by NRAMP1 has not yet 
been determined [527]. NRAMP1 is also known to have 
roles in nitric oxide production, phagosome maturation 
and induction of lipocalin 2 [528–530]. Despite studies in 
macrophages showing that NRAMP1 can restrict myco-
bacterial growth, deletion of Nramp1 in mice infected 
with M. tuberculosis did not result in increased bacte-
rial burden [531]. This is in contrast to M. avium, where 
expression of the Nramp1D169 allele (which results in 
deficient function and/or expression) in mice results in 
these animals being highly susceptible to M. avium [532]. 
M. avium growth increased in a dose-dependent manner 
with iron administration in mice expressing the func-
tional Nramp1G169 allele indicated that excess iron can 
impair or overcome the function of the NRAMP1 protein 

[532]. Further studies have argued that NRAMP1 in fact 
transports iron into the phagosome upon its recruit-
ment to aid mycobacterial killing be catalysing the Fen-
ton/Haber–Weiss reaction to produce hydroxyl radicles 
[533]. Further investigation is required to fully elucidate 
the role of NRAMP1 during mycobacterial infections and 
whether the importance of its role differs depending on 
the mycobacterial species causing infection.

Murine BMDM infected with M. avium upregu-
lated the transcription of heavy-chain (H)-ferritin in 
response to the stimulation of toll-like receptor-2. This 
could play a role in starving the mycobacterium of iron 
by storing iron atoms away from the pathogen while 
also driving macrophage polarisation towards a glyco-
lytic M1 antibacterial phenotype via HIF1α [534, 535]. 
Iron deficiency induced stabilisation of the transcrip-
tion factor HIF-1α promoting sustained IFN-γ-mediated 
polarization towards the M1 phenotype in  vivo and the 
addition of the iron chelator deferoxamine to M. tuber-
culosis-infected human primary macrophages promoted 
the M1 phenotype in vitro [535, 536]. LCN2 is involved 
in the innate immune response and can bind to the bac-
terial siderophore-iron complex, carboxymycobactin and 
restricts bacterial growth. In  vitro studies showed that 
Lcn2 restricts the growth of M. avium in vitro while the 
mycobacteria also induced Lcn2 production by murine 
BMDMs [537]. Further in  vivo studies with LCN2, 
myeloid differentiation primary response (MyD88) and 
TIR-domain-containing adapter-inducing interferon-β 
(TRIF) knock out mice confirmed this observation [537]. 
LCN2 was elevated and reduced M. avium growth in the 
blood of infected mice. Since M. avium is an intracellular 
pathogen, subcellular imaging showed that the mycobac-
teria avoid LCN2-mediated immunity by residing in the 
Rab11 + endocytic recycling pathway which still allows 
them access to transferrin [537]. The Rab5 and Rab7 
GTPases were also investigated as they control early 
and late endosomal fusion, respectively. A well-known 
strategy that pathogenic mycobacteria employ to persist 
within macrophages is by inhibiting phagosomal matu-
ration. In vitro studies using murine BMDM revealed 
that those expressing the dominant negative Rab5, 
Rab5(S34N), limited the concentration of iron within the 
M. avium phagosome which resulted in the phagosome 
maturing and ultimately killing the mycobacteria when 
compared to wild-type Rab5 BMDM. Therefore, early 
endosomal fusion is required for the mycobacteria to 
persist in these early phagosomal compartments but M. 
avium requires an adequate iron supply to prevent fur-
ther phagosome maturation [538].

Copper is essential to mycobacteria with its role as a 
required co-factor in the aa3-type cytochrome c oxidase, 
which is essential for M. tuberculosis growth. However, 
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most studies on copper in mycobacteria have focused 
on resistance to copper stress as copper toxicity in the 
macrophage phagosome is a known antimycobacte-
rial strategy employed by the host. Several studies have 
characterised the transcriptional response to copper 
but the exact mechanisms of copper uptake and not yet 
fully defined [539]. However, copper uptake is known to 
be mediated by outer membrane porins in mycobacteria 
[540]. Other membrane proteins have been identified, 
such as CtpV which acts as a copper efflux pump and 
MctB which regulates intracellular copper levels, as being 
important for M. tuberculosis copper resistance and viru-
lence [541, 542]. M. tuberculosis senses copper via two 
copper responsive transcriptional regulators CsoR and 
RicR [543, 544]. Both of these regulators control genes 
that contribute to copper resistance and virulence of M. 
tuberculosis. DNA binding of CsoR is affected by binding 
to copper and derepresses the expression of an operon 
which includes ctpV, in response to high copper levels. 
RicR regulates a copper induced regulon including the 
methallothionein mymT a copper binding protein that 
helps to protect against copper toxicity [545]. Mutation 
of RicR resulting in an inability to respond to copper led 
to increased copper sensitivity and attenuated virulence 
in mice suggesting that this regulon is important for pro-
tecting M. tuberculosis against copper stress during infec-
tion [546]. The toxicity of copper in bacteria is thought to 
be due to copper removing iron from iron sulfur clusters, 
indeed, transcriptomic data from M. tuberculosis under 
copper stress also implicates damage of iron sulfur clus-
ter enzymes [12, 539].

Zinc is an essential nutrient for mycobacteria and so 
access to this metal must be crucial for establishing and 
persisting in the host [547]. Mycobacteria can sense zinc 
levels and adapt to allow for persistence during zinc 
limited conditions [548–550]. The zinc import systems 
in mycobacteria are not clearly defined but are likely to 
consist of unspecific transport divalent cations trans-
porters from the CorA, MgtE, ZIP, NiCo and Pit fami-
lies of uptake systems. P-type ATPases may also be able 
to import zinc ions into the cell [551]. Export of zinc to 
maintain zinc homeostasis during exposure to high zinc 
levels is an important resistance mechanism as M. tuber-
culosis infected macrophages import high amounts of 
zinc into the phagosome. M. tuberculosis increases the 
expression of a P-type ATPase CtpC in response to infec-
tion and exposure to zinc. Loss of this ATPase leads to 
increased zinc levels within the bacteria and a reduced 
capacity to grow within macrophages [79]. Another gene 
Rv3929, which is encoded in the same operon as CtpC, is 
upregulated in response to zinc stress. This gene encodes 
a putative metallochaperone that could potentially sup-
ply zinc to the CtpC transporter. Zinc sequestration may 

also occur to restrict the growth of extracellular bacteria 
present in the necrotic granulomas in active TB as S100 
proteins are produced at high levels by neutrophils in the 
granulomas of TB patients[552]. Zinc starvation has been 
shown to lead to ribosome hibernation in M. smegma-
tis [553]. This ribosome hibernation results in antibiotic 
tolerance of M. tuberculosis in mouse lungs and so while 
zinc sequestration may restrict the growth of the bacteria 
it may also potentially cause the bacteria to be more dif-
ficult to treat and eradicate during infection [554].

Manganese, nickel and cobalt are also essential nutri-
ents for M. tuberculosis. CtpC was also found to trans-
port manganese allowing for metalation of secreted 
proteins, and deletion of CtpC resulted in altered man-
ganese homeostasis and increased sensitivity to oxidative 
stress [555]. Nickel is used as a co-factor for the M. tuber-
culosis urease UreA [556, 557]. Mycobacteria are some of 
the few bacteria that can synthesize vitamin B12, a com-
plex cobalt containing molecule, and have three vitamin 
B12-dependent enzymes [558–560]. However, the mecha-
nisms by which these metals are taken up by mycobacte-
ria not yet known. Host sequestration of manganese (and 
zinc) by S100 proteins, including calprotectin, a chelator 
of extracellular iron and zinc, is induced in response to 
bacterial infections [561]. Sequestration of extracellular 
manganese and zinc is likely to occur via S100 proteins as 
they are highly produced by neutrophils in the lung gran-
ulomas in TB patients [552]. This would likely impact the 
growth of extracellular bacteria that are present within 
necrotic granulomas in active TB, but further studies are 
required to clearly determine the role of these metals in 
M. tuberculosis virulence.

Therapy
An alteration in metal homeostasis, either systemically 
or within the lung compartment is associated with the 
pathogenesis and poor outcomes in several respiratory 
diseases. Therefore, correcting metal dysregulation could 
provide a novel approach to treat these diseases, potential 
counteracting one of the driving forces in the pathogene-
sis of these diseases. The potential of using iron chelators 
to reduce pulmonary iron overload in chronic lung dis-
eases such as COPD, CF and IPF are an exciting prospect 
[319, 562–564]. Reducing iron overload specifically in the 
lung in chronic lung diseases could help to counteract the 
metal dysregulation driving chronic inflammation and 
also potentially limit the respiratory infections that com-
monly occur in people living with these conditions by 
depriving airway microbes from this essential nutrient. 
However, as iron deficiency and anaemia is prevalent in 
the majority of these diseases, any direct targeting of iron 
in the lung must avoid reducing systemic iron levels fur-
ther and re-supplementing systemic iron in iron deficient 
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and anaemic patients may benefit overall survival and 
exercise capacity. Another approach to counteracting 
high iron in the lung is the use of gallium, a non-essen-
tial metal that acts as an iron mimetic. Gallium contain-
ing compounds have been shown to improve the lung 
function of CF patients with chronic infections. Gallium 
compounds have been shown to inhibit bacterial iron 
dependent processes in major respiratory pathogens, P. 
aeruginosa and M. tuberculosis, M avium, and M. absces-
sus [373, 374, 565, 566]. As gallium can replace iron in 
iron dependent bacterial proteins but is not redox active 
it interferes with function of iron-dependent essential 
processes such as the respiratory chain and kills the bac-
teria.  Metal metabolism dysfunction could also poten-
tially be corrected very easily by dietary supplementation, 
such as selenium supplementation for influenza and zinc 
supplementation for asthma. However, these treatments 
are likely to only have a beneficial effect in patients with 
deficiencies in these metals and so personalised treat-
ment approaches are vital.

Immunonutrition is a novel concept where patients 
are given a personalized diet rich in vitamins and min-
erals such as zinc, selenium and iron to modulate 
immune responses in order to improve disease outcome 
and recovery. The modulation of the gut microbiota by 
immunonutrition has been reviewed as a potential thera-
peutic strategy for obese COVID-19 patients [567]. This 
novel idea of utilizing the gut-lung axis might also have 
potential influences on the outcome of bacterial infec-
tions such as M. tuberculosis that rely on metals such as 
iron for their replication and growth. Perhaps a person-
alized diet to deprive the bacteria of certain metals may 
one day be a potential therapeutic strategy for pulmonary 
bacterial infections. An overview of potential therapies 
for respiratory disease by targeting metal homeostasis 
and dysregulation are presented in Table 2.

Conclusion
The lungs are a unique compartment in the body in 
that they are constantly exposed to the environment. 
We are constantly breathing in air from our surround-
ings which consists of microorganisms, particles, 
chemicals, and pollutants. The resident immune cells 
within this niche must be able to deal with the influx of 
microbes and particles without causing inflammation. 
Unfortunately, environmental, lifestyle and genetic 
factors can lead to chronic lung inflammation result-
ing in an array of lung diseases that result in obstruc-
tion and damage to the airways and a decline in lung 
function. Furthermore, recurrent respiratory infections 
are common among those with chronic lung disease 
and contribute to progressive decline in lung function. 
The role of metabolites and nutrients present in lung 

microenvironment are just beginning to be investigated 
and appreciated. Metals essential to most organisms, 
such as iron, copper and zinc are found to be altered in 
several lung diseases. These metals play important roles 
both in the function of immune cells in the lung and 
in the microbes present in the airways. There remains 
much to be explored on the cause and source of this 
metal dysregulation during lung disease, as well as the 
exact mechanistic consequences of this on the immune 
cells and the constituents of the airway microbiota. We 
believe that targeting disturbed metal metabolism seen 
in many lung diseases is a novel approach that could 
potentially address both immune-driven pathology and 
the increased occurrence of respiratory infections. We 
hope that future work will further our understanding of 
the complex interactions between lung immunity, the 
lung microbiome and the lung microenvironment and 
will lead to much improved treatments for the many 
diseases of the lung that yet remain to be curable.
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